JP2664444B2 - 分解溶融組成結晶体の製造方法 - Google Patents

分解溶融組成結晶体の製造方法

Info

Publication number
JP2664444B2
JP2664444B2 JP63307811A JP30781188A JP2664444B2 JP 2664444 B2 JP2664444 B2 JP 2664444B2 JP 63307811 A JP63307811 A JP 63307811A JP 30781188 A JP30781188 A JP 30781188A JP 2664444 B2 JP2664444 B2 JP 2664444B2
Authority
JP
Japan
Prior art keywords
crystal
composition
temperature
melt
yba
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63307811A
Other languages
English (en)
Other versions
JPH02153891A (ja
Inventor
平吉 種井
孝義 曾和
道哉 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63307811A priority Critical patent/JP2664444B2/ja
Publication of JPH02153891A publication Critical patent/JPH02153891A/ja
Application granted granted Critical
Publication of JP2664444B2 publication Critical patent/JP2664444B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、一方向凝固法による分解溶融組成結晶の製
造方法に関し、特に超伝導酸化物結晶の製造方法に関す
る。
〔従来の技術〕
従来、一方向凝固法によるチタン酸鉛(PbTiO3)の如
き一致溶融組成結晶及びその製造方法については、窒業
協会誌89巻.9号(1981年)第507頁から第516頁において
論じられており、また、一方向凝固法による2CaO・P2O5
−3CaO・P2O5の如き共晶組成結晶及びその製造方法につ
いては、窒業協会誌90巻.6号(1982年)第295頁から第3
04頁において論じられているが、融液の組成とそれから
析出する結晶の組成が異なる分解溶融組成結晶及びその
製造方法については論じられていない。
液体窒素温度(77K)より高温で超伝導を示すYBa2Cu3
O7-Xの如き結晶は分解溶融組成であることが知られてい
る。YBa2Cu3O7-Xの単結晶の製造法については、アプラ
イド・フイジツクス・レター51巻.(9).31(1987
年)第690頁から第691頁(Appl.Pnys.Lett.51(9).31
(1987)pp690〜691)において論じられており、径が1m
m,厚さが0.2mmの板状の単結晶が得られている。ここで
単結晶の結晶構造は斜方晶系であり、板面に垂直な方
向、すなわち厚さ方向がC軸であることも報告されてい
る。このことは、YBa2Cu3O7-Xの結晶では、C軸方向の
結晶成長が遅く、a,b軸方向の結晶成長が速いことを示
している。
一方、上記超伝導体の多結晶体は酸化物,炭酸塩等の
原料粉末を用いた焼結法によつて製造できることは一般
によく知らてれている。さらに、上記超伝導体の焼結体
を用いて線材を製造する方法については、ジヤパニーズ
・ジヤーナル・オブ・アプライド・フイジツクス 27
巻.2号(1988)第L185頁から第L187頁(Japanese Journ
al of Applied Physics.27.2.(1988)ppL185−L187)
において論じられている。
また、融液から多結晶のYBa2Cu3O7−δが得られ、そ
の多結晶体では、超伝導体特性として重要な臨界電流値
Jcが非常に大きく、しかも磁場の下でもひどい劣化が生
じないことが、1988年4月5日〜9日に開催された米国
のマテリアルズ リサーチソサイアテイ主催のシンポジ
ウムでAT&T社ベル研究所のS.Jinらによつて発表され
ている。
〔発明が解決しようとする課題〕
上記した一方向凝固法についての従来技術では、高温
超伝導体のYBa2Cu3O7-Xの如き、分解溶融組成結晶及び
その製造方法について論じられていないという問題があ
り、上記超伝導体のような材料の単結晶製造法について
の従来技術では、径が1mm厚さが0.2mm程度の小さな単結
晶しか得られないという問題があり、さらには、上記超
伝導体のような材料の焼結体からなるバルク材や線材の
製造法についての従来技術では、焼結体中に含まれる気
孔や結晶体の方位がそろつていないこと等のため超伝導
性が保持される臨界電流値が十分な大きさを持つたもの
が得られないという問題があつた。一方、融液から多結
晶体を得る従来技術では、全く具体的な製造条件が示さ
れないということ、及び報告には0.5mm程度の範囲の多
結晶体の写真が示されているだけで、得られる多結晶体
の大きさが示されておらず、線材等に適用可能な大きさ
の多結晶体を得る方法については何ら示されていないと
いう問題があつた。
本発明の目的は、高温超伝導体のYBa2Cu3O7-Xの如き
分解溶融組成結晶の比較的大きな単結晶体あるいは多結
晶体の製造方法を提供することにあり、とりわけ、多結
晶体では結晶体の方位がそろつた配向性多結晶体の製造
方法を提供することにある。
〔課題を解決するための手段〕
分解溶融組成結晶の一例である高温超伝導体のYBa2Cu
3O7-X系については、第2図に示す簡略な状態図が得ら
れる。第2図では、横軸が組成,縦軸が温度で、図中の
記号はその組成と温度の範囲で安定な相を示す。第2図
に示すように、超伝導性をもつYBa2Cu3O7-Xの組成を
A、それよりCuOとBaOが多い組成を順次、B,C,Dと記号
付ける。Bの組成は包晶組成,Dの組成は共晶組成として
特徴付けられる。BとDの間の組成であるCの組成物を
その融点(Tcm)以上の温度に保つて、均一な融液(液
体)とし、しかる後、冷却させると融点(Tcm)あるい
はそれ以下の温度で、ほぼAの組成のYBa2Cu3O7-Xの結
晶が析出する。結晶の析出によつて、固液界面の融液の
組成は、よりCuOとBaOに富む方、すなわちDの組成の方
に近づいた融液は温度Tcmより低い温度でAの組成よ
り、BaOとCuOに富む組成のYBa2Cu3O7-X系結晶を析出す
る。固液界面の融液の組成がDに達すると、YBa2Cu3O
7-X系結晶のほかに、BaO及びCuO系結晶も析出するので
好ましくない。
そこで、上記目的は次に示す手段により、達成され
る。
初めに融液とする組成を目的の超伝導結晶が析出する
組成物、例えば第2図のBとDの間の組成であるCの組
成物とし、Cの組成物の一部分もしくは全部を溶解さ
せ、Cの組成物を温度勾配をつけることによつて低温側
から高温側に向かつて一方向にほぼAの組成の結晶を凝
固させる。
Cの組成物の融液から結晶が析出する場合、種子結晶
が存在する場合と種子結晶が存在しない場合とでは凝固
物の微構造が異なる。
第1図に示すように、種子結晶が存在する場合には、
種子結晶上に融液からの析出結晶が形成される。この種
子結晶が1個の単結晶の場合、凝固物は単結晶体とな
り、種子結晶が多結晶体の場合、凝固物は多結晶体とな
る。種子結晶がある特定の結晶軸方向にそろつた配向性
多結晶体で、配向した結晶軸を成長方向に設置した場
合、容易に凝固物は配向性多結晶体となる。一方、種子
結晶が焼結体のような無秩序な配列をもつた多結晶体の
場合でも、次の理由により、凝固物は配向性多結晶体と
なる。結晶が成長する場合、その成長する速度がその結
晶体の結晶軸方向によつて通常異なる。そのため、第3
図に示すように、焼結体の種子結晶1上に融液4から結
晶析出か生じる場合、種子結晶のそれぞれの結晶におい
て、結晶成長速度の速い方向(優先成長方向)に先ず結
晶が成長する。この時、焼結体種子結晶1のそれぞれの
結晶の配列が無秩序であるので、結晶の優先成長する向
きも種子結晶のそれぞれの結晶において異なり、第3図
に示すように、結晶析出の初期では、凝固物の結晶配列
が無秩序である領域2が存在する。しかし、凝固すなわ
ち結晶成長がさらに進むに従い、第3図に示すように結
晶成長速度の速い方向と凝固進行方向とが一致する結晶
のみが成長を続けることができるので、その方向にそろ
つた柱状多結晶体3が得られる。超伝導体のYBa2Cu3O
7-Xの結晶は、第4図に示すような結晶構造をもち、従
来の技術の項で記したように、a軸あるいはb軸方向が
優先的に成長するので、凝固進行方向にa軸あるいはb
軸がそろつた柱状多結晶体が得られる。ここで、種子結
晶の焼結体は最初に融液とするCの組成物の下部、言い
換えれば凝固進行の反対側に接してAの組成物を配置
し、Cの組成物とAの組成物の境あるいはこの近傍の所
の温度が上記したCの組成物の融点(Tcm)になるよう
に、そして種子結晶とするAの組成物側では温度をより
低く、結晶成長方向とするCの組成物側では温度をより
高くする温度勾配を形成する。
一方、種子結晶が存在しない場合、融液と容器との界
面を結晶核としたりして、融液からの結晶析出が起き
る。この場合、結晶核の形成される数を制御することは
困難である。従つて、この場合容器底面ばかりでなく、
容器側面からも結晶析出が起こり、各結晶の方位がそろ
つた比較的大きな多結晶体は得られないとともに凝固物
内部に空洞ができやすい。このように空洞が生ずると超
伝導性が保たれる臨界電流値を高くすることができな
い。
また上記した如く、Cの組成物の融液からAの組成の
結晶が析出すると融液の組成はAの結晶析出分だけCuO
が多くなる。結晶析出を長く続けて、長尺の凝固物を作
製する場合は、その組成変動の対策を行う必要がある。
そこで融液(特に結晶との界面の融液)の組成が常にC
となるように、Aの結晶析出分だけAの組成を融液中に
供給することにより、定常状態でAの結晶を析出させる
ことができる。つまり、Aの組成(YBa2Cu3O7-X)を析
出させるために、Aの組成よりCuO+BaOの成分が多いC
の組成を、BとDとの間の組成に保つために、Aの組成
成分を融液に供給する必要があるということである。
その他、凝固速度,温度勾配等の製造条件は好ましい
凝固物が得られるように、適当な値が選ばれる。
〔作用〕
上記した一方向凝固法では、例えばYBa2Cu3O7-Xの如
き分解溶融組成結晶の単結晶体あるいは多結晶体が得ら
れる。そして、その方法で凝固を長時間続け、長い物を
作製することにより、線材が得られる。
上記した方法による単結晶及び多結晶体は凝固進行方
向すなち長手方向が結晶軸のa軸あるいはb軸にそろつ
ている。YBa2Cu3O7-X結晶は超伝導状態では、臨界電流
値がc軸方向よりもa軸方向あるいはb軸方向の方が20
倍程大きい。それによつて、上記方法による凝固物(バ
ルク材及び線材)では、十分大きな臨界電流値が得られ
る。
〔実施例〕
以下、本発明を具体的な実施例により詳細に説明す
る。
実施例1 YBa2Cu3O7-X(組成A),YBa2Cu3O7-X:CuO=1:3(モル
比)(組成C)の2種類の組成となるように、99.9%の
純度のY2O3,BaCO3,及びCuOの各粉末を秤量し、メノウ乳
鉢とメノウ乳棒を用いたらいかい機で混合し、混合物を
それぞれアルミナ坩堝に入れて、900℃で空気中におい
て8時間加熱した後、それらを上記らいかい機で粉砕
し、仮焼粉末を得て、各粉砕物を約1ton/cm2の圧力で直
径約30mm,厚さ10mmの円板状にプレス成形した。
第5図に示すように、プレス成形した上記各組成の円
板を内径30mm,高さ70mmの高純度アルミナ坩堝5に初め
に組成Aの円板を1個、2番目に組成Cの円板を4個入
れた。次に、このアルミナ坩堝5を上部発熱体6と下部
発熱体7とを有し、それぞれの発熱体の発熱量を独立に
制御できる温度制御器を備えた電気炉体8中に設置し、
次のように熱処理を行つた。なお、アルミナ坩堝の上下
にそれぞれ上部熱電対9と下部熱電対10とを設けそれら
の箇所の温度を測定した。
上部熱電対9の温度が1150℃に、下部熱電対10の温度
が950℃になるように室温から300℃/hの昇温速度で加熱
した。これらの温度に2h保持した後、それらの熱電対の
温度が5℃/hの速度で降下するように温度制御器を設定
し、その降温速度で5h降下させ、以後は電気炉の電源を
切断し、自然冷却とした冷却後、アルミナ坩堝ごとダイ
ヤモンドカツターで切断し、アルミナ坩堝内の凝固物を
取り出した。切断には潤滑剤として油を使い、切断後は
アセトンで洗浄し、その後、空気中で900℃.24hの焼成
を行い、CuOを多く含む低融点部分を流出させ、目的のY
Ba2Cu3O7-X結晶体を取り出した。取り出した結晶体(凝
固物)は径が30mm,長さが約20mmであり、その外観を第
6図に示した。焼結体の種子結晶11の近くの凝固物結晶
12の配列は無秩序であるが、凝固が進むに従つて、柱状
結晶13の配列がそろつていることが認められる。それら
の柱状結晶の長手方向に垂直な面をX線回折法により分
析した結果、YBa2Cu3O7-X結晶のa面及びb面の回折ピ
ークがYBa2Cu3O7-X結晶の他の面より著しく強かつた。
実施例2 実施例1と同様の方法で、プレス成形した組成A及び
組成Cの円板を内径30mm,高さ70mmの高純度アルミナ坩
堝5に、初めに組成Aの円板を1個、その次に組成Cの
円板を4個入れた。次に、第7図に示すようにこのアル
ミナ坩堝を上部発熱体6と下部発熱体7とを有し、それ
ぞれの発熱体の発熱量を独立に制御できる温度制御器を
備えた電気炉体8中に設置し、次のように熱処理を行つ
た。
上部電熱対7の温度が1200℃に、下部熱電対7の温度
が950℃になるように室温から約300℃/hの昇温速度で加
熱した、これらの温度に2h保持した後、それらの熱電対
の温度が5℃/hの速度で降下するように温度制御器を設
定し、その降温速度で7h降下させ、以後電気炉の電源を
切断し、自然冷却とした。一定速度の温度の降下ととも
に、上記組成Aの仮焼粉末112を補給管111を通して、ア
ルミナ坩堝中に供給した。その供給量は、約7.1g/hで連
続的に供給を行つた。冷却後凝固物を実施例1と同様の
方法で取り出した。取り出した凝固物は径が30mm,長さ
が約30mmであつた。その凝固物の外観は実施例1と似て
いるが、配列のそろつた柱状結晶の部分は長くなつてい
た。それらの柱状結晶の長さ方向に垂直な面をX線回折
方により分析した結果、YBa2Cu3O7-X結晶のa面及びb
面の回折ピークがYBa2Cu3O7-X結晶の他の面より著しく
強かつた。
この方法で、アルミナ坩堝をより長くし、その坩堝を
上から下に移動できるように電気炉を工夫すれば、さら
に長尺の凝固物が得られる。すなわち、これにより、超
伝導体YBa2Cu3O7-X結晶の線材化が可能である。
実施例3 実施例1と同様の方法で、組成Cの仮焼粉末円板を形
成した後、底の中心部に0.5mmφの穴のある高純度アル
ミナ坩堝13に、第8図に示すように4個入れた。このア
ルミナ坩堝は内径が30mm,高さが70mmである。次に、内
径が40mm,高さが50mmの高純度アルミナ坩堝14の底の中
心部に従来例の方法であるフラツクス法により作製した
径1mm程度,厚さ0.2mm程度の広い面がc面であるYBa2Cu
3O7-X単結晶体15を置き、この単結晶体15の上に、前記
アルミナ坩堝13の底部の穴が位置するように、そのアル
ミナ坩堝13を設置し、それら2個のアルミナ坩堝の位置
がずれないようにしながら、実施例2と同様な電気炉中
に設置した。坩堝上下の温度,熱処理条件,組成Aの仮
焼粉末の供給方法,凝固物等の取り出し方法等は実施例
2と同様に行つた。取り出した凝固物は、径が30mm,高
さが10mm程度の粗大な単結晶状であつた。ここで、X線
回折分析の結果、凝固進行方向はc軸であつた。これは
種子結晶の単結晶にc面が広い面である板状結晶を用い
たためで、種子結晶の単結晶にa面あるいはb面が広い
面である板状結晶を用いれば、得られる単結晶は凝固進
行方向がa軸あるいはb軸になる。
実施例4 実施例1と同様の方法で、第9図に示すようにプレス
成形した組成A及び組成Cの円板を内径30mm,高さ70mm
の高純度アルミナ坩堝16に、初めに組成Aの円板を1個
その次に組成Cの円板を4個入れた。次に底の中心部に
0.1mmφの穴のある外形20mm,内径16mm,高さ70mmの小さ
な高純度アルミナ坩堝17を前記アルミナ坩堝16中に挿入
した。後者の小さなアルミナ坩堝17中には、実施例1と
同様の方法で作製した直径が16mm,厚さが10mmの円板状
にプレス成形した組成Cの円板を5個入れた。次にこれ
らのアルミナ坩堝を実施例1と同様に上部発熱体と下部
発熱体とを有し、それぞれの発熱体の発熱量を独立に制
御できる温度制御器を備えた電気炉体中に設置し、次の
ように熱処理を行つた。
上部熱電対の温度が1200℃に、下部熱電対の温度が95
0℃になるように室温から焼300℃/hの昇温速度で加熱し
た。これらの温度に2h保持した後、これらの熱電対の温
度が5℃/hの速度で降下するように温度制御器を設定
し、その降温速度で7h降下させ、以後は電気炉の電源を
切断し、自然冷却とした。冷却後、凝固物を実施例1と
同様の方法で取り出した。取り出した凝固物は前者の坩
堝中の物が実施例1の場合と同様であり、後者の小さな
坩堝中の物は径が16mm,高さが20mm程度の粗大な単結晶
状であつた。この粗大な単結晶状物をX線回折分析で調
べた結果、高さ方向(凝固進行方向)はa軸であつた。
小さな坩堝中の凝固物が単結晶状になるのは、第10図に
示す凝固途中のアルミナ坩堝中の状態からわかるように
上部の小さなアルミナ坩堝の底部の穴は径が0.1mmであ
り、下部の柱状結晶の径は0.4mm程度であるので、下部
の柱状結晶の1個だけが、上部のアルミナ坩堝の底部を
通つて成長でき、それが種子結晶として働き、上部の小
さなアルミナ坩堝内の凝固物は単結晶となる。種子結晶
となる柱状結晶は凝固進行方向がa軸となつていたた
め、得られた単結晶も凝固進行方向がa軸となつた。
上記各実施例により製造される超伝導体結晶体は、送
電装置,電磁浮上・駆動移動体装置,医療診断装置,エ
ネルギ貯蔵装置等,様々な応用が可能である。
〔発明の効果〕
本発明によれば、高温超伝導体のYBa2Cu3O7-Xの如き
分解溶融組成結晶の単結晶体あるいは多結晶体が製造で
き、とりわけ大きな単結晶体や結晶体の方位がそろつた
配向性多結晶体が製造できる。それらの単結晶や多結晶
体では臨界電流値が大きいa軸またはb軸に配向してい
るので、十分大きな臨界電流値が得られる効果がある。
【図面の簡単な説明】
第1図は本発明を説明するためのモデル図、第2図は超
伝導体YBa2Cu3O7-X系の状態図、第3図は配向した柱状
結晶が得られることの説明図、第4図はYBa2Cu3O7-X
晶の構造と結晶軸方向を示すモデル図、第5図は本発明
の実施例における電気炉断面図、第6図は凝固物断面
図、第7図は本発明の実施例における電気炉断面図、第
8図及び第9図は本発明の実施例の坩堝断面図、第10図
は凝固進行途中の状態説明図、である。 符号の説明 1……焼結体種子結晶、2……無秩序配列多結晶体、3
……配向性柱状結晶、4……融液、5……坩堝、6……
上部発熱体、7……下部発熱体、8……電気炉体、9…
…上部熱電対、10……下部熱電対、11……補給管、12…
…YBa2Cu3O7-X(組成A)の仮焼粉末、13……穴あき坩
堝、14……坩堝、15……単結晶体、16……坩堝、17……
穴あき坩堝、18……管、19……融液と結晶混在部、20…
…焼結体
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−275776(JP,A) 特開 昭61−106496(JP,A) Japanese Journal of Applied Physic s,1988年6月,Vol.27,No. 6,p.L1065−1067

Claims (4)

    (57)【特許請求の範囲】
  1. 【請求項1】分解溶融組成の所望結晶を製造する方法に
    おいて、 前記分解溶融組成の結晶のみを初晶として晶出する組成
    の融液の下端に所望の種子結晶を配置し、 前記融液と種子結晶との境あるいはその近傍は前記分解
    溶融組成の結晶の融点となり、前記融液の上端は該融点
    より高温になるように温度制御し、しかる後、種子結晶
    を出発点として、一方向に所望の結晶を析出させつつ、 前記所望結晶の析出した量に相当する、該所望結晶の組
    成の粉体を前記融液に加えることを特徴とする分解溶融
    組成結晶体の製造方法。
  2. 【請求項2】特許請求の範囲第1項において、 前記所望結晶が超伝導体であることを特徴とする分解溶
    融組成結晶体の製造方法。
  3. 【請求項3】特許請求の範囲第2項において、 前記所望結晶がYBa2Cu2O7-Xであることを特徴とする分
    解溶融組成結晶体の製造方法。
  4. 【請求項4】特許請求の範囲第3項において、 前記融液がYBa2Cu2O7-XにCuOを加えた組成であることを
    特徴とする分解溶融組成結晶体の製造方法。
JP63307811A 1988-12-07 1988-12-07 分解溶融組成結晶体の製造方法 Expired - Lifetime JP2664444B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63307811A JP2664444B2 (ja) 1988-12-07 1988-12-07 分解溶融組成結晶体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63307811A JP2664444B2 (ja) 1988-12-07 1988-12-07 分解溶融組成結晶体の製造方法

Publications (2)

Publication Number Publication Date
JPH02153891A JPH02153891A (ja) 1990-06-13
JP2664444B2 true JP2664444B2 (ja) 1997-10-15

Family

ID=17973502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63307811A Expired - Lifetime JP2664444B2 (ja) 1988-12-07 1988-12-07 分解溶融組成結晶体の製造方法

Country Status (1)

Country Link
JP (1) JP2664444B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2518969B2 (ja) * 1989-05-02 1996-07-31 新日本製鐵株式会社 酸化物超電導体およびその製造方法
DE10124423A1 (de) * 2001-05-18 2003-01-02 Schott Glas Züchten von orientierten Einkristallen mit wiederverwendbaren Kristallkeimen
SG190514A1 (en) * 2011-11-28 2013-06-28 Sino American Silicon Prod Inc Crystalline silicon ingot and method of fabricating the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106496A (ja) * 1984-10-31 1986-05-24 Hoya Corp 分解溶融化合物単結晶の製造方法
JPS63136488A (ja) * 1986-11-27 1988-06-08 松下電器産業株式会社 誘導加熱調理器用発熱板
JP2822451B2 (ja) * 1988-06-02 1998-11-11 住友電気工業株式会社 超電導体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Japanese Journal of Applied Physics,1988年6月,Vol.27,No.6,p.L1065−1067

Also Published As

Publication number Publication date
JPH02153891A (ja) 1990-06-13

Similar Documents

Publication Publication Date Title
Endo et al. Relationship between growth rate and undercooling in Pt-added Y1Ba2Cu3O7− x
Nakamura et al. The relation between the undercooling and the growth rate of YBa2Cu3O6+ x superconductive oxide
JP2664444B2 (ja) 分解溶融組成結晶体の製造方法
JP2740427B2 (ja) 酸化物結晶の作製方法
Costa et al. Diffusion phenomena and crystallization path during the growth of LFZ Bi-Sr-Ca-Cu-O superconducting fibres
Kitamura et al. Initial growth mechanism of a/b‐axis oriented YBa2Cu3O7− y film prepared by liquid phase epitaxy
US5057487A (en) Crystal growth method for Y-Ba-Cu-O compounds
JPH0791056B2 (ja) 新規な組織を有する酸化物超電導体の製造方法
JP3613424B2 (ja) 酸化物超電導体の製造方法
Demianets et al. Growth of high-temperature superconductor crystals from flux
JP3720743B2 (ja) 酸化物超電導体及びその製造方法
JP2692614B2 (ja) 新規な組織を有する酸化物超電導体
JPH0416511A (ja) 酸化物超電導体およびその製造方法
JPH0350118A (ja) 超電導線材およびその製造方法
JP3174847B2 (ja) 超電導ウィスカーおよびその製造方法
Wong-Ng et al. Superconducting Phase Formation in Bi (Pb)-Sr-Ca-Cu-O Glasses: A Review
JPH03150208A (ja) 酸化物超電導フィイバの製造方法
JP3560541B2 (ja) 酸化物超伝導体単結晶の製造方法
JP3115695B2 (ja) 磁気浮上力の大きい酸化物超電導体の製造方法
JP2833639B2 (ja) 酸化物結晶の作製法
JPH05279034A (ja) 磁気浮上力の大きい酸化物超電導体の製造方法
JP4019132B2 (ja) REーBaーCuーO系酸化物超電導体及びその製造方法
JPH01208398A (ja) 酸化物超伝導体単結晶の製法
JPH03159988A (ja) セラミックス系超電導体の製造方法
JP2833640B2 (ja) Pr123結晶の作製法