JP2667210B2 - Method for producing polystyrene composite or polyvinyl chloride composite - Google Patents

Method for producing polystyrene composite or polyvinyl chloride composite

Info

Publication number
JP2667210B2
JP2667210B2 JP63169401A JP16940188A JP2667210B2 JP 2667210 B2 JP2667210 B2 JP 2667210B2 JP 63169401 A JP63169401 A JP 63169401A JP 16940188 A JP16940188 A JP 16940188A JP 2667210 B2 JP2667210 B2 JP 2667210B2
Authority
JP
Japan
Prior art keywords
polyvinyl chloride
polystyrene
composite
poly
producing polystyrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63169401A
Other languages
Japanese (ja)
Other versions
JPH0220550A (en
Inventor
眞守 曽我
収 堀田
信雄 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63169401A priority Critical patent/JP2667210B2/en
Publication of JPH0220550A publication Critical patent/JPH0220550A/en
Application granted granted Critical
Publication of JP2667210B2 publication Critical patent/JP2667210B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電気材料や電子材料としてエレクトロニク
スおよび光エレクトロニクスの分野に供される高分子組
成物に関する。
Description: TECHNICAL FIELD The present invention relates to a polymer composition used in the fields of electronics and optoelectronics as electric and electronic materials.

従来の技術 溶融成形できる樹脂として、従来よりポリスチレンや
ポリ塩化ビニルなどの熱可塑性樹脂が知られている。ま
た、最近ポリチオフェンにアルキル基を導入することに
より、溶融成形性が付与できることが明らかになった
〔吉野勝美他、応用物理、56、942(1987)〕。
2. Description of the Related Art Thermoplastic resins such as polystyrene and polyvinyl chloride are conventionally known as resins that can be melt-molded. In addition, it has recently been shown that the introduction of an alkyl group into polythiophene can impart melt moldability [Katsumi Yoshino et al., Applied Physics, 56 , 942 (1987)].

また、ポリ(3−ヘキシルチオフェン)(P3HT)はポ
リスチレンのような熱可塑性樹脂と複合物を作り、P3HT
が約16vol%で、電子供与性あるいは電子受容性化合物
をドーピングすることにより、絶縁体から導電体になる
ことが知られている〔堀田収他、シンセティック メタ
ルズ、22、79(1987)〕。
Poly (3-hexylthiophene) (P3HT) forms a composite with a thermoplastic resin such as polystyrene.
Is about 16 vol%, and it is known that an insulator becomes a conductor by doping with an electron-donating or electron-accepting compound [J. Hotta et al., Synthetic Metals, 22 , 79 (1987)].

発明が解決しようとする課題 しかしながら、ポリスチレンもしくはポリ塩化ビニル
は機械強度が強いが、低温(−30℃以下)で可とう性が
なく、またポリ(3−アルキルチオフェン)は低温でも
可とう性を保っているが、やや分子量が低いために機械
強度が弱い。
Problems to be Solved by the Invention However, polystyrene or polyvinyl chloride has high mechanical strength, but has no flexibility at low temperatures (-30 ° C. or lower), and poly (3-alkylthiophene) has flexibility at low temperatures. Retained, but weak in mechanical strength due to slightly lower molecular weight.

P3HTは熱溶融性がないので、ポリスチレンもしくはポ
リ塩化ビニルと熱溶融により混合できない。
Since P3HT does not have heat melting property, it cannot be mixed with polystyrene or polyvinyl chloride by heat melting.

本発明は、このような従来技術の課題を解消したポリ
スチレンもしくはポリ塩化ビニルを提供することを目的
とする。
An object of the present invention is to provide a polystyrene or polyvinyl chloride in which such problems of the prior art have been solved.

課題を解決するための手段 本発明は、炭素数7以上のアルキル基を持つポリチオ
フェン誘導体を5〜95vol%、ポリスチレンもしくはポ
リ塩化ビニルに加熱溶融させた後、熱ロールでシート状
にする。
Means for Solving the Problems In the present invention, 5-95 vol% of a polythiophene derivative having an alkyl group having 7 or more carbon atoms is heated and melted in polystyrene or polyvinyl chloride, and then formed into a sheet by a hot roll.

作用 本発明においては、ポリチオフェン誘導体のアルキル
基の炭素数7が以上になることにより熱溶融性があらわ
れ、加熱溶融により、容易にポリスチレンもしくはポリ
塩化ビニルと混合しうる。さらに熱ロールでシート状に
することにより、ポリチオフェン誘導体がポリスチレン
もしくはポリ塩化ビニルの主鎖に沿って配向する。その
結果、ポリスチレンもしくはポリ塩化ビニルは機械強度
がすぐれ、かつ低温でも可とう性をもつものが得られ
る。
Action In the present invention, the polythiophene derivative has thermal fusibility when the alkyl group has 7 or more carbon atoms, and can be easily mixed with polystyrene or polyvinyl chloride by heating and melting. Further, by forming the sheet into a sheet shape with a hot roll, the polythiophene derivative is oriented along the main chain of polystyrene or polyvinyl chloride. As a result, polystyrene or polyvinyl chloride having excellent mechanical strength and having flexibility even at low temperatures can be obtained.

実施例 以下に、本発明を実施例をあげて説明する。Examples Hereinafter, the present invention will be described with reference to examples.

本発明に用いる、炭素数7以上のアルキル基を持つポ
リチオフェン誘導体は、3−アルキルチオフェンを電解
重合あるいは塩化第二鉄のようなルイス酸触媒による有
機合成により得られる。
The polythiophene derivative having an alkyl group having 7 or more carbon atoms used in the present invention can be obtained by electrolytic polymerization of 3-alkylthiophene or organic synthesis using a Lewis acid catalyst such as ferric chloride.

本発明には、ポリスチレンもしくはポリ塩化ビニルが
用いられる。
In the present invention, polystyrene or polyvinyl chloride is used.

炭素数7以上のアルキル基を持つポリチオフェン誘導
体とポリスチレンもしくはポリ塩化ビニルとの混合比
は、ポリチオフェン誘導体が5〜95vol%、ポリスチレ
ンもしくはポリ塩化ビニルが95〜5vol%がよい。
The mixing ratio between the polythiophene derivative having an alkyl group having 7 or more carbon atoms and polystyrene or polyvinyl chloride is preferably 5 to 95 vol% for the polythiophene derivative and 95 to 5 vol% for polystyrene or polyvinyl chloride.

ポリチオフェン誘導体が5vol%以下になると、低温で
の可とう性がなくなり、ポリスチレンもしくはポリ塩化
ビニルが5vol%以下になると、機械強度が悪くなる。
When the content of the polythiophene derivative is 5 vol% or less, the flexibility at low temperatures is lost, and when the content of polystyrene or polyvinyl chloride is 5 vol% or less, the mechanical strength deteriorates.

つぎに、具体的な例を用いて説明する。 Next, a description will be given using a specific example.

実施例1 ポリスチレン(アルドリッチ ケミカルズ)90gとポ
リ(3−オクチルチオフェン)10gを150℃で溶融かくは
んした後、熱ロールにかけて、厚さ約100ミクロンのシ
ートを作った。2×5cmの大きさに切り取り(2枚)、
一方の試料を簡易延伸器にはさんで、引っ張り試験し機
械的強度を調べた。もう一方の試料を液体窒素中に1分
間浸漬した後、手で折り曲げて、低温可とう性を調べ
た。
Example 1 90 g of polystyrene (Aldrich Chemicals) and 10 g of poly (3-octylthiophene) were melt-stirred at 150 ° C., and then heated rolled to form a sheet having a thickness of about 100 μm. Cut into 2 x 5 cm size (2 pieces),
One of the samples was sandwiched between a simple stretching machine and subjected to a tensile test to examine the mechanical strength. The other sample was immersed in liquid nitrogen for 1 minute and then bent by hand to examine its low-temperature flexibility.

実施例2 実施例1のポリ(3−オクチルチオフェン)をポリ
(3−ドデシルチオフェン)にかえて同様の実験をし
た。
Example 2 A similar experiment was performed by replacing poly (3-octylthiophene) of Example 1 with poly (3-dodecylthiophene).

実施例3 実施例1のポリ(3−オクチルチオフェン)をポリ
(3−ドコシルチオフェン)にかえて同様の実験をし
た。
Example 3 A similar experiment was performed by replacing poly (3-octylthiophene) of Example 1 with poly (3-docosylthiophene).

実施例4 実施例1のポリスチレンをポリ塩化ビニルにかえて同
様の実験をした。
Example 4 A similar experiment was conducted by replacing the polystyrene of Example 1 with polyvinyl chloride.

実施例5 実施例1のポリスチレンの重量を10gに、ポリ(3−
オクチルチオフェン)の重量を90gにかえて同様の実験
をした。
Example 5 The polystyrene of Example 1 was weighed to 10 g and poly (3-
Octylthiophene) was changed to 90 g in the same experiment.

比較例1 ポリスチレン100gのみで、実施例1の実験をした。Comparative Example 1 The experiment of Example 1 was performed using only 100 g of polystyrene.

比較例2 ポリ(3−オクチルチオフェン)100gのみで実施例1
の実験をした。
Comparative Example 2 Example 1 using only 100 g of poly (3-octylthiophene)
I did an experiment.

表に実施例1〜5、比較例1〜2の試料の引っ張り試
験と低温可とう性試験の結果を示す。
The table shows the results of the tensile test and the low-temperature flexibility test of the samples of Examples 1 to 5 and Comparative Examples 1 and 2.

表から明らかなように、比較例の試料では引っ張りに
弱いか、低温にすると可とう性が無くなるのに対して、
本発明のポリスチレンもしくはポリ塩化ビニルでは、引
っ張りに強いかつ低温においても可とう性を保ってい
た。
As is clear from the table, the sample of the comparative example is vulnerable to tension or loses flexibility at low temperatures, whereas
The polystyrene or polyvinyl chloride of the present invention was resistant to tension and maintained flexibility at low temperatures.

実施例1の試料を真空中(0.1Torr)でよう素の蒸気
に1時間暴露した後、4端子法で導電率を測定すると約
10S/cmの値を示した。この値は、よう素をドープしたポ
リ(3−オクチルチオフェン)のみのフィルムとほぼ同
じ値であった。
After exposing the sample of Example 1 to iodine vapor for 1 hour in a vacuum (0.1 Torr), the conductivity was measured by a four-terminal method.
A value of 10 S / cm was shown. This value was almost the same as that of the film containing only iodine-doped poly (3-octylthiophene).

発明の効果 本発明のポリスチレンもしくはポリ塩化ビニル複合物
は単体のポリスチレンもしくはポリ塩化ビニル同じ機械
強度を保ちかつ、低温においても可とう性を持つという
効果がある。また、電子供与性あるいは電子受容性化合
物をドーピングすることにより高導電化にすることも可
能である。
Effect of the Invention The polystyrene or polyvinyl chloride composite of the present invention has the effect of maintaining the same mechanical strength as simple polystyrene or polyvinyl chloride and having flexibility even at low temperatures. In addition, high conductivity can be obtained by doping an electron donating or electron accepting compound.

フロントページの続き (72)発明者 園田 信雄 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特表 平1−503242(JP,A)Continued on the front page (72) Inventor Nobuo Sonoda 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References Special Table 1-503242 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭素数7以上のアルキル基を持つポリチオ
フェン誘導体を5〜95vol%、ポリスチレンもしくはポ
リ塩化ビニルに加熱溶融させた後、熱ロールでシート状
にすることを特徴とするポリスチレン複合物もしくはポ
リ塩化ビニル複合物の製造方法。
1. A polystyrene composite material comprising a polythiophene derivative having an alkyl group having a carbon number of 7 or more, which is heated and melted in polystyrene or polyvinyl chloride in an amount of 5 to 95 vol. Method for producing polyvinyl chloride composite.
JP63169401A 1988-07-07 1988-07-07 Method for producing polystyrene composite or polyvinyl chloride composite Expired - Lifetime JP2667210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63169401A JP2667210B2 (en) 1988-07-07 1988-07-07 Method for producing polystyrene composite or polyvinyl chloride composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63169401A JP2667210B2 (en) 1988-07-07 1988-07-07 Method for producing polystyrene composite or polyvinyl chloride composite

Publications (2)

Publication Number Publication Date
JPH0220550A JPH0220550A (en) 1990-01-24
JP2667210B2 true JP2667210B2 (en) 1997-10-27

Family

ID=15885917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63169401A Expired - Lifetime JP2667210B2 (en) 1988-07-07 1988-07-07 Method for producing polystyrene composite or polyvinyl chloride composite

Country Status (1)

Country Link
JP (1) JP2667210B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000040276A1 (en) 1998-12-28 2000-07-13 Kao Corporation Aromatizer
JP6843323B2 (en) * 2016-12-21 2021-03-17 オイケム合同会社 Oxazoline compounds, cross-linking agents and resin compositions

Also Published As

Publication number Publication date
JPH0220550A (en) 1990-01-24

Similar Documents

Publication Publication Date Title
Chien et al. Electrically conducting acetylene-methylacetylene copolymers. Synthesis and properties
US4375427A (en) Thermoplastic conductive polymers
Wynne et al. Poly (pyrrol-2-ylium tosylate), electrochemical synthesis and physical and mechanical properties
MacDiarmid et al. Organic metals and semiconductors: The chemistry of polyacetylene,(CH) x, and its derivatives
DE69231312T2 (en) APPLICABLE FORMS OF ELECTRICALLY CONDUCTIVE POLYANILINES AND CONDUCTIVE PRODUCTS PRODUCED THEREOF
FI82702B (en) ELLEDANDE PLASTKOMPOSITER, SOM INNEHAOLLER POLY (3-ALKYLTIOFEN)
US5624605A (en) Processible forms of electrically conductive polyaniline
US5427855A (en) Melt-processible conducting polymer blends based on fibrils of intractable conducting polymers
Malmonge et al. Electroactive blends of poly (vinylidene fluoride) and polyaniline derivatives
JP2667210B2 (en) Method for producing polystyrene composite or polyvinyl chloride composite
Yang et al. Preparation and mechanical properties of electrically conductive polypyrrole-poly (ethylene-co-vinyl acetate) composites
Dhawan et al. Thin conducting polypyrrole film on insulating surface and its applications
Gin et al. Synthesis and processing of poly (p-phenylene) via the phosphoric acid-catalyzed pyrolysis of a stereoregular precursor polymer: a characterization study
Mantovani et al. Secondary doping in elastomeric polyaniline blends
CA1168859A (en) Thermoplastic conductive polymers
US5219492A (en) Conductive plastic composites
Watanabe et al. Microstructure and electric properties of elastomeric ionene‐TCNQ salts
Yoshino et al. A conducting polymer gel prepared by gamma-ray irradiation and its characteristics
Satoh et al. Temperature dependence of mechanical properties of electrochemically prepared polypyrole film
AU607537B2 (en) Conductive plastic composites
JP2768441B2 (en) Manufacturing method of anisotropic conductor
Mohammad Hatta Nanosilver Doped Poly-Phenylene-Sulfide Polymer Conductor
JP3367725B2 (en) Conductive composite polyurethane foam sheet and method for producing the same
JPH04306230A (en) Aniline copolymer and composition thereof
Sobha et al. A promising approach to enhanced thermal stability of DC conductivity of polyaniline–functionalised multi-walled carbon nanotube composites