JP2669529B2 - Perpendicular magnetic recording medium and magnetic disk device - Google Patents

Perpendicular magnetic recording medium and magnetic disk device

Info

Publication number
JP2669529B2
JP2669529B2 JP8905888A JP8905888A JP2669529B2 JP 2669529 B2 JP2669529 B2 JP 2669529B2 JP 8905888 A JP8905888 A JP 8905888A JP 8905888 A JP8905888 A JP 8905888A JP 2669529 B2 JP2669529 B2 JP 2669529B2
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
substrate
alloy
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8905888A
Other languages
Japanese (ja)
Other versions
JPH01263910A (en
Inventor
好文 松田
芳博 城石
定夫 菱山
博之 鈴木
徒之 大野
真一郎 斎藤
一正 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8905888A priority Critical patent/JP2669529B2/en
Publication of JPH01263910A publication Critical patent/JPH01263910A/en
Application granted granted Critical
Publication of JP2669529B2 publication Critical patent/JP2669529B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は次世代の超高密度記録が可能な媒体として注
目されている垂直磁気記録媒体に係わり、特に高密度記
録に好適な磁気ディスク装置用媒体に関する。
The present invention relates to a perpendicular magnetic recording medium, which is attracting attention as a medium capable of next-generation ultra-high density recording, and a magnetic disk device particularly suitable for high-density recording. For media.

[従来の技術] 従来、超電密度記録用の垂直磁気記録媒体として、特
公昭57−17282号に記載のように、磁性膜としてCo−Cr
合金薄膜を用いた媒体が提案されている。垂直磁気記録
用媒体の形成法としては蒸着法,スパッタリング法,メ
ッキ法などがある。最近、記録密度の向上がますます要
求されてきており、そのため特開昭49−74912号公報、
特開昭58−14318号公報のようにCo−Cr合金薄膜と基板
との間にTi中間層を設け、結晶性を制御して高いc軸配
向性を得る提案がなされている。また、特開昭58−1336
24号公報には、Co−Cr合金との熱膨張率の差を少なく
し、記録時と再生時におけるトラックずれを小さくする
ために垂直磁気記録媒体用の基板として、Ti基合金を用
いることや、さらに特開昭62−143227,62−143228,62−
143229号公報には下地層としてTi合金中間層を設け、さ
らに磁性層の結晶粒径を10〜300nmとすることで、真空
蒸着法でも高い保磁力の媒体を得ようとする提案もなさ
れている。
[Prior Art] Conventionally, as a perpendicular magnetic recording medium for superdensity recording, as described in JP-B-57-17282, Co-Cr
A medium using an alloy thin film has been proposed. Methods for forming a perpendicular magnetic recording medium include vapor deposition, sputtering, and plating. Recently, there has been an increasing demand for improvement in recording density. Therefore, Japanese Patent Laid-Open No. 49-74912 discloses
As disclosed in Japanese Patent Application Laid-Open No. 58-14318, it has been proposed to provide a Ti intermediate layer between a Co—Cr alloy thin film and a substrate to control crystallinity and obtain high c-axis orientation. In addition, JP-A-58-1336
No. 24 publication discloses that a Ti-based alloy is used as a substrate for a perpendicular magnetic recording medium in order to reduce the difference in coefficient of thermal expansion from a Co-Cr alloy and to reduce track deviations during recording and reproduction. And JP-A-62-143227, 62-143228, 62-
Japanese Patent No. 143229 proposes to provide a medium having a high coercive force even by a vacuum deposition method by providing a Ti alloy intermediate layer as an underlayer and further setting the crystal grain size of the magnetic layer to 10 to 300 nm. .

[発明が解決しようとする課題] しかし、これらの発明はほとんど蒸着法、イオンプレ
ーティング法などによる、磁気記録用テープやフレキシ
ブルディスクに関するものであり、強化ガラスやNi−P
メッキAl合金のように平坦で硬い材料からなる基板を用
いるコンピュータ用リジッドディスクにおいてはあまり
検討されていない。そこで本発明者らは、まずNi−Pメ
ッキAl合金基板上に直接Co−Cr合金をRFスパッタリング
法で形成し特性を評価してみた。ここでCrの組成は5〜
25at%,成膜時の基板温度:室温〜150℃,Arガス圧3〜
30mTorr{0.4〜4Pa},投入電力密度1〜10W/cm2,膜厚6
0〜250nmとした。いずれのCo−Cr膜も垂直方向の保磁力
は300Oe以下と低く、しかもCo−Crのc軸配向性の分散
Δθ50も10゜以上と悪く、良好な垂直磁化膜は得られな
かった。強化ガラス基板についても同様であった。これ
はNi−P基板や強化ガラス基板は通常の有機系基板に比
べて表面エネルギーが高く六方晶のCo−Crの最密面であ
るc面の高配向が阻害されるためである。一般に垂直磁
気記録用の磁性膜において高い記録密度を達成するに
は、垂直方向の保磁力を高めると共に垂直磁化膜の結晶
軸(c軸)を膜面に垂直に配向させることが特に重要で
あることが知られている。
[Problems to be Solved by the Invention] However, most of these inventions relate to a magnetic recording tape or a flexible disk by a vapor deposition method, an ion plating method, or the like, and include tempered glass and Ni-P.
Rigid discs for computers using a substrate made of a flat and hard material such as plated Al alloy have not been studied so much. Therefore, the present inventors first formed a Co-Cr alloy directly on a Ni-P plated Al alloy substrate by an RF sputtering method and evaluated the characteristics. Here, the composition of Cr is 5
25at%, substrate temperature during film formation: room temperature to 150 ° C, Ar gas pressure 3 to
30mTorr {0.4-4Pa}, input power density 1-10W / cm 2 , film thickness 6
It was set to 0 to 250 nm. In each of the Co-Cr films, the coercive force in the perpendicular direction was as low as 300 Oe or less, and the Co-Cr c-axis orientation dispersion Δθ 50 was as bad as 10 ° or more, and a good perpendicular magnetization film could not be obtained. The same was true for the tempered glass substrate. This is because the Ni-P substrate and the tempered glass substrate have higher surface energy than ordinary organic substrates and hinder the high orientation of the c-plane which is the close-packed face of hexagonal Co-Cr. In general, in order to achieve a high recording density in a magnetic film for perpendicular magnetic recording, it is particularly important to increase the coercive force in the perpendicular direction and to orient the crystal axis (c-axis) of the perpendicular magnetization film perpendicular to the film surface. It is known.

本発明の目的は、高い密着性が得られるスパッタリン
グ法などにより磁気記録用テープやフレキシブルディス
クだけでなく、強化ガラスや金属材料などの硬質基板を
用いるリジッドディスクとしても良好な結晶配向性、磁
気特性及び密着性を有する垂直磁化膜を形成し、高記録
密度が可能で信頼性の高い磁気記録媒体を提供すること
にある。
The object of the present invention is not only magnetic recording tape and flexible disk by a sputtering method or the like that can obtain a high adhesion, good crystal orientation as a rigid disk using a hard substrate such as tempered glass or metal material, magnetic characteristics Another object of the present invention is to provide a highly reliable magnetic recording medium capable of high recording density by forming a perpendicular magnetic film having adhesiveness.

[課題を解決するための手段] 六方晶系の磁性合金層と強化ガラス基板、Ni−Pメッ
キ層付きAl合金基板及びセラミックス基板等の非磁性基
板との間にSi基合金、Ti基合金,Zr基合金等の種々の非
磁性中足層を設けた媒体をスパッタ法などで形成し、そ
の媒体の結晶学的特性及び磁気的特性、記録再生特性さ
らに密着性、耐食性等の信頼性などを鋭意検討した本発
明者等の研究によれば、上記の目的は前記非磁性中間層
としてTiの他にV,Nb,Ta,Cr,Mo,W,Nm,Ni,Pd,Pt,Cu,Ag,A
u,C,Si,Ge,Ru,Os,Rh及びIrから成る群から選ばれた少な
くとも1種の元素を含むTi基合金中間層を用いることに
より達成される。このTi基合金中間層に対して、V,Nb,T
a,Cr,Mo,W,Mn,Ni,Cu,C,Si,Geから成る群から選ばれた少
なくとも1種の元素を含みその組成比は総量で1at%以
上25at%以下が望ましく、Pd,Pt,Ag,Au,Ru,Os,Rh及びIr
から成る群から選ばれた少なくとも1種の元素を含みそ
の組成比は総量で0.1at%以上10at%以下とすることが
望ましい。さらに、前記Ti基合金中間層に対して、特に
Nb,Taのうち何れか1種の元素の組成比が5at%以上20at
%以下であることがより望ましく、Pd,Pt,Ag,Au,Ru,Os,
Rh及びIrから成る群から選ばれた元素を含みその組成比
が総量で1at%以上7.5at%以下とすることがより望まし
い。また、前記六方晶系の磁性合金層としてはCoを50at
%以上含み、さらにCr,V,Mo,W,Ti,Mn,Re,Sm,Fe及びOか
ら成る群Xから選ばれた少なくとも1種の元素を総量で
0.1at%以上25at%以下含むCo−X2元合金薄膜を用いる
と、磁気特性の上でより効果的である。さらに、前記六
方晶系の磁性合金層として、Zr,Ti,Hf,Ta,Ru,Rh,Pd及び
Ptから成る群Yから選ばれた少なくとも1種の元素を総
量で0.1at%以上15at%以下含むCo−Y2元合金薄膜を用
いてもよい。前記Co−X2元合金にさらに前記Yから選ば
れた少なくとも1種の元素を総量で0.1at%以上25at%
以下含むCo−X−Y3元合金薄膜を用いると耐食性の上で
より効果的である。
[Means for Solving the Problems] Between a hexagonal magnetic alloy layer and a non-magnetic substrate such as a tempered glass substrate, an Al alloy substrate with a Ni-P plating layer, and a ceramic substrate, a Si-based alloy, a Ti-based alloy, By forming a medium provided with various non-magnetic intermediate layers such as Zr-based alloys by the sputtering method, etc., the crystallographic and magnetic properties of the medium, recording / reproducing characteristics, adhesion, corrosion resistance, etc. According to the study conducted by the inventors of the present invention, the above-mentioned objects are V, Nb, Ta, Cr, Mo, W, Nm, Ni, Pd, Pt, Cu, Ag in addition to Ti as the non-magnetic intermediate layer. , A
This is achieved by using a Ti-based alloy intermediate layer containing at least one element selected from the group consisting of u, C, Si, Ge, Ru, Os, Rh and Ir. V, Nb, T
a, Cr, Mo, W, Mn, Ni, Cu, C, Si, Ge containing at least one element selected from the group, the total composition ratio is preferably 1 at% or more and 25 at% or less, Pd, Pt, Ag, Au, Ru, Os, Rh and Ir
It is desirable to contain at least one element selected from the group consisting of and the composition ratio thereof is 0.1 at% or more and 10 at% or less in total. Further, especially for the Ti-based alloy intermediate layer,
The composition ratio of one of Nb and Ta is 5 at% or more and 20 at
% Or less is more desirable, and Pd, Pt, Ag, Au, Ru, Os,
It is more desirable that the composition ratio includes an element selected from the group consisting of Rh and Ir and the total composition ratio is 1 at% or more and 7.5 at% or less. The hexagonal magnetic alloy layer contains Co at 50 at.
%, And at least one element selected from the group X consisting of Cr, V, Mo, W, Ti, Mn, Re, Sm, Fe and O in total amount
The use of a Co-X binary alloy thin film containing 0.1 at% or more and 25 at% or less is more effective in terms of magnetic properties. Further, as the hexagonal magnetic alloy layer, Zr, Ti, Hf, Ta, Ru, Rh, Pd and
A Co-Y binary alloy thin film containing at least one element selected from the group Y composed of Pt in a total amount of 0.1 at% or more and 15 at% or less may be used. The Co-X binary alloy further contains at least one element selected from the above Y in a total amount of 0.1 at% or more and 25 at% or more.
Use of a Co-X-Y ternary alloy thin film containing the following is more effective in terms of corrosion resistance.

[作用] 上記手段は以下の作用による。これまで、特開昭58−
159225,59−22236,59−22225,59−33628号公報などにポ
リイミド等の耐熱性基板上にTi薄膜を介してCo−Cr薄膜
を形成することで、Co−Cr磁性膜の結晶配向性を高める
ことが知られている。そこでまず、Ni−P基板に対して
も同様の効果が得られるか検討した。すなわち、Ni−P
をメッキし、その表面を鏡面研磨したAl合金基板上に、
RFスパッタリング法で基板温度:室温〜200℃,Arガス圧
3〜30mTorr{0.4〜4Pa},投入電力密度1〜10W/cm2
して膜厚20〜600nmのTi中間層を形成し、さらに連続し
て膜厚60〜250nmのCo−Cr合金磁性層を形成し、特性を
評価した。Cr組成については5〜25at%まで変えて検討
した。その結果、Ti中間層を設けることによりCo−Crの
保磁力は300Oe以上に高くなり、基板温度が高い程高い
保磁力が得られたが、いずれの膜においてもCo−Crのc
軸配向性の分散を示すΔθ50は10゜以上と大きく、良好
なc軸配向性を示さなかった。蒸着法では15゜以上とさ
らに低い配向性の膜しか得られず、強化ガラス基板でも
Ni−P基板と同様の結果しか得られなかった。一方、ポ
リエチレンテレフタレート,ポリイミド,ポイアミド等
の有機系基板に対してはいずれの方法でもΔθ50は約5
゜と高いc軸配向性を有する膜が得られた。これは、Ni
−P基板や強化ガラス基板は有機系基板に比べて表面エ
ネルギーが高く、Ti中間層の最密面であるc面の配向も
阻害されてしまうためである。そこで本発明者らは、ま
ず中間層の配向性を高めることについて上記成膜条件
で、Tiに4A,5A,6A,7A,8,1B,2B,3B,4B,5B,6B族の元素を
添加した中間層を成膜、特性評価することで鋭意検討す
ることにした。その結果、いずれの成膜条件において
も、Tiの他に、V,Nb,Ta,Cr,Mo,W,Mn,Ni,Pd,Pt,Cu,Ag,A
u,C,Si,Ge,Ru,Os,Rh及びIrから成る群から選ばれた少な
くとも1種の元素を含むTi基合金中間層は、Ti単相膜に
比べて、非磁性基板上に垂直にc軸が配向し易いことが
RHEED,X線回折法などにより明らかになった。実際、第
4図(a)にはNi−P基板上に形成した、TiにNb,Taに
添加したTi基合金中間層とその上に形成したCo−Cr磁性
合金層のc軸配向性を示すが、Ti基合金中間層に対して
Nb,Taの何れか1種の組成比が5at%以上20at%以下のと
きに、Ti−Nb,Ti−Ta合金中間層及びCo−Cr磁性合金層
の002反射のΔθ50が小さく、特にCo−Cr磁性合金層の
c軸配向性が高いことが分かる。Nb−Ta合金やV,Cr,Mo,
W,Mn,Ni,Cu,C,Si及びGeから成る群から選ばれた元素の
1種をTiに添加した場合やこれらの組み合わせから成る
合金も同様の添加量で同じ効果が認められた。ここでTi
にNb,Taのいずれか1種を添加した膜は、V,Cr,Mo,W,Ni,
Cu,C,Si及びGeの1種を添加した場合に比べて耐食性が
高く中間層としては特に好ましい。また、Ti基合金中間
層にNb,Taの何れか1種を5at%以上20at%以下添加した
場合に最も高いc軸配向性が得られた。さらに、第4図
(b)には、TiにPt,Pdを添加したTi基合金中間層上に
形成したCo−Cr磁性合金層のc軸配向性を示すが、Ti基
合金に対してPt,Pdの何れか1種の組成比が1at%以上7.
5at%以下のときに、特にCo−Cr磁性合金層のc軸配向
性が高いことが分かる。Ru,Os,Rh,Ir,Ag及びAuから成る
群から選ばれた元素の少なくとも1種をTiに添加した場
合やTiにRu,Os,Rh,Ir,Ag,Au,Pt,Pdの合金を添加した場
合にも同様の添加量で同じ効果が認められた。ここで、
TiにV,Nb,Ta,Cr,Mo,W,Mn,Ni,Cu,C,Si,Geを添加したTi基
合金系に比べて、これらの合金系は高価ではあるが耐食
性が高く、信頼性の面ではより好ましい。いずれにせ
よ、このように、V,Nb,Ta,Cr,Mo,W,Mn,Ni,Pd,Pt,Cu,Ag,
Au,C,Si,Ge,Ru,Os,Rh及びIrから成る群から選ばれた少
なくとも1種の元素をTiに添加することにより、Ti基合
金中間層としてのc軸配向性が向上するのは、Ti基合金
のバルクの状態図においてTiの六方晶相を保持できるV,
Nb,Ta,Cr,Mo,W,Mn,Ni,Pd,Pt,Cu,Ag,Au,C,Si,Ge,Ru,Os,R
h及びIr等の固溶限が非常に小さく、したがって、V,Nb,
Ta,Cr,Mo,W,Mn,Ni,Pd,Pt,Cu,Ag,Au,C,Si,Ge,Ru,Os,Rh及
びIr等の成分はTi基合金中間層の柱状結晶の粒界に偏析
し易く、そのために最密面であるc面が基板面に平行に
成長し易いためである。ただし一般にスパッタリング法
等で成膜した薄膜状態での状態図は組成の絶対値、相状
態等はバルクの状態図とは著しく異なることが通常で、
バルクの状態図だけから逆に本効果を予想することは困
難であり、既に説明したような詳細な実験が必要であ
る。さらにCo−Cr,Co−V,Co−Mo,Co−W,Co−Re,Co−Ti,
Co−Sm,Co−Mn,Co−Ta,Co−Zr,Co−Hf,Co−Pd,Co−Pt,C
o−Fe,Co−O,Co−Cr−Rh,Co−Cr−Ru,Co−Cr−Ta,Co−C
r−Zr,Co−Cr−Pt,Co−Cr−Pd,Co−Cr−Ti,Co−Cr−Hf,
Co−Ti−Ta等の六方晶系磁性合金は上記Ti基合金と格子
定数が近いため、エピタキシャル的に六方晶系磁性合金
層がTi基合金上に成長し易く、上記六方晶系磁性合金か
ら成る、高いc軸配向性を示す垂直磁化膜が得られるこ
とになる。ここでCo基3元合金はCo基2元合金に比べて
耐食性が高いので好ましい。
[Operation] The above means has the following operations. Up to now, JP-A-58-
159225,59-22236,59-22225,59-33628 and the like, by forming a Co-Cr thin film via a Ti thin film on a heat-resistant substrate such as polyimide, the crystal orientation of the Co-Cr magnetic film Known to increase. Therefore, first, it was examined whether a similar effect can be obtained for a Ni-P substrate. That is, Ni-P
On an Al alloy substrate with its surface mirror-polished,
Substrate temperature: room temperature to 200 ° C, Ar gas pressure 3 to 30 mTorr {0.4 to 4 Pa}, input power density 1 to 10 W / cm 2 and a Ti intermediate layer with a film thickness of 20 to 600 nm are formed by RF sputtering method, and further continuous. Then, a Co—Cr alloy magnetic layer having a thickness of 60 to 250 nm was formed, and the characteristics were evaluated. The Cr composition was examined by changing it to 5 to 25 at%. As a result, the coercive force of Co-Cr was increased to 300 Oe or more by providing the Ti intermediate layer, and a higher coercive force was obtained as the substrate temperature was higher.
The Δθ 50 showing the dispersion of the axial orientation was as large as 10 ° or more, and the good c-axis orientation was not shown. The vapor deposition method can only obtain a film with a lower orientation of 15 ° or more, and even with a tempered glass substrate
Only the same result as the Ni-P substrate was obtained. On the other hand, for any organic substrate such as polyethylene terephthalate, polyimide or poiamide, Δθ 50 is about 5 by any method.
A film having a high c-axis orientation was obtained. This is Ni
This is because the -P substrate and the tempered glass substrate have a higher surface energy than the organic substrate, and the orientation of the c-plane, which is the closest surface of the Ti intermediate layer, is impaired. Therefore, the present inventors first of all, under the above film forming conditions for increasing the orientation of the intermediate layer, Ti 4A, 5A, 6A, 7A, 8, 1B, 2B, 3B, 4B, 5B, 6B group elements. The inventor decided to conduct a thorough study by forming a film and evaluating the characteristics of the added intermediate layer. As a result, under any film formation conditions, in addition to Ti, V, Nb, Ta, Cr, Mo, W, Mn, Ni, Pd, Pt, Cu, Ag, A
The Ti-based alloy intermediate layer containing at least one element selected from the group consisting of u, C, Si, Ge, Ru, Os, Rh and Ir is more perpendicular to the non-magnetic substrate than the Ti single phase film. That the c-axis is easily oriented
It was revealed by RHEED and X-ray diffraction method. In fact, FIG. 4 (a) shows the c-axis orientation of the Ti-based alloy intermediate layer formed on the Ni-P substrate and added to Nb and Ta on Ti and the Co-Cr magnetic alloy layer formed thereon. Shown for the Ti-based alloy intermediate layer
When the composition ratio of any one of Nb and Ta is 5 at% or more and 20 at% or less, the Δθ 50 of 002 reflection of the Ti-Nb, Ti-Ta alloy intermediate layer and the Co-Cr magnetic alloy layer is small, and particularly Co It can be seen that the c-axis orientation of the -Cr magnetic alloy layer is high. Nb-Ta alloy, V, Cr, Mo,
The same effect was observed when one of the elements selected from the group consisting of W, Mn, Ni, Cu, C, Si and Ge was added to Ti and alloys composed of these combinations were also added at similar amounts. Where Ti
The film with any one of Nb and Ta added to V, Cr, Mo, W, Ni,
Corrosion resistance is high as compared with the case of adding one of Cu, C, Si and Ge, and it is particularly preferable as the intermediate layer. The highest c-axis orientation was obtained when any one of Nb and Ta was added to the Ti-based alloy intermediate layer in an amount of 5 at% to 20 at%. FIG. 4B shows the c-axis orientation of the Co—Cr magnetic alloy layer formed on the Ti-based alloy intermediate layer obtained by adding Pt and Pd to Ti. The composition ratio of any one of Pd and Pd is 1 at% or more 7.
It can be seen that especially when the content is 5 at% or less, the c-axis orientation of the Co—Cr magnetic alloy layer is high. When at least one element selected from the group consisting of Ru, Os, Rh, Ir, Ag and Au is added to Ti, or when an alloy of Ru, Os, Rh, Ir, Ag, Au, Pt and Pd is added to Ti. When added, the same effect was observed with the same amount added. here,
Compared to Ti-based alloy systems in which V, Nb, Ta, Cr, Mo, W, Mn, Ni, Cu, C, Si, Ge is added to Ti, these alloy systems are expensive but have high corrosion resistance and reliability. It is more preferable in terms of sex. In any case, V, Nb, Ta, Cr, Mo, W, Mn, Ni, Pd, Pt, Cu, Ag,
Addition of at least one element selected from the group consisting of Au, C, Si, Ge, Ru, Os, Rh and Ir to Ti improves the c-axis orientation of the Ti-based alloy intermediate layer. V, which can retain the hexagonal phase of Ti in the bulk phase diagram of Ti-based alloy
Nb, Ta, Cr, Mo, W, Mn, Ni, Pd, Pt, Cu, Ag, Au, C, Si, Ge, Ru, Os, R
The solid solubility limits of h and Ir are very small, and therefore V, Nb,
Components such as Ta, Cr, Mo, W, Mn, Ni, Pd, Pt, Cu, Ag, Au, C, Si, Ge, Ru, Os, Rh and Ir are the grain boundaries of columnar crystals in the Ti-based alloy intermediate layer. This is because the c-plane, which is the closest surface, easily grows parallel to the substrate surface. However, in general, the phase diagram in the state of a thin film formed by sputtering etc. is usually different from the bulk phase diagram in terms of absolute value of composition, phase state, etc.
Conversely, it is difficult to predict this effect from the bulk phase diagram alone, and detailed experiments as already explained are necessary. Furthermore, Co-Cr, Co-V, Co-Mo, Co-W, Co-Re, Co-Ti,
Co-Sm, Co-Mn, Co-Ta, Co-Zr, Co-Hf, Co-Pd, Co-Pt, C
o-Fe, Co-O, Co-Cr-Rh, Co-Cr-Ru, Co-Cr-Ta, Co-C
r-Zr, Co-Cr-Pt, Co-Cr-Pd, Co-Cr-Ti, Co-Cr-Hf,
Since the hexagonal magnetic alloy such as Co-Ti-Ta has a lattice constant close to that of the above Ti-based alloy, the hexagonal magnetic alloy layer is likely to grow epitaxially on the Ti-based alloy, Thus, a perpendicular magnetization film having high c-axis orientation can be obtained. Here, the Co-based ternary alloy is preferable because it has higher corrosion resistance than the Co-based binary alloy.

次に本発明より成る高配向垂直磁化膜の磁気特性,記
録再生特性について述べる。TiにそれぞれNb,Ta及びPt,
Pdを添加したTi基合金中間層上に形成したCo−Cr磁性合
金層の磁気特性を第4図(a),第4図(b)に示し
た。Co−Cr磁性合金層のc軸配向性が高いTi基合金組成
で、垂直磁気異方性が高く角形比が大きい等の優れた垂
直磁気特性が得られた。また、V,Cr,Mo,W,Mn,Ni,Cu,Ag,
Au,C,Si,Ge,Ru,Os,Rh及びIrから成る群から選ばれた少
なくとも1種の元素をTiに添加した場合も同様に、Co基
磁性合金層のc軸配向性が高いTi基合金組成で、優れた
垂直気性特性が得られた。特に、前記六方晶系の磁性合
金層として、Cr,V,Mo,W,Ti,Mn,Re,Sm,Fe及びOから成る
群Xから選ばれた少なくとも1種の添加元素を総量で0.
1at%以上25at%以下含むCo基合金薄膜を用いると、よ
り良好な記録再生特性を示し、添加元素量を0.1at%未
満にすると面内記録成分が著しく強くなり、25at%より
多くすると再生出力が著しく低下し、何れも記録再生特
性は劣化した。さらに、前記六方晶系の磁性合金層とし
て、Zr,Ti,Hf,Ta,Ru,Rh,Pd及びPtから成る群Yから選ば
れた少なくとも1種の添加元素を総量で0.1at%以上15a
t%以下含むCo基合金薄膜を用いても良好な記録再生特
性を示すが、添加元素量を0.1at%未満にしても、15at
%より多くしても、前記と同様に記録再生特性は劣化し
た。ここで前記のようにCo−X2元合金にY群から選ばれ
た少なくとも1種の元素を総量で0.1at%以上25at%以
下添加したCo−X−Y3元合金は、再生出力が若干低下す
るが優れた耐食性を示すので応用上より好ましい。以上
の効果は蒸着法によっても確認されたが、Δθ50は7゜
程度と、効果の大きさはスパッタリング法によるものに
比べて大きかった。これは一般に蒸着法で成膜された膜
は、蒸着粒子の運動エネルギーが0.1〜1eVと小さいの
で、1桁程度高い運動エネルギーを有する、スパッタリ
ング法による膜と比べて膜の配向性や密着性に劣るため
である。このようにスパッタリング法による膜は密着性
にも優れているため、耐摺動性等の信頼性の面でも好ま
しい。以上の効果はスパッタリング中のガス中にH2,O2,
N2等の不純物ガスを1vol%まで添加してもほぼ同様であ
った。
Next, the magnetic characteristics and recording / reproducing characteristics of the highly oriented perpendicular magnetic film according to the present invention will be described. Ti and Nb, Ta and Pt, respectively
4 (a) and 4 (b) show the magnetic characteristics of the Co—Cr magnetic alloy layer formed on the Ti-based alloy intermediate layer to which Pd was added. With a Ti-based alloy composition having a high c-axis orientation of the Co-Cr magnetic alloy layer, excellent perpendicular magnetic properties such as high perpendicular magnetic anisotropy and large squareness ratio were obtained. In addition, V, Cr, Mo, W, Mn, Ni, Cu, Ag,
Similarly, when at least one element selected from the group consisting of Au, C, Si, Ge, Ru, Os, Rh, and Ir is added to Ti, Ti having a high c-axis orientation of the Co-based magnetic alloy layer is also obtained. Excellent vertical vapor characteristics were obtained with the base alloy composition. Particularly, as the hexagonal magnetic alloy layer, the total amount of at least one additive element selected from the group X consisting of Cr, V, Mo, W, Ti, Mn, Re, Sm, Fe and O is 0.
If a Co-based alloy thin film containing 1 at% or more and 25 at% or less is used, better recording / reproducing characteristics are exhibited, and if the content of the additive element is less than 0.1 at%, the in-plane recording component becomes extremely strong, and if it exceeds 25 at%, the reproduction output And the recording / reproducing characteristics deteriorated. Further, as the hexagonal magnetic alloy layer, at least one additive element selected from the group Y consisting of Zr, Ti, Hf, Ta, Ru, Rh, Pd and Pt in a total amount of 0.1 at% or more 15a
Good recording / reproducing characteristics are obtained even if a Co-based alloy thin film containing t% or less is used.
Even if the content was more than%, the recording / reproducing characteristics deteriorated as described above. Here, as described above, in the Co-X-Y ternary alloy in which at least one element selected from the Y group is added to the Co-X2 binary alloy in a total amount of 0.1 at% or more and 25 at% or less, the reproduction output is slightly reduced. Shows excellent corrosion resistance, and is therefore more preferable for application. Above effects have been confirmed by vapor deposition, [Delta] [theta] 50 is on the order of 7 °, the magnitude of the effect was greater than that by the sputtering method. Generally, a film formed by the vapor deposition method has a small kinetic energy of vapor deposition particles of 0.1 to 1 eV. Because it is inferior. As described above, the film formed by the sputtering method has excellent adhesion, and is therefore preferable in terms of reliability such as sliding resistance. The above effect is due to the presence of H 2 , O 2 ,
The results were almost the same even when an impurity gas such as N 2 was added up to 1 vol%.

以上の効果により、スパッタリング法などにより非磁
性基板上に非磁性中間層として、V,Nb,Ta,Cr,Mo,W,Mn,N
i,Pd,Pt,Cu,Ag,Au,C,Si,Ge,Ru,Os,Rh及びIrから成る群
から選ばれた少なくとも1種の元素を含むTi基合金中間
層を形成することにより、六方晶系磁性合金層は基板面
に対して垂直方向にc軸配向性が高く、優れた垂直磁気
特性を示すと共に密着性も高いので、本発明より成る六
方晶系磁性合金層を用いることにより、特に優れた記録
再生特性及び信頼性を有する垂直磁気記録媒体及び装置
を提供することができる。
Due to the above effects, V, Nb, Ta, Cr, Mo, W, Mn, N
By forming a Ti-based alloy intermediate layer containing at least one element selected from the group consisting of i, Pd, Pt, Cu, Ag, Au, C, Si, Ge, Ru, Os, Rh and Ir, The hexagonal magnetic alloy layer has a high c-axis orientation in the direction perpendicular to the substrate surface, exhibits excellent perpendicular magnetic characteristics and high adhesion. Therefore, by using the hexagonal magnetic alloy layer according to the present invention, In particular, it is possible to provide a perpendicular magnetic recording medium and apparatus having particularly excellent recording / reproducing characteristics and reliability.

[実施例] 以下、本発明の実施例を説明する。[Example] Hereinafter, an example of the present invention will be described.

[実施例1] 第1図において、11はAl合金等から成る非磁性基板、
12,12′はNi−P,Ni−W−Pもしくはこれらを主たる成
分とする合金から成る非磁性メッキ層、13,13′はTi基
合金から成る非磁性中間層、14,14′はCo−Crから成る
六方晶系磁性合金層、15,15′はC,B,B4C,Si−C,Co3O4,S
iO2,Si3N4,W−C,Si−C,Zr−C等から成る保護潤滑層で
あり、それぞれは以下に示すように形成される。外径13
0mmΦ、内径40mmΦ、厚さ1.9mmのAl合金基板11の上に、
膜厚20μmの非磁性12wt%P−Niメッキ層12,12′を形
成した後、表面を円周方向に微細な凹凸を有しその中心
線平均面粗さ10nmになるように鏡面研磨して膜厚を15μ
mとした。この基板上にRFマグネトロンスパッタ装置に
より基板温度100℃,Arガス圧0.7Pa,RF投入電力5W/cm2
スパッタ条件で以下のTi基合金中間層を膜厚400nm形成
して非磁性中間層13,13′とした後、同一のスパッタ条
件で21at%Cr−Co磁性層14,14′を膜厚250nm形成した。
ここで、非磁性中間層としてTi基合金中間層には、V,N
b,Ta,Cr,Mo,W,Mn,Ni,Cu,C,Si及びGeを各々10at%添加し
て形成した薄膜と、Pd,Pt,Ag,Au,Ru,Os,Rh及びIrを各々
5at%添加して形成した薄膜を用いたさらにDCマグネト
ロンスパッタ装置により、基板温度100℃,Arガス圧1.3P
a,DC投入電力3W/cm2のスパッタ条件でCから成る保護潤
滑層15,15′を膜厚30nm形成し、磁気ディスクを作製し
た。
Example 1 In FIG. 1, reference numeral 11 denotes a nonmagnetic substrate made of an Al alloy or the like;
12, 12 'are non-magnetic plating layers made of Ni-P, Ni-WP or an alloy containing these as main components, 13, 13' are non-magnetic intermediate layers made of a Ti-based alloy, and 14, 14 'are Co hexagonal magnetic alloy layer consisting -cr, 15, 15 'is C, B, B 4 C, Si-C, Co 3 O 4, S
iO 2, Si 3 N 4, W-C, Si-C, a protective lubricant layer made of Zr-C, etc., each of which is formed as follows. Outer diameter 13
On the Al alloy substrate 11 with 0mmΦ, inner diameter 40mmΦ and thickness 1.9mm,
After forming the non-magnetic 12 wt% P-Ni plating layers 12 and 12 'having a film thickness of 20 μm, the surface is mirror-polished to have fine irregularities in the circumferential direction so that the center line average surface roughness is 10 nm. 15μ thickness
m. The following Ti-based alloy intermediate layer was formed to a thickness of 400 nm on this substrate by the RF magnetron sputtering device under the sputtering conditions of a substrate temperature of 100 ° C., Ar gas pressure of 0.7 Pa, and RF input power of 5 W / cm 2 to form a non-magnetic intermediate layer 13 , 13 ', 21at% Cr-Co magnetic layers 14, 14' were formed to a film thickness of 250 nm under the same sputtering conditions.
Here, the Ti-based alloy intermediate layer as the non-magnetic intermediate layer contains V, N
b, Ta, Cr, Mo, W, Mn, Ni, Cu, C, Si and Ge thin films formed by adding 10at% each, and Pd, Pt, Ag, Au, Ru, Os, Rh and Ir
Using a thin film formed by adding 5 at%, further using a DC magnetron sputtering device, substrate temperature 100 ° C, Ar gas pressure 1.3P
a, Protective lubricating layers 15 and 15 'made of C were formed to a thickness of 30 nm under a sputtering condition of DC input power of 3 W / cm 2 to produce a magnetic disk.

[実施例2] 第2図において、21は表面に円周方向に微細な凹凸を
有しその中心線平均面粗さを5nmとした強化ガラス等か
ら成る非磁性基板22,22′はTi基合金から成る非磁性中
間層23,23′はCo−Cr等から成る六方晶系磁性合金層、2
4,24′はC,B,B4C,Si−C等から成る保護潤滑層であり、
それぞれは以下に示すように形成される。強化ガラス基
板21上にDCマグネトロンスパッタ装置により、基板温度
100℃,Arガス圧0.5Pa,DC投入電力7W/cm2のスパッタ条件
で以下のTi基合金中間層を膜厚200nm形成して非磁性中
間層22,22′とした後、同一のスパッタ条件で20at%Cr
−Co磁性層23,23′を膜厚200nm形成した。ここで、非磁
性中間層としてのTi基合金中間層には、V,Nb,Ta,Cr,Mo,
W,Mn,Ni,Cu,C,Si及びGeを各々8at%添加して形成した薄
膜と、Pd,Pt,Ag,Au,Ru,Os,Rh及びIrを各々3at%添加し
て形成した薄膜を用いた。さらに、DCマグネトロンスパ
ッタ装置により、基板温度100℃,Arガス圧1.3Pa,DC投入
電力3W/cm2でBから成る保護潤滑層24,24′を膜厚20nm
形成し、磁気ディスクを作製した。
Example 2 In FIG. 2, reference numeral 21 denotes a nonmagnetic substrate 22, 22 'made of tempered glass or the like having fine irregularities on the surface in the circumferential direction and having a center line average surface roughness of 5 nm; The non-magnetic intermediate layers 23 and 23 'made of an alloy are hexagonal magnetic alloy layers made of Co--Cr or the like, 2
4, 24 'is C, B, B 4 C, a protective lubricant layer made of Si-C or the like,
Each is formed as shown below. The substrate temperature is set on the tempered glass substrate 21 by DC magnetron sputtering.
Under the sputtering conditions of 100 ° C, Ar gas pressure of 0.5 Pa, DC input power of 7 W / cm 2 , the following Ti-based alloy intermediate layer was formed to a thickness of 200 nm to form non-magnetic intermediate layers 22 and 22 ′, and then the same sputtering conditions were used. At 20at% Cr
-Co magnetic layers 23 and 23 'were formed to a thickness of 200 nm. Here, in the Ti-based alloy intermediate layer as the non-magnetic intermediate layer, V, Nb, Ta, Cr, Mo,
Thin film formed by adding W, Mn, Ni, Cu, C, Si and Ge at 8 at% each, and thin film formed by adding Pd, Pt, Ag, Au, Ru, Os, Rh and Ir at 3 at% each Was used. Furthermore, the thickness of the protective lubrication layer 24, 24 'made of B is 20 nm with a DC magnetron sputtering device at a substrate temperature of 100 ° C., an Ar gas pressure of 1.3 Pa, and a DC input power of 3 W / cm 2.
Formed to produce a magnetic disk.

[比較例1] 実施例1における非磁性中間層13,13′をTi単相膜と
した以外は実施例1と同一構成かつ同一スパッタ条件
で、磁気ディスクを作製した。
[Comparative Example 1] A magnetic disk was manufactured under the same structure and under the same sputtering conditions as in Example 1, except that the non-magnetic intermediate layers 13, 13 'in Example 1 were Ti single-phase films.

[比較例2] 実施例2における非磁性中間層22,22′をTi単相膜と
した以外は実施例2と同一構成かつ同一スパッタ条件
で、磁気ディスクを作製した。
[Comparative Example 2] A magnetic disk was produced under the same structure and under the same sputtering conditions as in Example 2, except that the non-magnetic intermediate layers 22, 22 'in Example 2 were Ti single-phase films.

[比較例3] 実施例1における非磁性中間層13,13′を除いた以外
は実施例1と同一構成かつ同一スパッタ条件で、磁気デ
ィスクを作製した。
[Comparative Example 3] A magnetic disk was produced under the same structure and under the same sputtering conditions as in Example 1 except that the nonmagnetic intermediate layers 13 and 13 'in Example 1 were omitted.

[比較例4] 実施例2における非磁性中間層22,22′を除いた以外
は実施例2と同一構成かつ同一スパッタ条件で、磁気デ
ィスクを作製した。
Comparative Example 4 A magnetic disk was manufactured under the same configuration and under the same sputtering conditions as in Example 2 except that the nonmagnetic intermediate layers 22 and 22 ′ in Example 2 were omitted.

上記実施例1,2及び比較例1,2,3,4によって得られた磁
気ディスクにおけるCo−Cr磁性層のc軸配向性及び磁気
特性の測定結果を第1表に示す。ここで、Co−Cr磁性層
のΔθ50はCo−Crの002反射のロッキング曲線の半 値幅であり、Δθ50が小さい程配向性は高い。Hc⊥は基
板面に対し垂直方向に磁界を印加したときの保磁力であ
る。上記の各媒体の記録再生特性はMn−Znフェライトリ
ングヘッドにより、磁性層表面からの浮上スペーシング
0.24μmで評価した。ここで、D50は孤立波再生出力が
半分になるときの線記録密度である。これらの結果から
明かなように、本発明によれば、非磁性中間層としての
Ti単相膜を設けただけの比較例1,2や非磁性中間層を設
けない比較例3,4に比べて、実施例1,2ではCo−Cr磁性層
の保磁力及びC軸配向性が大幅に向上している。これに
対応して良好な記録再生特性が得られた。特に、TiにN
b,Taを添加した場合に最も良好なc軸配向性が得られて
いる。また、本効果は強化ガラス基板、セラミックス基
板、プラスチック被膜Al合金基板等の基板を用いた場合
にも認められた。本発明によるディスクを用いた磁気デ
ィスク装置は、装置容量が比較例によるディスクを用い
た磁気ディスク装置に比べて装置容量が2倍以上大き
く、さらに摺動等により装置がダウンしてしまうまでの
平均時間も1桁以上長く、特に良好であった。
Table 1 shows the measurement results of the c-axis orientation and the magnetic properties of the Co—Cr magnetic layers in the magnetic disks obtained in Examples 1 and 2 and Comparative Examples 1, 2, 3, and 4. Here, Δθ 50 of the Co—Cr magnetic layer is a half of the rocking curve of the 002 reflection of Co—Cr. It is the width, orientation as the Δθ 50 small high. Hc⊥ is a coercive force when a magnetic field is applied in a direction perpendicular to the substrate surface. The recording / reproducing characteristics of each of the above media were determined by the Mn-Zn ferrite ring head, and the floating spacing from the magnetic layer surface.
It was evaluated at 0.24 μm. Here, D 50 is a linear recording density when solitary wave reproduction output is halved. As is apparent from these results, according to the present invention, the non-magnetic intermediate layer
Compared with Comparative Examples 1 and 2 in which only a Ti single phase film was provided and Comparative Examples 3 and 4 in which a non-magnetic intermediate layer was not provided, in Examples 1 and 2, the coercive force and C-axis orientation of the Co—Cr magnetic layer were set. Is greatly improved. Correspondingly, good recording / reproducing characteristics were obtained. Especially, Ti to N
The best c-axis orientation is obtained when b and Ta are added. Further, this effect was also observed when a substrate such as a tempered glass substrate, a ceramics substrate, and a plastic coated Al alloy substrate was used. The magnetic disk device using the disk according to the present invention has a device capacity two times or more larger than that of the magnetic disk device using the disk according to the comparative example, and the average until the device goes down due to sliding or the like. The time was also one digit or more, which was particularly good.

[実施例3] 第3図において、31は表面に円周方向に微細な凹凸を
有しその中心線平均面粗さを5nmとした強化ガラス等か
ら成る非磁性基板32,32′はCo−Zr−Mo,Fe−Ni,Mo−Fe
−Ni,Fe−Co−Al−Si合金等の高透磁率磁性層、33,33′
はTi基合金から成る非磁性中間層、34,34′はCo−Cr等
から成る六方晶系磁性合金層、35,35′はC,B,B4C,Si−
C等から成る保護潤滑層であり、それぞれは以下に示す
ように形成される。強化ガラス基板31上にDCマグネトロ
ンスパッタ装置により、基板温度150℃,Arガス圧0.6P
a、DC投入電力6W/cm2のスパッタ条件で20at%Fe−Niも
しくはCo−Zr−Mo高透磁率磁性層32,32′を膜厚500nm形
成し、その上に同一のスパッタ条件で以下のTi基合金中
間層を膜厚2,5,10及び20nm形成して非磁性中間層33,3
3′とした後、同一のスパッタ条件で5at%Ta−16at%Cr
−Coもしくは5at%Zr−15at%Cr−Co磁性層34,34′を膜
厚200nm形成した。ここで、非磁性中間層としてTi基合
金中間層には、V,Nb,Ta,Cr,Mo,W,Mn,Ni,Cu,C,Si及びGe
を各々11at%添加して形成した薄膜と、Pd,Pt,Ag,Au,R
u,Os,Rh及びIrを各々6at%添加して形成した薄膜を用い
た。さらに、DCマグネトロンスパッタ装置により、基板
温度100℃,Arガス圧1.3Pa,DC投入電力5W/cm2でBから成
る保護潤滑層35,35′を膜厚20nm形成し、磁気ディスク
を作製した。この磁気ディスクを垂直型磁気ヘッドを用
いて記録再生特性を評価した結果、実施例1及び2の方
法で作製した磁気ディスクの記録再生特性に比べて2倍
程度の高い出力が得られ、特に良好な記録再生特性を示
した。また、いずれのディスクも30k回以上の良好な耐C
SS(コンタクト・スタート・ストップ)特性を示し、耐
摺動性にも優れていた。
Example 3 In FIG. 3, reference numeral 31 denotes a nonmagnetic substrate 32, 32 'made of tempered glass or the like having fine irregularities on the surface in the circumferential direction and having a center line average surface roughness of 5 nm. Zr-Mo, Fe-Ni, Mo-Fe
-High permeability magnetic layer such as Ni, Fe-Co-Al-Si alloy, 33, 33 '
Is a non-magnetic intermediate layer made of a Ti-based alloy, 34 and 34 'are hexagonal magnetic alloy layers made of Co-Cr, etc., and 35 and 35' are C, B, B 4 C, Si-
A protective lubricating layer made of C or the like, each of which is formed as shown below. The temperature of the substrate was 150 ℃ and the Ar gas pressure was 0.6P on the tempered glass substrate 31 by the DC magnetron sputtering system.
a, a 20at% Fe-Ni or Co-Zr-Mo high permeability magnetic layers 32 and 32 'in the sputtering conditions of a DC input power 6W / cm 2 with a thickness of 500nm is formed, following the same sputtering conditions thereon Non-magnetic intermediate layers 33, 3 are formed by forming Ti-based alloy intermediate layers with a thickness of 2, 5, 10 and 20 nm.
After 3 ', 5at% Ta-16at% Cr under the same sputtering conditions
-Co or 5 at% Zr-15 at% Cr-Co magnetic layers 34, 34 'were formed to a thickness of 200 nm. Here, V, Nb, Ta, Cr, Mo, W, Mn, Ni, Cu, C, Si and Ge
And Pd, Pt, Ag, Au, R
Thin films formed by adding 6 at% each of u, Os, Rh and Ir were used. Further, by using a DC magnetron sputtering device, a protective lubricating layer 35, 35 'made of B was formed to a thickness of 20 nm at a substrate temperature of 100 ° C., an Ar gas pressure of 1.3 Pa, and a DC input power of 5 W / cm 2 to prepare a magnetic disk. As a result of evaluating the recording / reproducing characteristics of this magnetic disk using a perpendicular magnetic head, an output approximately twice as high as the recording / reproducing characteristics of the magnetic disks manufactured by the methods of Examples 1 and 2 was obtained, and particularly good. It showed excellent recording and reproducing characteristics. In addition, all disks have good C resistance of 30k times or more.
It exhibited SS (contact start / stop) characteristics and had excellent sliding resistance.

なお、前記六方晶系磁性合金層として、Co−Cr磁性層
以外にCo−V,Co−Mo,Co−W,Co−Re,Co−Ti,Co−Sm,Co−
Mn,Co−Pd,Co−Pt,Co−Fe,Co−O,Co−Cr−Rh,Co−Cr−R
u,Co−Cr−Ti,Co−Cr−Hf,Co−Cr−Pt,Co−Cr−Pd,Co−
Ti−Ta,Co−Mo−Ta,Co−W,Ru等の六方晶系磁性合金層を
用いても同様の効果があった。また、さらに実施例1,実
施例2及び実施例3において、第1図,第2図及び第3
図の保護潤滑層15,15′、24,24′及び35,35′の上にパ
ーフルオロポリエーテル系極性潤滑剤などの潤滑層を2n
m以上8nm以下形成すると耐摺動性が向上するのでさらに
好ましい。
Incidentally, as the hexagonal magnetic alloy layer, other than Co-Cr magnetic layer Co-V, Co-Mo, Co-W, Co-Re, Co-Ti, Co-Sm, Co-
Mn, Co-Pd, Co-Pt, Co-Fe, Co-O, Co-Cr-Rh, Co-Cr-R
u, Co-Cr-Ti, Co-Cr-Hf, Co-Cr-Pt, Co-Cr-Pd, Co-
Similar effects were obtained by using a hexagonal magnetic alloy layer of Ti-Ta, Co-Mo-Ta, Co-W, Ru or the like. Further, in the first, second, and third embodiments, FIG. 1, FIG. 2, and FIG.
On the protective lubrication layers 15, 15 ', 24, 24' and 35, 35 'shown in the figure, a lubrication layer of perfluoropolyether-based polar lubricant
It is more preferable to form it in the range of m to 8 nm, because the sliding resistance is improved.

[発明の効果] 以上説明したように本発明により、六方晶系磁性合金
層と非磁性基板の間にTi基合金中間層を有する垂直磁気
記録媒体において、前記Ti基合金中間層に対して、V,N
b,Ta,Cr,Mo,W,Mn,Ni,Pd,Pt,Cu,Ag,Au,C,Si,Ge,Ru,Os,Rh
及びIrから成る群の中から少なくとも1種の元素を添加
した薄膜を用いることにより、六方晶系磁性合金中間層
のc軸配向性及び磁気特性を大幅に改善し、良好な記録
再生特性及び信頼性を有する磁気ディスク及び装置を提
供することができる。
[Effects of the Invention] As described above, according to the present invention, in a perpendicular magnetic recording medium having a Ti-based alloy intermediate layer between a hexagonal magnetic alloy layer and a nonmagnetic substrate, V, N
b, Ta, Cr, Mo, W, Mn, Ni, Pd, Pt, Cu, Ag, Au, C, Si, Ge, Ru, Os, Rh
By using a thin film containing at least one element selected from the group consisting of Al and Ir, the c-axis orientation and magnetic properties of the hexagonal magnetic alloy intermediate layer are significantly improved, and good recording / reproducing characteristics and reliability are achieved. It is possible to provide a magnetic disk and a device having the property.

【図面の簡単な説明】[Brief description of the drawings]

第1図,第2図及び第3図は本発明の実施例の磁気ディ
スクの断面図、第4図(a)および第4図(b)は本発
明の磁気ディスク等における種々の添加元素に対するTi
基合金中間層の組成とTi基合金中間層及びCo−Cr磁性合
金層のc軸配向性と関係を示す図である。 11,21,31……基板、 12,12′……非磁性メッキ、 13,13′、22,22′、33,33′……非磁性中間層、 14,14′、23,23′、34,34′……六方晶系磁性合金層、 15,15′、24,24′、35,35′……保護潤滑層、 32,32′……高透磁率磁性層。
1, 2 and 3 are sectional views of a magnetic disk of an embodiment of the present invention, and FIGS. 4 (a) and 4 (b) are for various additive elements in the magnetic disk of the present invention. Ti
FIG. 3 is a diagram showing the relationship between the composition of the base alloy intermediate layer and the c-axis orientation of the Ti base alloy intermediate layer and the Co—Cr magnetic alloy layer. 11,21,31 ... Substrate, 12,12 '... Non-magnetic plating, 13,13', 22,22 ', 33,33' ... Non-magnetic intermediate layer, 14,14 ', 23,23', 34,34 '... Hexagonal magnetic alloy layer, 15,15', 24,24 ', 35,35' ... Protective lubrication layer, 32,32 '... High permeability magnetic layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 博之 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 大野 徒之 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 斎藤 真一郎 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 高木 一正 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 昭61−113122(JP,A) 特開 昭63−102024(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiroyuki Suzuki, 1-280 Higashi Koikeku, Kokubunji, Tokyo Metropolitan Research Laboratory, Hitachi, Ltd. (72) Inoue Toshiyuki 1-280 Higashi Koikeku, Kokubunji, Tokyo Hitachi, Ltd. Inside the Central Research Laboratory (72) Inventor Shinichiro Saito 1-280 Higashi Koikeku, Kokubunji City, Tokyo Inside Hitachi Research Laboratory Central (72) Inventor Kazumasa Takagi 1-280 Higashi Koikeku, Tokyo Kokubunji Center Research, Hitachi, Ltd. In-house (56) References JP-A-61-113122 (JP, A) JP-A-63-102024 (JP, A)

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】六方晶系の磁性合金層と非磁性基板との間
に少なくともTiの他にV,Nb,Ta,Cr,Mo,W,Mn,Ni,Pd,Pt,C
u,Ag,Au,C,Si,Ge,Ru,Os,Rh及びIrから成る群から選ばれ
た少なくとも1種の元素を含むTi基合金中間層を有する
ことを特徴とする垂直磁気記録媒体。
1. The method according to claim 1, further comprising at least Ti, V, Nb, Ta, Cr, Mo, W, Mn, Ni, Pd, Pt, C between the hexagonal magnetic alloy layer and the nonmagnetic substrate.
A perpendicular magnetic recording medium having a Ti-based alloy intermediate layer containing at least one element selected from the group consisting of u, Ag, Au, C, Si, Ge, Ru, Os, Rh and Ir.
【請求項2】上記Tiの他にV,Nb,Ta,Cr,Mo,W,Mn,Ni,Pd,P
t,Cu,Ag,Au,C,Si,Ge,Ru,Os,Rh及びIrから成る群から選
ばれた少なくとも1種の元素を含むTi基合金中間層と非
磁性基板との間にさらに高透磁率磁性層を設けることを
特徴とする特許請求の範囲第1項に記載の垂直磁気記録
媒体。
2. In addition to the above Ti, V, Nb, Ta, Cr, Mo, W, Mn, Ni, Pd, P
A higher level between the non-magnetic substrate and the Ti-based alloy intermediate layer containing at least one element selected from the group consisting of t, Cu, Ag, Au, C, Si, Ge, Ru, Os, Rh and Ir. The perpendicular magnetic recording medium according to claim 1, further comprising a magnetic permeability layer.
【請求項3】前記Ti基合金中間層に対して、V,Nb,Ta,C
r,Mo,W,Mn,Ni,Cu,C,Si及びGeから成る群から選ばれた少
なくとも1種の元素を含みその組成比が総量で1at%以
上25at%以下であることを特徴とする特許請求の範囲第
1項または第2項に記載の垂直磁気記録媒体。
3. The method according to claim 1, wherein the Ti-based alloy intermediate layer comprises V, Nb, Ta, C
Characterized by containing at least one element selected from the group consisting of r, Mo, W, Mn, Ni, Cu, C, Si and Ge and having a composition ratio of 1 at% or more and 25 at% or less in total. The perpendicular magnetic recording medium according to claim 1.
【請求項4】前記Ti基合金中間層に対して、Nb,Taのう
ち何れか1種の元素の組成比が5at%以上20at%以下で
あることを特徴とする特許請求の範囲第3項に記載の垂
直磁気記録媒体。
4. A composition according to claim 3, wherein the composition ratio of any one element of Nb and Ta is 5 at% or more and 20 at% or less with respect to the Ti-based alloy intermediate layer. The perpendicular magnetic recording medium according to 1.
【請求項5】前記Ti基合金中間層に対して、Ru,Os,Rh,I
r,Pd,Pt,Ag及びAuから成る群から選ばれた少なくとも1
種の元素を含みその組成比が総量で0.1at%以上10at%
以下であることを特徴とする特許請求の範囲第1項また
は第2項に記載の垂直磁気記録媒体。
5. Ru, Os, Rh, I for the Ti-based alloy intermediate layer
at least one selected from the group consisting of r, Pd, Pt, Ag and Au
Contains at least 0.1 at% and 10 at% of the total composition ratio
The perpendicular magnetic recording medium according to claim 1 or 2, wherein:
【請求項6】前記Ti基合金中間層に対して、特にRu,Os,
Rh,Ir,Pd,Pt,Ag及びAuから成る群から選ばれた少なくと
も1種の元素を含みその組成比が総量で1at%以上7.5at
%以下であることを特徴とする特許請求の範囲第5項に
記載の垂直磁気記録媒体。
6. The Ti-based alloy intermediate layer, particularly, Ru, Os,
Contains at least one element selected from the group consisting of Rh, Ir, Pd, Pt, Ag, and Au, and the composition ratio is 1 at% or more and 7.5 at in total
%. The perpendicular magnetic recording medium according to claim 5, wherein
【請求項7】前記六方晶系の磁性合金層をCo組成比が50
at%以上のCo基合金薄膜とすることを特徴とする特許請
求の範囲第1項ないし第6項に記載の垂直磁気記録媒
体。
7. The hexagonal magnetic alloy layer has a Co composition ratio of 50.
The perpendicular magnetic recording medium according to any one of claims 1 to 6, which is a Co-based alloy thin film of at% or more.
【請求項8】前記Co基合金薄膜が、Cr,V,Mo,W,Ti,Mn,R
e,Sm,Fe及びOから成る群から選ばれた少なくとも1種
の元素を含みその組成比が総量で0.1at%以上25at%以
下であることを特徴とする特許請求の範囲第7項に記載
の垂直磁気記録媒体。
8. The method according to claim 1, wherein the Co-based alloy thin film comprises Cr, V, Mo, W, Ti, Mn, R
8. The method according to claim 7, wherein at least one element selected from the group consisting of e, Sm, Fe and O is contained, and the composition ratio thereof is 0.1 at% or more and 25 at% or less in total. Perpendicular magnetic recording medium.
【請求項9】前記Co基合金薄膜が、Zr,Ti,Hf,Ta,Ru,Rh,
Pd及びPtから成る群から選ばれた少なくとも1種の元素
を含みその組成比が総量で0.1at%以上15at%以下含む
ことを特徴とする特許請求の範囲第7項または第8項に
記載の垂直磁気記録媒体。
9. The Co-based alloy thin film comprises Zr, Ti, Hf, Ta, Ru, Rh,
9. At least one element selected from the group consisting of Pd and Pt is contained, and the composition ratio thereof is 0.1 at% or more and 15 at% or less in total, The scope of claim 7 or 8. Perpendicular magnetic recording medium.
【請求項10】前記非磁性基板として、強化ガラス基
板、Ni−Pメッキ層付きAl合金基板及びセラミックス基
板の何れか1種を用いることを特徴とする特許請求の範
囲第1項ないし第9項に記載の垂直磁気記録媒体。
10. The non-magnetic substrate is any one of a tempered glass substrate, an Al alloy substrate with a Ni—P plating layer, and a ceramic substrate, and is used in any one of claims 1 to 9. The perpendicular magnetic recording medium according to 1.
【請求項11】特許請求の範囲第1項ないし第10項に記
載の垂直磁気記録媒体を用いた磁気ディスク装置。
11. A magnetic disk drive using the perpendicular magnetic recording medium according to any one of claims 1 to 10.
JP8905888A 1988-04-13 1988-04-13 Perpendicular magnetic recording medium and magnetic disk device Expired - Lifetime JP2669529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8905888A JP2669529B2 (en) 1988-04-13 1988-04-13 Perpendicular magnetic recording medium and magnetic disk device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8905888A JP2669529B2 (en) 1988-04-13 1988-04-13 Perpendicular magnetic recording medium and magnetic disk device

Publications (2)

Publication Number Publication Date
JPH01263910A JPH01263910A (en) 1989-10-20
JP2669529B2 true JP2669529B2 (en) 1997-10-29

Family

ID=13960254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8905888A Expired - Lifetime JP2669529B2 (en) 1988-04-13 1988-04-13 Perpendicular magnetic recording medium and magnetic disk device

Country Status (1)

Country Link
JP (1) JP2669529B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7083870B2 (en) 2002-07-12 2006-08-01 Showa Denko K. K. Magnetic recording medium, method of manufacturing the same, and magnetic recording and reproduction apparatus
US7141315B2 (en) 2002-07-31 2006-11-28 Showa Denko K.K. Magnetic recording medium, method of manufacturing the same, and magnetic recording and reproduction apparatus
US8088504B2 (en) 2005-12-27 2012-01-03 Showa Denko K.K. Magnetic recording medium and magnetic recording and reproducing device using the magnetic recording medium
US8309238B2 (en) 2005-12-26 2012-11-13 Showa Denko K.K. Magnetic recording medium and magnetic recording and reproducing device
US8603651B2 (en) 2010-08-26 2013-12-10 Showa Denko K.K. Perpendicular magnetic recording medium and magentic recording and reproducing apparatus
US9040179B2 (en) 2009-10-19 2015-05-26 Showa Denko K.K. Magnetic recording medium and magnetic recording and reproducing apparatus
US10192571B2 (en) 2015-04-13 2019-01-29 Showa Denko K.K. Perpendicular magnetic recording medium and magnetic recording and reproducing apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03165315A (en) * 1989-11-24 1991-07-17 Victor Co Of Japan Ltd Magnetic recording medium and production thereof
JP2796511B2 (en) * 1995-03-27 1998-09-10 秋田県 Manufacturing method of thin-film perpendicular magnetic recording medium and thin-film perpendicular magnetic recording medium
JP2002100030A (en) * 2000-09-21 2002-04-05 Toshiba Corp Perpendicular magnetic recording medium
JP6416041B2 (en) 2015-05-29 2018-10-31 昭和電工株式会社 Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7083870B2 (en) 2002-07-12 2006-08-01 Showa Denko K. K. Magnetic recording medium, method of manufacturing the same, and magnetic recording and reproduction apparatus
US7141315B2 (en) 2002-07-31 2006-11-28 Showa Denko K.K. Magnetic recording medium, method of manufacturing the same, and magnetic recording and reproduction apparatus
US8309238B2 (en) 2005-12-26 2012-11-13 Showa Denko K.K. Magnetic recording medium and magnetic recording and reproducing device
US8088504B2 (en) 2005-12-27 2012-01-03 Showa Denko K.K. Magnetic recording medium and magnetic recording and reproducing device using the magnetic recording medium
US9040179B2 (en) 2009-10-19 2015-05-26 Showa Denko K.K. Magnetic recording medium and magnetic recording and reproducing apparatus
US8603651B2 (en) 2010-08-26 2013-12-10 Showa Denko K.K. Perpendicular magnetic recording medium and magentic recording and reproducing apparatus
US10192571B2 (en) 2015-04-13 2019-01-29 Showa Denko K.K. Perpendicular magnetic recording medium and magnetic recording and reproducing apparatus

Also Published As

Publication number Publication date
JPH01263910A (en) 1989-10-20

Similar Documents

Publication Publication Date Title
US7368185B2 (en) Perpendicular magnetic recording media and magnetic storage apparatus using the same
US20030104253A1 (en) Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
US7186471B2 (en) Chemically ordered, cobalt-three platinum alloys for magnetic recording
KR100699761B1 (en) Magnetic recording medium and magnetic storage device
JP2007035139A (en) Vertical magnetic recording medium and magnetic recording and reproducing apparatus
JP2669529B2 (en) Perpendicular magnetic recording medium and magnetic disk device
US20040005481A1 (en) Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
US6221481B1 (en) High Cr, low saturation magnetization intermediate magnetic layer for high coercivity and low medium noise
US7354665B2 (en) Magnetic recording medium and magnetic storage apparatus
JP4247575B2 (en) Method for manufacturing perpendicular magnetic recording medium
US5830584A (en) Bicrystal cluster magnetic recording medium
JP2002367153A (en) Thin-film magnetic recording disk having chromium nickel preseed layer
JP3045068B2 (en) Magnetic recording medium and method of manufacturing the same
US6156422A (en) High density magnetic recording medium with high Hr and low Mrt
JP4716534B2 (en) Magnetic recording medium
JP2005521980A (en) Magnetic recording medium and magnetic storage device
JPH10302242A (en) Magnetic alloy having textural nucleus creation layer and production thereof
US6908689B1 (en) Ruthenium-aluminum underlayer for magnetic recording media
US6139950A (en) Magnetic recording medium containing a Cr(HfO2) or Cr(ZrO2)
JP3052406B2 (en) Magnetic recording medium and magnetic storage device
JP3052092B2 (en) Magnetic recording medium
JP2653204B2 (en) Method for manufacturing in-plane magnetic recording medium
JP2559984B2 (en) Magnetic recording media
Bian et al. High performance laminated longitudinal recording media
JP3658586B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic storage device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080704

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080704