JP2659655B2 - Thick grain-oriented electrical steel sheet with excellent magnetic properties - Google Patents

Thick grain-oriented electrical steel sheet with excellent magnetic properties

Info

Publication number
JP2659655B2
JP2659655B2 JP4237150A JP23715092A JP2659655B2 JP 2659655 B2 JP2659655 B2 JP 2659655B2 JP 4237150 A JP4237150 A JP 4237150A JP 23715092 A JP23715092 A JP 23715092A JP 2659655 B2 JP2659655 B2 JP 2659655B2
Authority
JP
Japan
Prior art keywords
steel sheet
grain
product
thickness
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4237150A
Other languages
Japanese (ja)
Other versions
JPH0688170A (en
Inventor
康成 吉冨
浩昭 増井
延幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17011148&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2659655(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4237150A priority Critical patent/JP2659655B2/en
Priority to EP93114263A priority patent/EP0585956B1/en
Priority to DE1993616114 priority patent/DE69316114T2/en
Publication of JPH0688170A publication Critical patent/JPH0688170A/en
Application granted granted Critical
Publication of JP2659655B2 publication Critical patent/JP2659655B2/en
Priority to US09/783,408 priority patent/US6858095B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、トランス等の鉄心とし
て使用される磁気特性の優れた厚い板厚の方向性電磁鋼
板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thick grain-oriented electrical steel sheet having excellent magnetic properties and used as an iron core of a transformer or the like.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、主にトランスその他
の電気機器の鉄心材料として使用されており、励磁特
性、鉄損特性等の磁気特性に優れていることが要求され
る。励磁特性を表す数値としては、磁場の強さ800A
/mにおける磁束密度B8 が通常使用される。また、鉄
損特性を表す数値としては、周波数50Hzで1.7テス
ラー(T)まで磁化したときの1kg当りの鉄損W17/50
を使用している。
2. Description of the Related Art Grain-oriented electrical steel sheets are mainly used as core materials for transformers and other electric equipment, and are required to have excellent magnetic properties such as excitation properties and iron loss properties. Numerical values representing the excitation characteristics include a magnetic field strength of 800 A
/ Flux density B 8 in m are usually used. In addition, as a numerical value representing the iron loss characteristic, the iron loss W 17/50 per kg when magnetized at a frequency of 50 Hz to 1.7 Tesla (T) is used.
You are using

【0003】磁束密度は、鉄損特性の最大支配因子であ
り、一般的にいって磁束密度が高いほど鉄損特性が良好
になる。なお、一般的に磁束密度を高くすると二次再結
晶粒が大きくなり、鉄損特性が不良となる場合がある。
これに対しては、磁区制御により、二次再結晶粒の粒径
に拘らず、鉄損特性を改善することができる。
[0003] The magnetic flux density is the largest controlling factor of iron loss characteristics. Generally, the higher the magnetic flux density, the better the iron loss characteristics. In general, when the magnetic flux density is increased, the secondary recrystallized grains become large, and the iron loss characteristics may become poor.
In contrast, by controlling the magnetic domain, the iron loss characteristics can be improved regardless of the particle size of the secondary recrystallized grains.

【0004】この一方向性電磁鋼板は、最終仕上焼鈍工
程で二次再結晶を起こさせ、鋼板面に{110}、圧延
方向に〈001〉軸を持った、いわゆるゴス組織を発達
させることにより製造されている。良好な磁気特性を得
るためには、磁化容易軸である〈001〉を圧延方向に
高度に揃えることが必要である。
This unidirectional electrical steel sheet undergoes secondary recrystallization in the final finish annealing step to develop a so-called Goss structure having {110} on the steel sheet surface and a <001> axis in the rolling direction. Being manufactured. In order to obtain good magnetic properties, it is necessary that <001>, which is the axis of easy magnetization, be highly aligned in the rolling direction.

【0005】このような高磁束密度一方向性電磁鋼板の
製造技術として代表的なものに田口悟等による特公昭4
0−15644号公報及び今中拓一等による特公昭51
−13469号公報記載の方法がある。前者においては
MnS及びAlNを、後者ではMnS,MnSe,Sb
等を主なインヒビターとして用いている。従って現在の
技術においてはこれらインヒビターとして機能する析出
物の大きさ、形態及び分散状態を適正に制御することが
不可欠である。
[0005] As a typical production technique of such a high magnetic flux density unidirectional magnetic steel sheet, Satoru Taguchi et al.
No. 0-15644 and Japanese Patent Publication No. 51 by Takuichi Imanaka
There is a method described in JP-A-13469. In the former, MnS and AlN are used, and in the latter, MnS, MnSe, Sb are used.
Are used as the main inhibitors. Therefore, it is indispensable in the current technology to appropriately control the size, morphology, and dispersion state of the precipitates functioning as these inhibitors.

【0006】一方、近年のトランスメーカーの省力化、
コストダウンの観点から特に、積鉄心の分野で、積回数
を減すため、板厚の厚い方向性電磁鋼板のニーズが高ま
ってきた。また、大型回転器の分野において、以前から
方向性電磁鋼板を使用したいとの要望があり、この分野
においても、積回数を減すため、板厚の厚い方向性電磁
鋼板のニーズは高い。
On the other hand, recent labor saving of transformer manufacturers,
From the viewpoint of cost reduction, especially in the field of laminated iron cores, the need for thick grain-oriented electrical steel sheets has increased in order to reduce the number of laminations. In the field of large-sized rotating machines, there has been a demand for using grain-oriented electrical steel sheets for some time. In this field, the need for thick grain-oriented electrical steel sheets is high in order to reduce the number of products.

【0007】他方、板厚を厚くすることは、一般的に
は、鉄損特性の劣化につながるため、この課題を解決す
る磁気特性の優れた厚い板厚の方向性電磁鋼板の開発の
期待が高まってきた。
[0007] On the other hand, increasing the sheet thickness generally leads to deterioration of iron loss characteristics. Therefore, there is an expectation for development of a thicker grain-oriented electrical steel sheet having excellent magnetic properties to solve this problem. I'm growing.

【0008】[0008]

【発明が解決しようとする課題】本発明は、板厚を厚く
し、かつ、優良な磁気特性を有する方向性電磁鋼板を提
供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a grain-oriented electrical steel sheet having a large thickness and excellent magnetic properties.

【0009】[0009]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、重量で、Si:2.5〜4.5%を含有する板厚
0.36〜1.00mmの厚手方向性電磁鋼板において、
鋼板のCが重量で0.0050%以下であって、磁束密
度B8 ≧1.83Tであり、鋼板の直径(円相当直径)
5mm超の各結晶粒に関する粒界形状の特徴を表わす指標
として、式 SF=(結晶粒の面積×4π)/(結晶粒界長)2 を定義する時、各SF値の鋼板としてのSF(平均値)
が、SF(平均値)<0.80であって、鋼板の直径5
mm超の結晶粒における重心位置の結晶方位に対して、
0.2〜4度の方位分散が、存在し、製品の板厚をt(m
m)とした時に、鉄損W17/50 (w/kg)がW17/50 ≦3.3
×t+0.35を満すことを特徴とする磁気特性の優れ
た厚い板厚の方向性電磁鋼板である。
SUMMARY OF THE INVENTION The gist of the present invention is to provide a thick grain-oriented electrical steel sheet having a thickness of 0.36 to 1.00 mm containing 2.5 to 4.5% by weight of Si. ,
The C of the steel sheet is 0.0050% or less by weight, the magnetic flux density B 8 ≧ 1.83T, and the diameter of the steel sheet (diameter equivalent to a circle)
When the formula SF = (area of crystal grain × 4π) / (grain boundary length) 2 is defined as an index representing the characteristics of the grain boundary shape for each crystal grain of more than 5 mm, SF ( Average value)
Is SF (average value) <0.80, and the steel plate diameter 5
For the crystal orientation at the center of gravity of the crystal grains larger than mm,
An azimuthal dispersion of 0.2 to 4 degrees exists, and the thickness of the product is t (m
m), the iron loss W 17/50 (w / kg) is W 17/50 ≦ 3.3.
× t + 0.35, which is a grain-oriented electrical steel sheet having a large thickness and excellent magnetic properties.

【0010】[0010]

【作用】本発明が対象としている方向性電磁鋼板は、従
来用いられている製鋼法で得られた溶鋼を連続鋳造法或
いは造塊法で鋳造し、必要に応じて分塊工程を挟んでス
ラブとし、引き続き熱間圧延して熱延板とし、次いでこ
の熱延板に必要に応じて焼鈍を施し、必要に応じて中間
焼鈍を挟む1回以上の冷延、脱炭焼鈍、最終仕上焼鈍を
順次行うことによって製造される。
The grain-oriented electrical steel sheet to which the present invention is directed is formed by casting a molten steel obtained by a conventional steelmaking method by a continuous casting method or an ingot-forming method, and interposing a slab with a lump-forming step as necessary. And subsequently hot-rolled to form a hot-rolled sheet, and then subjected to annealing as necessary, and if necessary, one or more times of cold rolling, decarburizing annealing, and final finish annealing with intermediate annealing sandwiched between them. It is manufactured by performing it sequentially.

【0011】本発明者等は、厚い板厚の方向性電磁鋼板
の製造工程において、磁気特性を良好ならしめるための
必要条件について広範囲にわたって検討し、製品が具備
すべき要件を見い出した。
The present inventors have studied a wide range of requirements for improving the magnetic properties in the process of manufacturing a grain-oriented electrical steel sheet having a large thickness, and have found requirements that the product should have.

【0012】以下実験結果を基に詳細に説明する。図1
に、製品のC量と磁束密度が、製品の鉄損特性に与える
影響を示す。
The details will be described below based on the experimental results. FIG.
The effect of the C content and the magnetic flux density of the product on the iron loss characteristics of the product is shown below.

【0013】この場合、重量で、Si:3.21〜3.
30%、C:0.025〜0.085%、酸可溶性A
l:0.025〜0.030%、N:0.0075〜
0.0086%、Mn:0.070〜0.161%、
S:0.005〜0.029%、残部がFe及び不可避
的不純物からなる珪素鋼スラブを1150〜1380℃
に1時間加熱し、熱延して、2.8mm厚の熱延板とし、
次いで、(1)900〜1100℃の熱延板焼鈍を施
す、(2)熱延板焼鈍を施さない、なる2種類の条件で
処理し、次いで、圧下率約83%で冷延し、0.48mm
厚の冷延板とした。
In this case, by weight, Si: 3.21 to 3.21.
30%, C: 0.025-0.085%, acid soluble A
l: 0.025 to 0.030%, N: 0.0075 to
0.0086%, Mn: 0.070 to 0.161%,
S: 0.005 to 0.029%, silicon steel slab consisting of Fe and unavoidable impurities with the balance being 1150 to 1380 ° C
For 1 hour and hot rolled into a hot rolled sheet of 2.8 mm thickness.
Next, treatment is performed under two conditions: (1) hot-rolled sheet annealing at 900 to 1100 ° C., and (2) hot-rolled sheet annealing, and then cold-rolled at a rolling reduction of about 83%. .48mm
A thick cold rolled sheet was used.

【0014】かかる冷延板を810〜860℃の温度域
で250秒間脱炭焼鈍(雰囲気:25%N2 −75%H
2 、露点65℃)し、次いで、(a)750℃×30秒
の追加焼鈍時にNH3 ガスを用いて、N増量で、0.0
102〜0.0195%の窒化処理を施す。(b)処理
なし、なる2種類の条件で処理し、次いで、MgOを主
成分とする焼鈍分離剤を塗布し、内径の直径200〜1
500mmのコイル状(5トン)とし、N2 を10〜10
0%(残部H2 )を含む焼鈍雰囲気中で、15℃/hrの
昇温速度で、1200℃まで昇温し、H2 焼鈍雰囲気中
で、1200℃に20時間保持する最終仕上焼鈍を施し
た。
The cold rolled sheet is decarburized by annealing at a temperature of 810 to 860 ° C. for 250 seconds (atmosphere: 25% N 2 -75% H).
2 , dew point 65 ° C.), and then (a) NH 3 gas during additional annealing at 750 ° C. × 30 seconds with N increase in N
A nitriding treatment of 102 to 0.0195% is performed. (B) No treatment, treatment under two types of conditions, and then applying an annealing separator containing MgO as a main component, and having an inner diameter of 200 to 1
A 500mm-shaped coil (5 tons), the N 2 10 to 10
In an annealing atmosphere containing 0% (remainder H 2 ), the temperature was raised to 1200 ° C. at a heating rate of 15 ° C./hr, and final finishing annealing was performed at 1200 ° C. for 20 hours in an H 2 annealing atmosphere. did.

【0015】しかる後、形状矯正及び張力コーティング
のための焼鈍を施し、SSTサイズに切断し、平板状と
し、850℃に4時間保持する歪取り焼鈍を施し、磁気
測定を行った。最終製品の板厚は0.50mmであった。
After that, shape correction and tension coating
Then, it was cut into SST size, made into a plate shape, subjected to strain relief annealing kept at 850 ° C. for 4 hours, and subjected to magnetic measurement. The thickness of the final product was 0.50 mm.

【0016】図1から明らかなように、製品のC量0.
0050%以下、磁束密度B8 ≧1.83Tの条件での
みW17/50 ≦2.00w/kgなる良好な鉄損特性をもつ製
品が得られた。但し、この条件を満しても、W17/50
2.00w/kgとなる場合も生じたので、この原因を詳細
に検討した。
As is apparent from FIG. 1, the C content of the product is 0.1.
Only under the conditions of 0050% or less and the magnetic flux density B 8 ≧ 1.83 T, a product having good iron loss characteristics of W 17/50 ≦ 2.00 w / kg was obtained. However, even if this condition is satisfied, W 17/50 >
Since 2.00 w / kg sometimes occurred, the cause was examined in detail.

【0017】この検討結果について、以下説明する。図
2に、図1に示した実験において、C量0.0050%
以下、磁束密度B8≧1.83Tなる製品における直径
(円相当直径)5mm超の結晶粒の粒界形状因子(SF)
及び直径5mm超の結晶粒における方位分散(Δθ)
(度)と鉄損特性との関係を示す。
The result of this study will be described below. FIG. 2 shows that in the experiment shown in FIG.
Hereinafter, a grain boundary form factor (SF) of a crystal grain having a diameter (equivalent circle diameter) of more than 5 mm in a product having a magnetic flux density B 8 ≧ 1.83T.
And orientation dispersion (Δθ) in crystal grains with a diameter of more than 5 mm
The relationship between (degree) and iron loss characteristics is shown.

【0018】この場合、粒界形状因子(SF)は、式 SF=(結晶粒の面積×4π)/(結晶粒界長)2 を定義し、粒界形状を定量化した。SFの値は、結晶粒
が円形の時1となり、粒界形状の凹凸が増すと、このS
Fの値が小さくなる。
In this case, the grain boundary shape factor (SF) was defined by the following formula: SF = (area of crystal grain × 4π) / (grain boundary length) 2 , and the grain boundary shape was quantified. The value of SF is 1 when the crystal grain is circular, and when the irregularities of the grain boundary shape increase, the value of S
The value of F decreases.

【0019】また、直径5mm超の結晶粒における方位分
散(Δθ)(度)は、結晶粒の重心位置に対する結晶粒
内の方位差を表し、本発明の如く、コイル状で二次再結
晶を生ぜしめ、その後平坦化され製品とされる場合に
は、通常、その結晶粒内での圧延方向距離が重心位置か
ら離れる程、方位分散(Δθ)は大きくなる傾向があ
る。そして、SFの測定には画像解析を用い、Δθの測
定には、ECPを用いた。なお、図2内の1点は図1に
示した各実験条件のSSTを用い、SFについては直径
5mm超の結晶粒101〜151個の平均値(SF (平均
値) )を示し、Δθについては、直径5mm超の結晶粒8
1〜113個の各結晶粒の最大方位分散(重心位置と重
心位置から圧延方向に最も離れた位置との方位差)のΔ
θ(平均値)を示す。
The azimuthal dispersion (Δθ) (degree) in a crystal grain having a diameter of more than 5 mm indicates a difference in the azimuth in the crystal grain with respect to the position of the center of gravity of the crystal grain. When the product is produced and then flattened into a product, the orientation dispersion (Δθ) generally tends to increase as the rolling direction distance within the crystal grain increases from the center of gravity. Then, image analysis was used for measuring SF, and ECP was used for measuring Δθ. In addition, one point in FIG. 2 uses the SST of each experimental condition shown in FIG. 1, and SF shows an average value (SF (average value)) of 101 to 151 crystal grains having a diameter of more than 5 mm. Is a crystal grain with a diameter of more than 5 mm 8
Δ of maximum orientation variance (azimuth difference between the center of gravity position and the position farthest from the center of gravity position in the rolling direction) of each of 1 to 113 crystal grains
Indicates θ (average value).

【0020】図2から明らかなように、SF(平均値)
<0.80、Δθ(平均値)(度)=0.2〜4の条件
の場合は、いずれもW17/50 ≦2.00w/kgなる良好な
磁気特性が得られている。
As is apparent from FIG. 2, SF (average value)
Under the conditions of <0.80 and Δθ (average value) (degrees) = 0.2 to 4, good magnetic characteristics of W 17/50 ≦ 2.00 w / kg were obtained in all cases.

【0021】本発明者等は、上記知見を更に発展させる
ため、図1を説明するに用いたスラブを出発材とし、熱
延板の板厚を2.3〜5.0mmとし、板厚0.36〜
1.00mm厚の製品を作成した。その他のプロセス条件
は、図1を説明したものと同一にとった。
In order to further develop the above findings, the present inventors assumed that the slab used to explain FIG. 1 was used as a starting material, the thickness of the hot rolled sheet was 2.3 to 5.0 mm, and the thickness of the hot rolled sheet was 0 mm. .36-
A 1.00 mm thick product was made. Other process conditions were the same as those described in FIG.

【0022】その実験結果を図3に示す。図3から明ら
かなように、本発明の製品具備条件であるC≦0.00
50%、B8 ≧1.83T、SF(平均値)<0.8
0、Δθ(平均値)(度)=0.2〜4の条件をすべて
満足した場合、W17/50 ≦3.3×t+0.35(但
し、W17/50 (w/kg)、t:製品板厚(mm))なる優れた鉄
損特性が得られている。
FIG. 3 shows the experimental results. As is clear from FIG. 3, the product condition of the present invention is C ≦ 0.00.
50%, B 8 ≧ 1.83T, SF (average value) <0.8
0, Δθ (average value) (degrees) = W 17/50 ≦ 3.3 × t + 0.35 (W 17/50 (w / kg), t : Excellent iron loss characteristics such as product thickness (mm).

【0023】本発明の効果メカニズムについては、必ず
しも明らかではないが、本発明者等は以下のように推定
している。磁束密度が高い程鉄損特性が良好であるが、
一般的に磁束密度が高い程、結晶粒径が大きくなり、そ
の点においては、不利となる。しかし、本発明の如く、
板厚が厚い場合には、製品の結晶粒径が過大となり難い
傾向がみられ、この意味において、本発明の如き厚手材
の場合には、磁束密度と鉄損との相関はより明確とな
る。
Although the effect mechanism of the present invention is not always clear, the present inventors presume as follows. The higher the magnetic flux density, the better the iron loss characteristics,
Generally, the higher the magnetic flux density, the larger the crystal grain size, which is disadvantageous in that respect. However, as in the present invention,
When the plate thickness is large, there is a tendency that the crystal grain size of the product is unlikely to be excessively large, and in this sense, in the case of a thick material such as the present invention, the correlation between the magnetic flux density and iron loss becomes clearer. .

【0024】一方、製品にCが残存すると、炭化物を形
成し、磁化する時の磁壁の移動の妨げとなり鉄損特性を
劣化させる原因となる。本発明の如き厚手材の場合に
は、脱炭焼鈍工程での脱炭が不十分となり易いので、こ
の製品のC量の規制は、特に重要である。
On the other hand, if C remains in the product, it forms carbides, hinders movement of the domain wall when magnetized, and causes deterioration of iron loss characteristics. In the case of a thick material as in the present invention, the decarburization in the decarburization annealing step is likely to be insufficient, so the regulation of the C content of this product is particularly important.

【0025】更に、本発明の骨格となるのが、製品の結
晶粒の形状と方位分散の組合せ効果である。粒界近傍に
は、通常スパイク磁区と呼ぶ、磁区の分断部が発生しや
すいが、結晶粒内に方位分散がある場合には、この傾向
がより顕著となる。
Further, the skeleton of the present invention is a combined effect of the shape of crystal grains and the orientation dispersion of the product. In the vicinity of the grain boundary, a segment of a magnetic domain, which is usually called a spike magnetic domain, tends to be generated. However, when there is azimuthal dispersion in a crystal grain, this tendency becomes more remarkable.

【0026】更に、本発明の如く、結晶粒界の形状の凹
凸度が高まっている(SF値が低まっている)場合に
は、粒界面積が増加していることを意味し、スパイク磁
区の発生頻度がより多くなる。この本発明により増加せ
しめられるスパイク磁区は、グラスフィルム及びコーテ
ィングにより鋼板に付与される張力下で、磁区細分化を
生ぜしめ鉄損特性を向上させることとなる。
Further, as in the present invention, when the degree of irregularity of the shape of the crystal grain boundary is increased (the SF value is reduced), it means that the grain boundary area is increased, and the spike magnetic domain is increased. Occurs more frequently. The spike magnetic domain increased by the present invention causes magnetic domain segmentation under the tension applied to the steel sheet by the glass film and the coating, thereby improving iron loss characteristics.

【0027】本発明の如き厚手材の場合、単純な手法
(鋼板へ付与する張力アップ等)だけでは、磁区細分化
効果を実現し難いので、本発明の如き粒界形状制御と粒
内方位分散制御の組合わせを行うことが、良好な鉄損特
性を実現する上で必要となる。次に本発明の構成要件の
限定理由について述べる。本発明において使用されるス
ラブの成分は、特に限定されるものではないけれども、
製品の磁束密度を安定し、必要量までの脱炭を容易にす
る上で、重量で、0.025〜0.075%Cが望まし
い。
In the case of a thick material as in the present invention, it is difficult to realize a magnetic domain refining effect only by a simple method (such as increasing the tension applied to a steel sheet). Performing a combination of controls is necessary to achieve good iron loss characteristics. Next, the reasons for limiting the constituent elements of the present invention will be described. The components of the slab used in the present invention are not particularly limited,
In order to stabilize the magnetic flux density of the product and facilitate decarburization to a required amount, 0.025 to 0.075% C by weight is desirable.

【0028】製品の鉄損特性を良好ならしめるために
は、2.5〜4.5%のSiを含有していることが望ま
しい。また、インヒビター形成元素として、Al,N,
Mn,S,Se,Sb,B,Cu,Nb,Cr,Sn,
Ti,Bi等を添加することができる。
In order to improve the iron loss characteristics of the product, it is desirable to contain 2.5 to 4.5% of Si. In addition, Al, N,
Mn, S, Se, Sb, B, Cu, Nb, Cr, Sn,
Ti, Bi, etc. can be added.

【0029】このスラブの加熱温度は、特に限定される
ものではないが、エネルギーコスト等の観点から130
0℃以下にすることが望ましい。加熱されたスラブは、
次いで、熱間圧延されて熱延板とされる。熱延板は、必
要に応じて焼鈍された後、1回或は、中間焼鈍を挟む2
回以上の冷間圧延によって最終板厚とされる。
The heating temperature of the slab is not particularly limited, but may be 130 ° C. from the viewpoint of energy cost and the like.
It is desirable to keep the temperature at 0 ° C. or lower. The heated slab is
Next, it is hot-rolled into a hot-rolled sheet. The hot-rolled sheet is annealed as necessary, and then is subjected to one or intermediate annealing.
The final thickness is obtained by cold rolling more than once.

【0030】最終冷間圧延における圧下率は、特に限定
するものではないけれども、80%以上とすることが製
品の磁束密度(B8 値)を高める上で望ましい。最終冷
間圧延における圧下率を80%以上とすることによっ
て、脱炭焼鈍板において尖鋭な{110}〈001〉方
位粒と、これに蚕食され易い対応方位粒({111}
〈112〉方位粒等)を適正量得ることができる。これ
によりB8 ≧1.83Tとすることができる。
The reduction ratio in the final cold rolling is, though not particularly limited, desirable for it to be 80% or more increase the product magnetic flux density (8 value B). By setting the rolling reduction in the final cold rolling to 80% or more, sharp {110} <001> -oriented grains in the decarburized annealed sheet and corresponding oriented grains ({111}
<112> orientation grains) can be obtained in an appropriate amount. Thereby, it is possible to satisfy B 8 ≧ 1.83T.

【0031】最終冷間圧延後、冷延板は700〜100
0℃で脱炭焼鈍される。本発明の如く、製品板厚が0.
36〜1.00mmと厚手の場合には、必要とされるレベ
ルまで脱炭するのに要する脱炭焼鈍時間が長くなりがち
なので、この対策として、出鋼C量を低めとしたり、脱
炭焼鈍温度を高めにしたり、焼鈍雰囲気の露点を高める
ことは有利である。
After the final cold rolling, the cold rolled sheet is 700 to 100
Decarburized annealing at 0 ° C. As in the present invention, the product thickness is 0.
If the thickness is as large as 36 to 1.00 mm, the decarburization annealing time required to decarburize to the required level tends to be long. It is advantageous to increase the temperature or increase the dew point of the annealing atmosphere.

【0032】脱炭された鋼板に対して、インヒビター強
度が二次再結晶を生ぜしめるに不十分な場合は、NH3
ガスを用いて窒化処理等によるインヒビター強化策を施
すことは望ましい。
If the inhibitor strength is not sufficient to cause secondary recrystallization for the decarburized steel sheet, NH 3
It is desirable to use gas to perform an inhibitor strengthening measure such as nitriding treatment.

【0033】次いで、鋼板にMgOを主成分とする焼鈍
分離剤を塗布した後、コイルの内径で直径約500〜7
00mmのコイル状とし、次いで最終仕上焼鈍が施され
る。仕上焼鈍中のコイルの内径をこのような範囲にする
ことで、鋼板の直径5mm超の結晶粒において重心位置の
結晶方位に対し0.2〜4度の方位分散を存在せしめる
ことが可能となる。
Next, after applying an annealing separating agent containing MgO as a main component to the steel sheet, the inner diameter of the coil is about 500 to 7 mm.
It is made into a 00 mm coil, and then subjected to final finish annealing. By setting the inner diameter of the coil during the finish annealing in such a range, it is possible to cause the crystal grain having a diameter of more than 5 mm of the steel sheet to have an orientation dispersion of 0.2 to 4 degrees with respect to the crystal orientation at the center of gravity. .

【0034】次いで、鋼板に歪取り及び張力コーティン
グを施す処理が行われ最終製品となる。この製品にレー
ザー等を用いた磁区制御を施すことは、鉄損特性を向上
させる上で好ましい。
Next, the steel sheet is subjected to a process of removing strain and applying a tension coating, thereby obtaining a final product. Performing magnetic domain control using a laser or the like on this product is preferable from the viewpoint of improving iron loss characteristics.

【0035】最終製品板は、重量でSi:2.5〜4.
5%を含有する必要がある。2.5%未満では、鉄損特
性を良好にし難く、4.5%超では、通常の冷間圧延時
脆性の問題が生じる。
The final product plate is Si: 2.5-4.
It must contain 5%. If it is less than 2.5%, it is difficult to improve iron loss properties, and if it exceeds 4.5%, a problem of brittleness during normal cold rolling occurs.

【0036】製品板厚は、本発明の如き厚手材の場合
0.36〜1.00mmとなる。0.36mm未満では、製
品板の具備条件が、良好な鉄損特性を得る上で、必須で
ない場合も生じる。また、製品板厚が1.00mmを超え
ると、本発明の如きC量レベルまた脱炭するための焼鈍
時間が長くなり過ぎて、コストアップの原因となり好ま
しくない。
The thickness of the product is 0.36 to 1.00 mm in the case of a thick material as in the present invention. If it is less than 0.36 mm, the conditions for providing the product plate may not be essential for obtaining good iron loss characteristics. On the other hand, if the thickness of the product exceeds 1.00 mm, the C content level as in the present invention and the annealing time for decarburization become too long, which causes an increase in cost, which is not preferable.

【0037】製品板のC量及び磁束密度は各々0.00
50%以下、B8 ≧1.83Tでなければならない。こ
れは、図1に示した如く、この範囲にすることが良好な
鉄損特性を得る上で必要だからである。好ましくは、
0.0030%以下である。
The C content and the magnetic flux density of the product plate are each 0.00
It must be less than 50% and B 8 ≧ 1.83T. This is because, as shown in FIG. 1, it is necessary to set the above range in order to obtain good iron loss characteristics. Preferably,
0.0030% or less.

【0038】一方、製品板の直径(円相当径)5mm超の
結晶粒の粒界形状の特徴を表す形状因子SFの鋼板とし
ての平均値SF(平均値)は、SF(平均値)<0.8
0でなければならない。
On the other hand, the average value SF (average value) of the shape factor SF, which represents the characteristics of the grain boundary shape of crystal grains having a diameter (equivalent diameter of a circle) of more than 5 mm as a steel plate, is SF (average value) <0 .8
Must be 0.

【0039】また、直径5mm超の結晶粒における方位分
散度(Δθ)は、Δθ=0.2〜4度としなければなら
ない。これらは図2に示した如く、この範囲にすること
が良好な鉄損特性を得る上で必要だからである。
The degree of orientation dispersion (Δθ) in crystal grains having a diameter of more than 5 mm must be Δθ = 0.2 to 4 degrees. This is because, as shown in FIG. 2, it is necessary to keep the content within this range in order to obtain good iron loss characteristics.

【0040】このSF値は、二次再結晶発現時にゴス組
織とそれ以外の方位の結晶粒成長を競合させること、す
なわちゴス組織の成長をある程度抑制することで増加す
る。SF値を制御する方法については、特に限定するも
のでなく、二次再結晶発現前の一次再結晶粒径を制御
例えば脱炭焼鈍における均熱温度を高くして一次再結晶
粒径を大きくし、ゴス組織成長を抑制する方法、Sn等
粒界偏析元素を利用し、ゴス組織成長を抑制する方法、
二次再結晶時のインヒビター強度を調整し、ゴス組織成
長を抑制する方法等いずれの方法でもよい。
This SF value is determined by the Goss set at the onset of secondary recrystallization.
Competing grain growth in the other orientation
That is, it is increased by suppressing the growth of Goss tissue to some extent.
You. The method of controlling the SF value is not particularly limited, and controls the primary recrystallized particle size before secondary recrystallization is developed ,
For example, primary recrystallization by increasing the soaking temperature in decarburizing annealing
How to increase the particle size, a method of suppressing the Goss tissue growth, which utilizes Sn, grain boundary segregation elements, to inhibit the Goss tissue growth,
Adjust the inhibitor strength at the time of secondary recrystallization, Goss organization formed
How to suppress the length or the like may be any method.

【0041】一方、Δθ値を制御する方法についても、
特に限定するものではなく、製品の結晶粒径にあったコ
イル径として、最終仕上焼鈍を施す方法、凝固からスラ
ブ加熱までの熱履歴を利用してスラブの結晶粒サイズを
制御する方法等いずれの方法でもよい。このΔθの効果
は、製品板の1個の粒に所定の方位分散があっても鉄損
向上効果がある。
On the other hand, the method for controlling the Δθ value
There is no particular limitation, as a coil diameter corresponding to the crystal grain size of the product, a method of performing a final finish annealing, a method of controlling a crystal grain size of a slab using a heat history from solidification to slab heating, etc. It may be a method. This effect of Δθ has an effect of improving iron loss even if one grain of the product plate has a predetermined orientation dispersion.

【0042】上記製品の具備条件を満足すれば、W
17/50 ≦3.3×t+0.35(但し、W17/50 (w/k
g)、t:製品の板厚(mm))なる良好な鉄損特性を有する
厚い板厚の方向性電磁鋼板が得られる。
If the conditions for the above products are satisfied, W
17/50 ≦ 3.3 × t + 0.35 (W 17/50 (w / k
g), t: The thickness of the grain-oriented electrical steel sheet having good iron loss characteristics of the product thickness (mm).

【0043】[0043]

【実施例】【Example】

実施例1 重量でC:0.053%、Si:3.26%、Mn:
0.15%、S:0.006%、酸可溶性Al:0.0
29%、N:0.0076%を含有するスラブを、11
50℃の温度に加熱した後、熱延して、2.8mmの熱延
板とした。
Example 1 C: 0.053%, Si: 3.26%, Mn:
0.15%, S: 0.006%, acid-soluble Al: 0.0
A slab containing 29% and N: 0.0076%
After heating to a temperature of 50 ° C., it was hot rolled into a 2.8 mm hot rolled sheet.

【0044】この熱延板を1120℃に保持し引き続き
900℃に保持する熱延板焼鈍を施した後、圧下率約8
6%で最終板厚まで冷延して0.38mmの冷延板とし、
800℃で150秒保持、830℃で150秒保
持、860℃で200秒保持なる3水準の脱炭焼鈍
(25%N2 +75%H2 、露点65℃)を施し、次い
で、750℃に30秒保持する焼鈍時に焼鈍雰囲気中に
NH3 ガスを混入せしめ鋼板に窒化を生ぜしめた。
After subjecting the hot-rolled sheet to 1120 ° C. and subsequently to hot-rolled sheet annealing at 900 ° C., a rolling reduction of about 8
Cold rolled to a final thickness of 6% at 0.38mm,
Three levels of decarburizing annealing (25% N 2 + 75% H 2 , dew point 65 ° C.) were performed at 800 ° C. for 150 seconds, at 830 ° C. for 150 seconds, and at 860 ° C. for 200 seconds, and then at 750 ° C. for 30 seconds. NH 3 gas was mixed into the annealing atmosphere during annealing for 2 seconds to cause nitriding of the steel sheet.

【0045】この窒化後のN量は、0.0195〜0.
0211重量%であった。しかる後、この鋼板にMgO
を主成分とする焼鈍分離剤を塗布し、コイル内径の直径
が600mmの5tコイルとし、15℃/hrで1200℃
まで昇温し、1200℃で20時間保持する最終仕上焼
鈍を施した。
The N content after this nitriding is 0.0195-0.
It was 0211% by weight. After that, this steel sheet
Is applied to form a 5t coil with a coil inner diameter of 600 mm, and 1200 ° C. at 15 ° C./hr.
, And subjected to final finish annealing in which the temperature was maintained at 1200 ° C for 20 hours.

【0046】この時、昇温中の雰囲気ガスを25%N2
+75%H2 とし、1200℃で保持中の雰囲気ガスを
100%H2 とした。次いで、形状矯正及び張力コーテ
ィングのための焼鈍を施し、SSTサイズに切断し、
板状とし、850℃に4時間保持する歪取り焼鈍を施
し、磁気測定を行った。最終製品の板厚は0.40mmで
あった。工程条件と製品板の特徴量を表1に示す。
At this time, the atmosphere gas during the temperature rise was changed to 25% N 2.
+ 75% H 2, and the atmosphere gas kept at 1200 ° C. was 100% H 2 . Next, shape correction and tension coating
Annealing for cutting, cutting to SST size , making into plate shape, and performing strain relief annealing at 850 ° C for 4 hours
Then, a magnetic measurement was performed. The thickness of the final product was 0.40 mm. Table 1 shows the process conditions and the characteristic values of the product plate.

【0047】[0047]

【表1】 [Table 1]

【0048】実施例2 重量でC:0.045%、Si:3.01%、Mn:
0.14%、S:0.008%、酸可溶性Al:0.0
35%、N:0.0061%に、Sn:0.05%、
Sn<0.01%なる2水準のSnレベルとし、残部
Fe及び不可避的不純物からなるスラブを、1150℃
の温度に加熱し、2.3mm厚の熱延板とした。
Example 2 C: 0.045% by weight, Si: 3.01%, Mn:
0.14%, S: 0.008%, acid-soluble Al: 0.0
35%, N: 0.0061%, Sn: 0.05%,
A slab consisting of two levels of Sn, that is, Sn <0.01%, and the balance of Fe and unavoidable impurities was set at 1150 ° C.
To a hot rolled sheet having a thickness of 2.3 mm.

【0049】この熱延板に焼鈍を施すことなく、圧下率
約79%で最終板厚まで冷延して0.48mmの冷延板と
した。かかる冷延板に830℃×300秒(25%N2
+75%H2 、露点62℃)なる脱炭焼鈍を施し、その
後の工程は、実施例1記載の条件で処理した。最終製品
の板厚は、0.50mmであった。工程条件と製品板の特
徴量を表2に示す。
Without subjecting this hot-rolled sheet to annealing, it was cold-rolled to a final sheet thickness at a rolling reduction of about 79% to obtain a cold-rolled sheet of 0.48 mm. 830 ° C. × 300 seconds (25% N 2
(+ 75% H 2 , dew point: 62 ° C.), followed by decarburization annealing, and the subsequent steps were performed under the conditions described in Example 1. The thickness of the final product was 0.50 mm. Table 2 shows the process conditions and the characteristic values of the product plate.

【0050】[0050]

【表2】 [Table 2]

【0051】実施例3 重量でCを0.078%、0.053%、0.0
39%の3水準とし、Si:3.21%、Mn:0.1
2%、S:0.009%、酸可溶性Al:0.034
%、N:0.0060%、残部Fe及び不可避的不純物
からなるスラブを、1200℃の温度に加熱し、3.0
mm厚の熱延板とした。
Example 3 C in an amount of 0.078%, 0.053%, 0.0
Three levels of 39%, Si: 3.21%, Mn: 0.1
2%, S: 0.009%, acid-soluble Al: 0.034
%, N: 0.0060%, the balance consisting of Fe and unavoidable impurities was heated to a temperature of 1200 ° C.
A hot-rolled sheet having a thickness of mm was used.

【0052】この熱延板に焼鈍を施すことなく、圧下率
約81%で最終板厚まで冷延して0.58mmの冷延板と
した。かかる冷延板に830℃×450秒(25%N2
+75%H2 、露点62℃)なる脱炭焼鈍を施し、その
後の工程は、実施例1記載の条件で処理した。最終製品
の板厚は0.60mmであった。工程条件と製品板の特徴
量を表3に示す。
Without subjecting this hot-rolled sheet to annealing, it was cold-rolled to a final sheet thickness at a rolling reduction of about 81% to obtain a cold-rolled sheet of 0.58 mm. 830 ° C. × 450 seconds (25% N 2
(+ 75% H 2 , dew point: 62 ° C.), followed by decarburization annealing, and the subsequent steps were performed under the conditions described in Example 1. The thickness of the final product was 0.60 mm. Table 3 shows the process conditions and the characteristic values of the product plate.

【0053】[0053]

【表3】 [Table 3]

【0054】[0054]

【発明の効果】本発明に従って、製品板のC量制御、磁
束密度制御、結晶粒形状制御及び結晶粒内方位分散制御
を組み合わせた効果を用いることにより、磁気特性の優
れた厚い板厚の方向性電磁鋼板を得ることができるの
で、その工業的意義は極めて大である。
According to the present invention, by using an effect obtained by combining the C amount control, the magnetic flux density control, the crystal grain shape control and the crystal grain orientation control of the product sheet, the direction of the thick sheet having excellent magnetic properties is obtained. Since industrial electrical steel sheets can be obtained, their industrial significance is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】製品のC量及び磁束密度と鉄損特性の関係を示
す図表である。
FIG. 1 is a table showing the relationship between the C content and magnetic flux density of a product and iron loss characteristics.

【図2】製品板の結晶粒の粒界形状因子及び結晶粒内方
位分散と鉄損特性の関係を示す図表である。
FIG. 2 is a table showing the relationship between the grain boundary form factor of crystal grains of a product sheet, the orientation dispersion in crystal grains, and iron loss characteristics.

【図3】製品板厚と鉄損特性の関係(本発明材及び比較
材)を示す図表である。
FIG. 3 is a table showing the relationship between product thickness and iron loss characteristics (materials of the present invention and comparative materials).

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量で、Si:2.5〜4.5%を含有
する板厚0.36〜1.00mmの厚手方向性電磁鋼板に
おいて、鋼板のCが重量で0.0050%以下であっ
て、磁束密度B8 ≧1.83Tであり、鋼板の直径(円
相当直径)5mm超の各結晶粒に関する粒界形状の特徴を
表わす指標として、式 SF=(結晶粒の面積×4π)/(結晶粒界長)2 を定義する時、各SF値の鋼板としてのSF(平均値)
が、SF(平均値)<0.80であって、鋼板の直径5
mm超の結晶粒における重心位置の結晶方位に対して、
0.2〜4度の方位分散が、存在し、製品の板厚をt(m
m)とした時に、鉄損W17/50 (w/kg)がW17/50 ≦3.3
×t+0.35を満すことを特徴とする磁気特性の優れ
た厚い板厚の方向性電磁鋼板。
1. A thick grain-oriented electrical steel sheet having a thickness of 0.36 to 1.00 mm containing Si: 2.5 to 4.5% by weight, wherein the C of the steel sheet is 0.0050% or less by weight. The magnetic flux density B 8 ≧ 1.83 T, and as an index representing the characteristics of the grain boundary shape for each crystal grain having a diameter (equivalent circle diameter) of more than 5 mm of the steel sheet, the expression SF = (area of crystal grain × 4π) / (Grain boundary length) 2 When defining 2 , SF (average value) as a steel sheet of each SF value
Is SF (average value) <0.80, and the steel plate diameter 5
For the crystal orientation at the center of gravity of the crystal grains larger than mm,
An azimuthal dispersion of 0.2 to 4 degrees exists, and the thickness of the product is t (m
m), the iron loss W 17/50 (w / kg) is W 17/50 ≦ 3.3.
× t + 0.35. A thick, grain-oriented electrical steel sheet having excellent magnetic properties, characterized by satisfying xt + 0.35.
JP4237150A 1992-09-04 1992-09-04 Thick grain-oriented electrical steel sheet with excellent magnetic properties Expired - Lifetime JP2659655B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4237150A JP2659655B2 (en) 1992-09-04 1992-09-04 Thick grain-oriented electrical steel sheet with excellent magnetic properties
EP93114263A EP0585956B1 (en) 1992-09-04 1993-09-06 Thick grain-oriented electrical steel sheet exhibiting excellent magnetic properties
DE1993616114 DE69316114T2 (en) 1992-09-04 1993-09-06 Thick grain-oriented electrical steel sheets with excellent magnetic properties
US09/783,408 US6858095B2 (en) 1992-09-04 2001-02-14 Thick grain-oriented electrical steel sheet exhibiting excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4237150A JP2659655B2 (en) 1992-09-04 1992-09-04 Thick grain-oriented electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH0688170A JPH0688170A (en) 1994-03-29
JP2659655B2 true JP2659655B2 (en) 1997-09-30

Family

ID=17011148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4237150A Expired - Lifetime JP2659655B2 (en) 1992-09-04 1992-09-04 Thick grain-oriented electrical steel sheet with excellent magnetic properties

Country Status (3)

Country Link
EP (1) EP0585956B1 (en)
JP (1) JP2659655B2 (en)
DE (1) DE69316114T2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4484711B2 (en) * 2002-11-11 2010-06-16 ポスコ Method for producing high silicon grained electrical steel sheet
US7736444B1 (en) 2006-04-19 2010-06-15 Silicon Steel Technology, Inc. Method and system for manufacturing electrical silicon steel
JP2016086611A (en) 2014-10-29 2016-05-19 三菱電機株式会社 Stator core cooling structure for rotary electric machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117215A (en) * 1984-10-31 1986-06-04 Nippon Steel Corp Manufacture of grain oriented magnetic steel sheet of low iron loss
JPS6240315A (en) * 1985-08-15 1987-02-21 Nippon Steel Corp Manufacture of grain-oriented silicon steel sheet having high magnetic flux density
DE69030771T2 (en) * 1989-01-07 1997-09-11 Nippon Steel Corp Process for producing a grain-oriented electrical steel strip
EP0390142B2 (en) * 1989-03-30 1999-04-28 Nippon Steel Corporation Process for producing grain-oriented electrical steel sheet having high magnetic flux density
JPH0372027A (en) * 1989-08-11 1991-03-27 Nippon Steel Corp Production of grain-oriented silicon steel sheet having high magnetic flux density and excellent in iron loss
JP2620438B2 (en) * 1991-10-28 1997-06-11 新日本製鐵株式会社 Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density

Also Published As

Publication number Publication date
DE69316114D1 (en) 1998-02-12
EP0585956A1 (en) 1994-03-09
EP0585956B1 (en) 1998-01-07
DE69316114T2 (en) 1998-04-23
JPH0688170A (en) 1994-03-29

Similar Documents

Publication Publication Date Title
JPS6250529B2 (en)
JPH0688171A (en) Production of ultrahigh magnetic flux density grain oriented silicon steel sheet
JPH02182866A (en) Sheet for grain-oriented silicon steel sheet
JPH0567683B2 (en)
JPH0730397B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3323052B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2659655B2 (en) Thick grain-oriented electrical steel sheet with excellent magnetic properties
JPH08269571A (en) Production of grain-oriented silicon steel strip
US5261971A (en) Process for preparation of grain-oriented electrical steel sheet having superior magnetic properties
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
US6858095B2 (en) Thick grain-oriented electrical steel sheet exhibiting excellent magnetic properties
JPH0673509A (en) Grain oriented silicon steel sheet excellent in magnetic property and its production
JPH06306473A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JPH10110218A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH06212274A (en) Production of grain-oriented silicon steel sheet having extremely low iron loss
JPH0788531B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH06306474A (en) Production of grain-oriented magnetic steel sheet excellent in magnetic property
JPH09118920A (en) Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property
JPS6296615A (en) Manufacture of grain oriented electrical sheet superior in magnetic characteristic and less in ear cracking at hot rolling
JP3324044B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH0753884B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH10121212A (en) Grain-oriented silicon steel sheet and its production
JPH0791586B2 (en) Method for manufacturing thick unidirectional electrical steel sheet with excellent magnetic properties
JPH08176666A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH0742506B2 (en) Method for manufacturing thick unidirectional electrical steel sheet with excellent magnetic properties

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 16