JP2668125B2 - Welding method of galvanized steel sheet - Google Patents

Welding method of galvanized steel sheet

Info

Publication number
JP2668125B2
JP2668125B2 JP63186726A JP18672688A JP2668125B2 JP 2668125 B2 JP2668125 B2 JP 2668125B2 JP 63186726 A JP63186726 A JP 63186726A JP 18672688 A JP18672688 A JP 18672688A JP 2668125 B2 JP2668125 B2 JP 2668125B2
Authority
JP
Japan
Prior art keywords
welding
arc
galvanized steel
steel sheet
dust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63186726A
Other languages
Japanese (ja)
Other versions
JPH0237975A (en
Inventor
仁志 松井
泰治 服部
精一郎 重田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Motor East Japan Inc
Original Assignee
Toyota Motor Corp
Kanto Auto Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Kanto Auto Works Ltd filed Critical Toyota Motor Corp
Priority to JP63186726A priority Critical patent/JP2668125B2/en
Publication of JPH0237975A publication Critical patent/JPH0237975A/en
Application granted granted Critical
Publication of JP2668125B2 publication Critical patent/JP2668125B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、亜鉛メッキ鋼板の溶接方法に関し、とくに
溶接時に発生する粉塵やスパッタを低減することができ
る亜鉛メッキ鋼板の溶接方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for welding a galvanized steel sheet, and more particularly to a method for welding a galvanized steel sheet that can reduce dust and spatter generated during welding.

〔従来の技術〕[Conventional technology]

アーク溶接においては、溶接時にアークを大気から遮
蔽するシールドガスとして一般に炭酸ガス(CO2)およ
び酸素(O2)を含む不活性ガス(たとえば、Arガス)が
用いられる。CO2は、安価であり、シールド性もよい。
In arc welding, an inert gas (for example, Ar gas) containing carbon dioxide (CO 2 ) and oxygen (O 2 ) is generally used as a shield gas that shields the arc from the atmosphere during welding. CO 2 is inexpensive and has good shielding properties.

しかし、亜鉛メッキ鋼板のアーク溶接においては、以
下の問題がある。
However, arc welding of galvanized steel sheets has the following problems.

すなわち、亜鉛メッキ鋼板のアーク溶接においては、
異なる鋼板(メッキなし鋼板)の溶接の場合に比べ、通
常3倍程度の粉塵(ヒューム)が発生し、その分作業環
境が悪化する。粉塵発生の理由は、鉄の融点が約1500℃
に対し、亜鉛の沸点が960℃であり、亜鉛が溶接熱で急
激に蒸発することにある。CO2を含む従来のシールドガ
スは、アークを大気から遮蔽するのには有効であるもの
の、亜鉛蒸発の抑制には殆んど寄与しない。
That is, in arc welding of galvanized steel sheet,
In general, dust (fume) is generated about three times in comparison with the case of welding different steel plates (unplated steel plates), and the working environment deteriorates accordingly. The reason for the generation of dust is that the melting point of iron is approximately 1500 ° C.
On the other hand, the boiling point of zinc is 960 ° C, and zinc is rapidly evaporated by welding heat. Conventional shielding gases, including CO 2 , are effective at shielding the arc from the atmosphere, but do little to control zinc evaporation.

本発明に関連する従来技術として、特開昭57−209778
合公報開示の技術が知られており、該公報にはシールド
ガスとしてAr(95〜99%)にO2(5〜1%)を混合した
ガスが開示されている。
As a prior art related to the present invention, Japanese Patent Laid-Open No. 57-209778
A technique disclosed in a joint publication is known, and the publication discloses a gas obtained by mixing O 2 (5-1%) with Ar (95-99%) as a shielding gas.

また、亜鉛メッキ鋼板の溶接に係るものではないが、
特開昭58−196177号公報には、塗装鋼板の溶接に用いる
シールドガスとして、ArにCO2とO2を30%以下混合した
ものが開示されている。
Also, although it is not related to the welding of galvanized steel sheets,
Japanese Patent Application Laid-Open No. 58-196177 discloses a shielding gas used for welding a coated steel sheet in which Ar is mixed with 30% or less of CO 2 and O 2 .

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、上記特開昭57−209778号公報開示のシールド
ガスでは、CO2が全く含まれないため、アークのシール
ド効果が低下するおそれがあるとともに、CO2の代わり
にそれより高価なO2を用いるため、コスト的な問題もあ
る。また、同公報にはO2の上限が5%との記載がある
が、本発明者らによる試験結果では、後述の如く、単に
O2を5%含むArをシールドガスとして用いただけでは、
粉塵発生量を満足できる程度までには低減できなかっ
た。
However, in the shielding gas disclosed in JP-A-57-209778, since CO 2 is not contained at all, the shielding effect of the arc may be deteriorated, and more expensive O 2 may be used instead of CO 2. Since it is used, there is also a cost problem. In addition, although the same publication states that the upper limit of O 2 is 5%, according to the test results by the present inventors, as described below,
If you only use Ar containing 5% O 2 as a shield gas,
The amount of dust generation could not be reduced to a satisfactory level.

また、特開昭58−196177号公報には、亜鉛メッキ鋼板
のアーク溶接に関する記載はない。
Also, Japanese Patent Application Laid-Open No. 58-196177 does not disclose arc welding of a galvanized steel sheet.

本発明の目的は、亜鉛メッキ鋼板のアーク溶接におい
て、溶接時に発生する粉塵、およびスパッタの発生量を
低減することができる溶接方法を提供することにある。
An object of the present invention is to provide a welding method capable of reducing the amount of dust and spatter generated during welding in arc welding of a galvanized steel sheet.

〔問題点を解決するための手段〕[Means for solving the problem]

この目的を達成する本発明はつぎの通りである。 The present invention that achieves this object is as follows.

CO2とO2を混合したシールドガスによりアークを大気
から遮蔽しつつアーク溶接を行う被覆鋼板の溶接方法で
あって、前記被覆が亜鉛メッキである場合に、シールド
ガス中のCO2の体積%をL、O2の体積%をMとした場
合、CO2とO2の混合割合を、30≦L+3M≦44の範囲に設
定したことを特徴とする亜鉛メッキ鋼板の溶接方法。
A welding method for a coated steel sheet, wherein arc welding is performed while shielding the arc from the atmosphere by a shielding gas that is a mixture of CO 2 and O 2 , and when the coating is galvanized, the volume% of CO 2 in the shielding gas is Where L is the volume% of O 2 and M is the mixing ratio of CO 2 and O 2 , the range is 30 ≦ L + 3M ≦ 44.

〔作用〕[Action]

上記本発明の亜鉛メッキ鋼板の溶接方法においては、
CO2もアークで分解してOを生じ、O2およびCO2の存在に
よりシールドガスは酸化性ガスとして機能する。その結
果、溶接時約900℃を越えた範囲においても、メッキ層
の亜鉛が酸化されてZnOとなり、亜鉛の蒸発が抑えられ
る。とくに、CO2、O2のシールドガス中の混合割合(百
分率)を30≦L+3M≦44の範囲に設定したので、亜鉛蒸
発に伴う粉塵の発生寮が十分に抑えられる。また、CO2
の存在により、従来のシールドガス同様良好なアークシ
ールド効果が発揮されるので、アークも安定し、溶融池
が安定してスパッタの発生量も抑えられる。
In the method for welding a galvanized steel sheet according to the present invention,
CO 2 is also decomposed by the arc to produce O, and the shield gas functions as an oxidizing gas due to the presence of O 2 and CO 2 . As a result, even in a range exceeding about 900 ° C. during welding, zinc in the plating layer is oxidized to ZnO, and the evaporation of zinc is suppressed. In particular, the mixing ratio (percentage) of CO 2 and O 2 in the shielding gas was set within the range of 30 ≦ L + 3M ≦ 44, so that the generation of dust due to zinc evaporation can be sufficiently suppressed. Also, CO 2
, The arc shielding effect as good as the conventional shielding gas is exhibited, so that the arc is stabilized, the molten pool is stabilized, and the amount of spatter generated is suppressed.

〔実施例〕〔Example〕

以下に、本発明実施例の亜鉛メッキ鋼板の溶接方法
を、図面を参照して説明する。
Hereinafter, a method for welding a galvanized steel sheet according to an embodiment of the present invention will be described with reference to the drawings.

本発明実施例の方法における溶接対象物は、亜鉛メッ
キ鋼板である。亜鉛メッキ鋼板のメッキ層は、合金層
(亜鉛含有量は50%よりはるかに高い)、非合金層(10
0%亜鉛)のいずれでもよい。
The object to be welded in the method according to the embodiment of the present invention is a galvanized steel sheet. The galvanized steel sheet can be made of an alloy layer (zinc content is much higher than 50%), a non-alloy layer (10
0% zinc).

シールドガスの主成分は不活性ガスであり、通常Arが
用いられる。このArに、CO2とO2とが所定の範囲で混合
される。この混合における最適範囲は、実験的に求めら
れ、溶接時の粉塵およびスパッタの発生量から決められ
る。
The main component of the shielding gas is an inert gas, and usually Ar is used. CO 2 and O 2 are mixed with this Ar in a predetermined range. The optimum range for this mixing is determined experimentally and is determined from the amount of dust and spatter generated during welding.

この最適範囲決定のための試験は、次のように行っ
た。
The test for determining the optimum range was performed as follows.

亜鉛メッキ鋼板を次の条件にてアーク溶接し、シール
ドガス中のCO2、O2の混合率を変え、残りをArとし、溶
接時に発生した粉塵、スパッタの発生量、発生状態か
ら、望ましい範囲と望ましくない範囲とを測定した(第
1図)。
Arc welding a galvanized steel sheet under the following conditions, changing the mixing ratio of CO 2 and O 2 in the shielding gas, and making the rest Ar, the desired range from the dust generated during welding, the amount of spatter generated, and the state of generation. And the undesired range were measured (Fig. 1).

溶接条件(パルスアーク溶接):電流210A、電圧21〜24
V、溶接速度1200mm/分 継手形状:重ね隅肉継手 被溶接材:板厚2.0mm、合金溶融亜鉛メッキ鋼板、日付
量両面45g/m2 試験においては、シールドガス中の、CO2の体積%
(L)とO2の体積5(M)とを種々に変えて、粉塵の発
生量の大小を測定し、CO2の体積%を横軸、O2の体積%
を縦軸にとったグラフ(第1図)上にプロットした。第
1図中、粉塵発生量小の点を○で、粉塵発生量大の点を
×で示してある。
Welding conditions (pulse arc welding): current 210A, voltage 21-24
V, welding speed 1200 mm / min Joint shape: lap fillet joint workpieces: thickness 2.0 mm, alloy galvanized steel sheets, in the date amount sided 45 g / m 2 test, the shielding gas, the CO 2 volume%
(L) and the volume of O 2 (M) were variously changed, and the magnitude of the amount of generated dust was measured. The horizontal axis was the volume percentage of CO 2 , and the volume percentage of O 2 .
Is plotted on a graph (FIG. 1) with the vertical axis taken. In FIG. 1, a point where the amount of generated dust is small is indicated by ○, and a point where the amount of generated dust is large is indicated by ×.

試験の結果、シールドガス中のCO2とO2の含有量が、
L+3M<33(第1図の領域A)である場合には、メッキ
層の亜鉛成分を酸化させる能力が低く、被溶接材が900
℃を越えた範囲で盛んにZn蒸気が発生し、粉塵が増加し
た。
As a result of the test, the content of CO 2 and O 2 in the shielding gas was
When L + 3M <33 (region A in FIG. 1), the ability to oxidize the zinc component of the plating layer is low, and the material to be welded is 900
In the range over ℃, Zn vapor was generated actively and dust increased.

シールドガス中のCO2とO2の含有量が、30≦L+3M≦4
4(第1図の領域B)である場合には、被溶接材の900℃
を越えた部分でもZnが酸化されてZnOとなり、メッキ層
からのZn蒸発は効果的に抑えられた。このとき、CO2
アークにより分解してOを生じ、蒸気酸化に寄与する。
The content of CO 2 and O 2 in the shielding gas is 30 ≦ L + 3M ≦ 4
4 (region B in FIG. 1), 900 ° C
The Zn was oxidized to ZnO even in the portion beyond the limit, and Zn evaporation from the plating layer was effectively suppressed. At this time, CO 2 is also decomposed by the arc to generate O, which contributes to steam oxidation.

さらに、シールドガス中のCO2とO2の含有量が、L+3
M>44(第1図の領域C)である場合には、アークが集
中して溶融池の上に照射されるので、その周辺のZnOを
アークでアーク中心から外方に向けて押しやることがで
きなくなり、ZnOが溶融池に侵入してそこでアークによ
り蒸発される現象が生じだす。この蒸発により再び粉塵
は増加傾向となる。また、同時に、アークの集中および
亜鉛蒸発により溶融池が乱れるので、スパッタ発生量も
増加傾向となる。このスパッタ発生量の望ましい上限量
は、約3g/分程度である。ただし、L≦30の範囲である
ことが必要である。
Furthermore, the content of CO 2 and O 2 in the shielding gas is L + 3
When M> 44 (region C in FIG. 1), the arc is concentrated and irradiated onto the molten pool, so that the surrounding ZnO cannot be pushed outward from the arc center by the arc. Then, a phenomenon occurs in which ZnO enters the molten pool and is evaporated there by the arc. Due to this evaporation, dust again tends to increase. At the same time, since the molten pool is disturbed by the concentration of the arc and the evaporation of zinc, the amount of spatter generated tends to increase. A desirable upper limit of the spatter generation amount is about 3 g / min. However, it is necessary that L ≦ 30.

次に、CO2の混合比を一定割合、たとえば20%に固定
し、O2の割合を変化させたときの粉塵測定結果を第2図
に示す。
Next, FIG. 2 shows the results of dust measurement when the mixing ratio of CO 2 is fixed to a fixed ratio, for example, 20%, and the ratio of O 2 is changed.

第2図の結果から、O2がシールドガスの酸化性性能を
大きく高めることに寄与していることがわかり、あるCO
2量に対し、O2を最適範囲に調整すれば、亜鉛メッキ鋼
板の場合でも普通鋼板のアーク溶接の場合の粉塵発生量
の約1/2までその粉塵発生量を抑えることが可能とな
る。なお、第2図における濃度測定条件は、濃度計の吸
引流量が1/分である。
From the results in FIG. 2 , it was found that O 2 contributed to greatly enhance the oxidizing performance of the shielding gas.
By adjusting O 2 to the optimum range for the two amounts, even in the case of galvanized steel plate, it is possible to suppress the dust generation amount to about 1/2 of the dust generation amount in the case of arc welding of ordinary steel plates. The concentration measurement condition in FIG. 2 is that the suction flow rate of the concentration meter is 1 / min.

さらに、本発明におけるアーク溶接の望ましい溶接ワ
イヤの成分として、下記の範囲(重量%)を満足するこ
とが望ましい。
Further, it is desirable that the following range (% by weight) be satisfied as a desirable component of the welding wire for arc welding in the present invention.

0.05≦C≦0.15、0.40≦Si≦1.00、 0.80≦Mn≦1.40 P≦0.05、S≦0.05、0.04≦Ti≦0.15 ここで、Cは、溶接金属の強度を確保するように働
き、低いと強度不足になり高いと脆い。
0.05 ≤ C ≤ 0.15, 0.40 ≤ Si ≤ 1.00, 0.80 ≤ Mn ≤ 1.40 P ≤ 0.05, S ≤ 0.05, 0.04 ≤ Ti ≤ 0.15 Here, C works to secure the strength of the weld metal, and when it is low, the strength is high. It becomes deficient and high and brittle.

Siは溶接金属の脱酸剤として機能し、低いと酸化物が
多くなり高いと脆い。
Si functions as a deoxidizing agent for the weld metal. If it is low, the amount of oxides increases, and if it is high, it is brittle.

Mnは、溶接金属の脱酸剤として機能し、低いと酸化物
が多くなり高いとスパッタが増加する。
Mn functions as a deoxidizing agent for the weld metal. If it is low, the amount of oxides increases, and if it is high, spatter increases.

Pは不純物として含まれるが、高いと脆い。 P is included as an impurity, but if it is high, it is brittle.

Sも不純物として含まれるが、高いと高温割れを起こ
す。
S is also contained as an impurity, but if it is high, hot cracking occurs.

Tiは、脱酸剤と脱窒剤として機能し、低いとブローホ
ールが発生しやすく高いとスパッタが増加する。
Ti functions as a deoxidizing agent and a denitrifying agent. If the amount is low, blowholes are easily generated, and if the amount is high, spatter increases.

〔発明の効果〕〔The invention's effect〕

本発明の亜鉛メッキ鋼板の溶接方法によれば、シール
ドガス中にCO2とO2とを30≦L+3M≦44を満足するよう
に混合することにより、シールドガスの酸化性性能を高
めて溶接時にメッキ層中のZn成分をZnOとなし、その蒸
発を抑えて粉塵の発生量を抑制することができるととも
に、同時にCO2の存在により従来のシールドガス同様ア
ークを安定させ、スパッタの発生量も抑制することがで
きるという効果が得られる。
According to the method for welding a galvanized steel sheet of the present invention, CO 2 and O 2 are mixed in the shielding gas so as to satisfy 30 ≦ L + 3M ≦ 44, whereby the oxidizing performance of the shielding gas is increased and the welding is performed. ZnO is used as the Zn component in the plating layer to suppress its evaporation and suppress the generation of dust, and at the same time, the presence of CO 2 stabilizes the arc like the conventional shield gas and also suppresses the generation of spatter. The effect is obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明のCO2およびO2の最適混合範囲を定める
ための試験結果を示すグラフ、 第2図はCO2混合比を固定しO2混合量を変化させた場合
の粉塵濃度特性図、 である。
FIG. 1 is a graph showing test results for determining the optimum mixing range of CO 2 and O 2 of the present invention, and FIG. 2 is a dust concentration characteristic when the CO 2 mixing ratio is fixed and the O 2 mixing amount is changed. Fig.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 重田 精一郎 神奈川県横須賀市田浦港町無番地 関東 自動車工業株式会社内 (56)参考文献 特開 昭58−196177(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Seiichiro Shigeta No address at Taura Port Town, Yokosuka City, Kanagawa Prefecture Kanto Auto Works, Ltd. (56) References JP-A-58-196177 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】CO2とO2を混合したシールドガスによりア
ークを大気から遮蔽しつつアーク溶接を行う被覆鋼板の
溶接方法であって、前記被覆が亜鉛メッキである場合
に、シールドガス中のCO2の体積%をL、O2の体積%を
Mとした場合、CO2とO2の混合割合を、30≦L+3M≦44
の範囲に設定したことを特徴とする亜鉛メッキ鋼板の溶
接方法。
1. A method for welding a coated steel sheet, wherein arc welding is performed while shielding an arc from the atmosphere by a shielding gas containing a mixture of CO 2 and O 2 , and when the coating is galvanized, When the volume% of CO 2 is L and the volume% of O 2 is M, the mixing ratio of CO 2 and O 2 is 30 ≦ L + 3M ≦ 44
A method for welding galvanized steel sheets, wherein the method is set in the range described above.
JP63186726A 1988-07-28 1988-07-28 Welding method of galvanized steel sheet Expired - Fee Related JP2668125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63186726A JP2668125B2 (en) 1988-07-28 1988-07-28 Welding method of galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63186726A JP2668125B2 (en) 1988-07-28 1988-07-28 Welding method of galvanized steel sheet

Publications (2)

Publication Number Publication Date
JPH0237975A JPH0237975A (en) 1990-02-07
JP2668125B2 true JP2668125B2 (en) 1997-10-27

Family

ID=16193562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63186726A Expired - Fee Related JP2668125B2 (en) 1988-07-28 1988-07-28 Welding method of galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP2668125B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094442A1 (en) * 2006-02-17 2007-08-23 Taiyo Nippon Sanso Corporation Shield gas for hybrid welding and method of hybrid welding using the gas
JP2007216275A (en) * 2006-02-17 2007-08-30 Taiyo Nippon Sanso Corp Shield gas for hybrid welding, and hybrid welding method using the shield gas
JP2007216274A (en) * 2006-02-17 2007-08-30 Taiyo Nippon Sanso Corp Shield gas for hybrid welding, and hybrid welding method using the shield gas
US7718915B2 (en) 2005-03-28 2010-05-18 Taiyo Nippon Sanso Corporation Shielding gases for MAG-welding of galvanized steel sheets and welding method using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2693654B2 (en) * 1991-04-26 1997-12-24 ファナック株式会社 Welding method for surface treated metal
US5473139A (en) * 1993-01-18 1995-12-05 Toyota Jidosha Kabushiki Kaisha Pulsed arc welding apparatus having a consumable electrode wire

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196177A (en) * 1982-05-13 1983-11-15 Daido Steel Co Ltd Welding of coated steel plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7718915B2 (en) 2005-03-28 2010-05-18 Taiyo Nippon Sanso Corporation Shielding gases for MAG-welding of galvanized steel sheets and welding method using the same
WO2007094442A1 (en) * 2006-02-17 2007-08-23 Taiyo Nippon Sanso Corporation Shield gas for hybrid welding and method of hybrid welding using the gas
JP2007216275A (en) * 2006-02-17 2007-08-30 Taiyo Nippon Sanso Corp Shield gas for hybrid welding, and hybrid welding method using the shield gas
JP2007216274A (en) * 2006-02-17 2007-08-30 Taiyo Nippon Sanso Corp Shield gas for hybrid welding, and hybrid welding method using the shield gas

Also Published As

Publication number Publication date
JPH0237975A (en) 1990-02-07

Similar Documents

Publication Publication Date Title
US20160008906A1 (en) Solid wire for gas shielded arc welding, weld metal by gas shielded arc welding, welded joint, weldment, welding method, and production method of welded joint
JPH03243296A (en) Flux cored wire for stainless steel
US20010008235A1 (en) Ultra low carbon metal-core weld wire
US3221136A (en) Method and electrode for electric arc welding
JP2668125B2 (en) Welding method of galvanized steel sheet
KR20020090575A (en) Flux cored wire for gas shielded arc welding of high tensile strength steel
JP3481368B2 (en) Flux-cored wire for ferritic stainless steel
JP3026899B2 (en) Low hydrogen coated arc welding rod
EP0067494B1 (en) Welding electrode
JP3496084B2 (en) Gas shielded arc welding method for thin plate
JPH0577086A (en) Flux cored wire for gas shielded arc welding for 0.5 mo steel, mn-mo steel and mn-mo-ni steel
JP2009012027A (en) Shielding gas for mag welding of galvanized sheet steel, and welding method using the shielding gas
JP3513382B2 (en) Arc welding method for galvanized steel sheet
JPH0833982A (en) Gas shielded metal arc welding method to enhance corrosion resistance after coating of weld zone and near this zone
JPH08103884A (en) Steel wire for gas shielded metal arc welding
US3542997A (en) Non-shielded arc welding
JP5337665B2 (en) Solid wire for MAG welding
JP2528341B2 (en) Solid wire for gas shield arc welding
JP2588019B2 (en) Flux-cored wire for gas shielded arc welding
JPH1110391A (en) Flux cored wire for multielectrode vertical electrogas arc welding for extra thick plate
JP2001071145A (en) Method for welding ferritic stainless steel
JP3093416B2 (en) Flux-cored wire for high hydrogen fillet welding
JP2762658B2 (en) Flux composite wire for TIG welding of austenitic stainless steel for ultra-high vacuum equipment
JP2996829B2 (en) Horizontal fillet welding method by carbon dioxide shielded arc welding
JP2633755B2 (en) Cr containing arc welding rod

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees