JPH08269571A - Production of grain-oriented silicon steel strip - Google Patents

Production of grain-oriented silicon steel strip

Info

Publication number
JPH08269571A
JPH08269571A JP7070179A JP7017995A JPH08269571A JP H08269571 A JPH08269571 A JP H08269571A JP 7070179 A JP7070179 A JP 7070179A JP 7017995 A JP7017995 A JP 7017995A JP H08269571 A JPH08269571 A JP H08269571A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
tension
grain size
secondary recrystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7070179A
Other languages
Japanese (ja)
Other versions
JP3531996B2 (en
Inventor
Nobunori Fujii
宣憲 藤井
Kunihide Takashima
邦秀 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP07017995A priority Critical patent/JP3531996B2/en
Publication of JPH08269571A publication Critical patent/JPH08269571A/en
Application granted granted Critical
Publication of JP3531996B2 publication Critical patent/JP3531996B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE: To provide metallurgical conditions and continuous tension annealing conditions for a steel sheet by which the shape of the steel sheet and iron loss characteristics are compatible in a method for producing a grain-oriented silicon steel strip used for the iron core of transformer or the like. CONSTITUTION: At the time of producing a grain-oriented silicon steel strip using AIN as a principal inhibitor, the average grain size of secondarily recrystallized ones after secondary recrystallization finish annealing is regulated to 4 to 50mm, and continuous annealing is executed at a tension of 0.4 to 2.0kg/mm<2> higher than the conventional one. Furthermore, by incorporating 0.0005 to 0.05% Bi into the stock, the steel sheet having the same average grain size is stably obtd. Thus, at the time of subjecting the grain-oriented silicon steel sheet to continuous tension annealing, shape molification can effectively be executed to the steel sheet without deteriorating its iron loss characteristics. Namely, by jointly using magnetic domain regulation or the like, the product extremely good in steel sheet shape and iron loss characteristics can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主としてトランス鉄心
に用いられる一方向性電磁鋼帯の製造方法に関し、鋼板
の形状と鉄損特性の有利な改善を図ろうとするものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a unidirectional electromagnetic steel strip mainly used for transformer cores, and is intended to advantageously improve the shape of a steel sheet and the iron loss characteristics.

【0002】[0002]

【従来の技術】一方向性電磁鋼板は、軟磁性材料として
主にトランスその他の電気機器の鉄心材料に使用されて
いるもので、磁気特性としては励磁特性と鉄損特性が良
好でなくてはならない。この励磁特性を表す指標とし
て、通常は磁束密度B8 (磁場の強さ800 A/mにおけ
る磁束密度)が用いられ、鉄損特性を表す指標として、
17/50 (50Hzで1.7Tまで磁化させたときの単位
重量あたりの鉄損)が用いられる。
2. Description of the Related Art Unidirectional electrical steel sheets are mainly used as a soft magnetic material for iron core materials of transformers and other electric equipment, and their magnetic characteristics must be good in excitation characteristics and iron loss characteristics. I won't. A magnetic flux density B 8 (magnetic flux density at a magnetic field strength of 800 A / m) is usually used as an index showing the excitation characteristic, and as an index showing the iron loss characteristic,
W 17/50 (iron loss per unit weight when magnetized to 1.7 T at 50 Hz) is used.

【0003】一方向性電磁鋼板は、製造工程の最終段階
の900℃以上の温度での仕上焼鈍工程で2次再結晶を
起こさせ、鋼板面に{110}面、圧延方向に<001
>軸をもったいわゆるゴス組織を発達させることによっ
て得られている。そのなかでも、磁束密度B8 が1.8
8T以上の優れた励磁特性をもつものは高磁束密度一方
向性電磁鋼板とよばれている。高磁束密度一方向性電磁
鋼板の代表的製造方法としては、特公昭40−1564
4号公報、特公昭51−13469号公報等があげられ
る。
The unidirectional electrical steel sheet undergoes secondary recrystallization in the final annealing step at a temperature of 900 ° C. or higher at the final stage of the manufacturing process, and the {110} plane is in the steel sheet surface and <001 is in the rolling direction.
> Obtained by developing a so-called Goth tissue with an axis. Among them, the magnetic flux density B 8 is 1.8.
A material having an excellent excitation characteristic of 8T or more is called a high magnetic flux density grain-oriented electrical steel sheet. As a typical method for producing a high magnetic flux density grain-oriented electrical steel sheet, Japanese Patent Publication No. 40-1564 is available.
4 and Japanese Patent Publication No. 51-13469.

【0004】現在世界的規模で生産されている高磁束密
度一方向性電磁鋼板は、上記2特許を基本として生産さ
れていると言える。しかし上記特許に基づく製品の磁束
密度B8 は1.88Tから高々1.95T程度であり、
3%Si鋼の飽和磁束密度2.03Tの95%程度の値
を示しているに過ぎない。そして、近年省エネルギー、
省資源への社会的要求は益々厳しくなり、一方向性電磁
鋼板の鉄損低減、磁化特性改善への要求も熾烈になって
きている。
It can be said that the high magnetic flux density unidirectional electrical steel sheets currently produced on a global scale are produced based on the above two patents. However, the magnetic flux density B 8 of the product based on the above patent is from 1.88T to 1.95T at most,
The value is only about 95% of the saturation magnetic flux density 2.03T of 3% Si steel. And in recent years energy saving,
The social demands for resource saving are becoming more and more stringent, and the demands for reducing the iron loss and improving the magnetization characteristics of the grain-oriented electrical steel sheets are becoming fierce.

【0005】一方、一般的には、磁束密度B8 が高くな
るとともに製品の結晶粒が大きくなる傾向があり、B8
をある程度大きくしても180°磁区巾が大きくなるた
めに渦電流損が増大し、冶金学的にはこれ以上の鉄損改
善の期待が望まれない。この観点から技術的な鉄損低減
化の手法としてレーザー照射等の磁区制御技術が特公昭
58−5968号公報、特公昭57−2252号公報等
により確立され、これに伴い更なる高磁束密度を有する
素材が鉄損低減への条件として期待されてきている。
On the other hand, in general, tend to product grains increases with the magnetic flux density B 8 is increased, B 8
Even if the value is increased to a certain extent, the 180 ° magnetic domain width is increased, so that the eddy current loss is increased, and metallurgy is not expected to further improve the iron loss. From this point of view, as a technical iron loss reduction method, magnetic domain control technology such as laser irradiation was established by Japanese Patent Publication No. 58-5968 and Japanese Patent Publication No. 57-2252, and accordingly, a higher magnetic flux density was obtained. The materials that it has are expected as a condition for reducing iron loss.

【0006】これに対して、本出願人は特公昭57−5
0295号公報等で温度勾配焼鈍法を、また特公昭62
−007252号公報等でその焼鈍装置を提案した。こ
の方法で、初めて安定して磁束密度B8 が1.95T以
上の製品が得られるようになったが、この方法で工場サ
イズのコイルフォームで実施する場合、コイル一端から
加熱し、反対端部は温度勾配をつけるため冷却するとい
う、非常に大きな熱エネルギー的損失を伴うため、工業
生産としては大きな問題をはらんでいた。
On the other hand, the applicant of the present invention has filed Japanese Patent Publication No. 57-5.
The temperature gradient annealing method is disclosed in Japanese Patent Publication No. 0295, etc.
The annealing device is proposed in Japanese Patent Publication No.-007252. With this method, it became possible to obtain a product with a magnetic flux density B 8 of 1.95 T or more for the first time in a stable manner. However, when carrying out this method with a factory-sized coil foam, heating from one end of the coil to the other end Since it has a very large thermal energy loss of cooling to provide a temperature gradient, it was a serious problem for industrial production.

【0007】そこで本発明者らは、一方向性電磁鋼板の
溶鋼中にBiを含有させることにより、工業的手段によ
り磁束密度を従来の高磁束密度一方向性電磁鋼板レベル
から超高磁束密度一方向性電磁鋼板レベルまで高める方
法を特開平6−8814号公報、特開平6−88173
号公報等で提案した。この方法により初めて磁束密度B
8 が1.96Tを超える超高磁束密度一方向性電磁鋼板
が工場規模で比較的安定に生産できるようになった。
[0007] Therefore, the present inventors have incorporated Bi into the molten steel of the unidirectional electrical steel sheet so as to increase the magnetic flux density from the conventional high magnetic flux density unidirectional electrical steel sheet level to the ultrahigh magnetic flux density by industrial means. Methods for increasing the level of grain-oriented electrical steel sheet are disclosed in JP-A-6-8814 and JP-A-6-88173.
It was proposed in the bulletin, etc. With this method, the magnetic flux density B
Ultra-high magnetic flux density grain-oriented electrical steel sheets with an 8 of over 1.96T can now be produced relatively stably on a factory scale.

【0008】ところで、一方向性電磁鋼板の2次再結晶
仕上焼鈍及び純化焼鈍を行う際、一般的にはコイルを縦
穴方向に積み、バッチタイプの焼鈍炉で1150℃以上
で20時間以上の高温長時間焼鈍が施される。そのた
め、2次再結晶仕上焼鈍後の鋼帯は、コイルセット、コ
イル自重を主起因とするコイル下端部の側歪とよばれる
歪、冷却分布が不均一なため起こる中伸び等の冷却歪み
等が多く含まれている。そして、製品にこれらの内部歪
みが残留していると鉄損特性や磁歪特性を著しく劣化さ
せる。
By the way, when performing secondary recrystallization finish annealing and purification annealing of a grain-oriented electrical steel sheet, coils are generally stacked in a vertical hole direction and a high temperature of 1150 ° C. or more for 20 hours or more in a batch type annealing furnace. Annealed for a long time. Therefore, the steel strip after the secondary recrystallization finish annealing has a coil set, a strain called a lateral strain at the lower end of the coil mainly due to its own weight, a cooling strain such as an intermediate elongation caused by an uneven cooling distribution, etc. Many are included. If these internal strains remain in the product, iron loss characteristics and magnetostrictive characteristics are significantly deteriorated.

【0009】また、鋼板の形状不良については製品歩留
りを低下させるばかりでなく、軽度の形状不良について
もトランスを製造した際に占積率を悪化させる。従って
前記2次再結晶仕上焼鈍後のコイルにおいて、内部歪み
の減少を目的とした歪取焼鈍および形状矯正を目的とし
た平坦化焼鈍が必要である。
Further, not only the defective product of the shape of the steel plate lowers the product yield, but also the defective product of the slight shape deteriorates the space factor when the transformer is manufactured. Therefore, in the coil after the secondary recrystallization finish annealing, it is necessary to perform strain relief annealing for the purpose of reducing internal strain and flattening annealing for the purpose of shape correction.

【0010】一般には歪取りと平坦化さらには絶縁皮膜
の焼き付けを兼ねた連続張力焼鈍を行っているが、鋼板
の形状矯正のためにはあるレベル以上の張力が必要であ
り、一方鋼板の内部歪みを解放するためには焼鈍時に張
力を極力付与することなく行う必要があり、この両者の
矛盾の中で実操業は行われている。そのため、従来より
前記連続張力焼鈍については種々検討され、例えば特開
昭59−96227号公報では、張力を0.3〜0.7
kg/mm2 に低めて鉄損の低減を図る方法、特開昭61−
159529号公報では鋼板温度が700〜850℃ま
での張力を0.35〜1.0kg/mm2 として形状矯正
し、それ以降の張力を0.35kg/mm2 まで低めて歪取
りを行うことにより形状矯正と歪取りを分割する方法が
記載されている。
In general, continuous tension annealing is carried out for removing strain, flattening, and baking an insulating film, but a certain level of tension or more is required to correct the shape of the steel sheet, while the inside of the steel sheet is In order to release the strain, it is necessary to perform the annealing without giving tension as much as possible, and the actual operation is carried out in the contradiction between the both. Therefore, various studies have been conventionally conducted on the continuous tension annealing. For example, in JP-A-59-96227, the tension is 0.3 to 0.7.
Method for reducing iron loss by lowering to kg / mm 2 , JP-A-61-
According to Japanese Patent No. 159529, the shape is corrected by setting the tension at a steel plate temperature of 700 to 850 ° C. to 0.35 to 1.0 kg / mm 2 , and the tension after that is reduced to 0.35 kg / mm 2 to perform strain relief. A method for dividing the shape correction and the distortion removal is described.

【0011】つまり一般的には鋼帯の張力をできるだけ
下げて焼鈍することが常識であった。しかし、前者の方
法では仕上焼鈍後の形状が著しく悪い場合は形状矯正が
不足するという問題があり、後者の方法では高温で張力
を分割するための装置開発が困難であるため、実操業で
は必ずしも満足できる方法ではなかった。また、低張力
で連続焼鈍ラインを通板する場合、鋼帯の蛇行等が発生
しやすく操業上の問題も内在していた。
That is, it was generally accepted that the tension of the steel strip should be reduced as much as possible for annealing. However, in the former method, there is a problem that shape correction is insufficient when the shape after finish annealing is extremely bad, and in the latter method, it is difficult to develop a device for dividing the tension at high temperature, so in actual operation it is not always necessary. It was not a satisfactory method. Further, when the continuous annealing line is passed through with a low tension, the steel strip is apt to meander and the operation problem is inherent.

【0012】そこで、上記連続張力焼鈍において鋼板の
形状と鉄損特性が優れた一方向性電磁鋼帯を安定に製造
する方法の確立が求められていた。
Therefore, there has been a demand for establishment of a method for stably producing a unidirectional electrical steel strip having excellent shape and iron loss characteristics of the steel sheet in the above continuous tension annealing.

【0013】[0013]

【発明が解決しようとする課題】本発明は、かかる問題
点を回避し、鋼帯の形状と鉄損特性の改善を図ることを
目的としており、その技術思想は、上記連続張力焼鈍に
おいて冶金学的に有利な鋼板を提供するものである。
An object of the present invention is to avoid such problems and to improve the shape and iron loss characteristics of the steel strip, and its technical idea is metallurgy in continuous tension annealing. The present invention provides a steel sheet that is economically advantageous.

【0014】[0014]

【課題を解決するための手段】本発明の特徴とする処
は、以下のとおりである。 1)重量(以下単に%と記す)で、Si:2.5〜4.
0%、酸可溶性Al:0.010〜0.065%、残部
Fe及び不可避的不純物からなる電磁鋼板用スラブを熱
間圧延し、1回あるいは中間焼鈍を介入する2回以上の
冷間圧延を施して最終板厚とし、次いで脱炭焼鈍及び2
次再結晶仕上焼鈍、次いで絶縁皮膜を塗布し連続張力焼
鈍を施すことにより、一方向性電磁鋼帯を製造する方法
において、上記2次再結晶仕上焼鈍を施した鋼板の2次
再結晶平均粒径が4〜50mmである鋼板に、0.4〜
2.0kg/mm2 の範囲の張力を付与しつつ連続焼鈍を施
すことを特徴とする一方向性電磁鋼帯の製造方法。 2)Bi:0.0005〜0.05%を含有せしめるこ
とを特徴とする1)記載の一方向性電磁鋼板の製造方
法。
The features of the present invention are as follows. 1) Weight (hereinafter simply referred to as%), Si: 2.5 to 4.
0%, acid-soluble Al: 0.010 to 0.065%, balance Fe and unavoidable impurities for electromagnetic steel sheet slabs are hot-rolled, and cold rolling is performed once or twice or more with intermediate annealing. To final thickness, followed by decarburization annealing and 2
A method for producing a unidirectional electrical steel strip by applying secondary recrystallization finish annealing, then applying an insulating film and performing continuous tension annealing, wherein the secondary recrystallization average grain of the steel sheet subjected to the secondary recrystallization finish annealing is For steel plates with a diameter of 4 to 50 mm, 0.4 to
A method for producing a unidirectional electrical steel strip, which comprises continuously annealing while applying a tension in the range of 2.0 kg / mm 2 . 2) Bi: 0.0005-0.05% is contained, The manufacturing method of the grain-oriented electrical steel sheet of 1) characterized by the above-mentioned.

【0015】[0015]

【作用】以下、本発明を詳細に説明する。本発明者ら
は、上記連続張力焼鈍における歪取りと平坦化効果の矛
盾点を解決すべく、一方向性電磁鋼板における冶金学的
な有利な条件を探索していた。一般に連続張力焼鈍で
は、コイルの圧延方向に張力を付与しながら連続的に焼
鈍を行っている。一方、鋼板面に{110}面、圧延方
向に<001>軸をもったいわゆるゴス組織を高度に集
積させた一方向性電磁鋼板は、圧延方向が難加工方位で
あるためこの方位へは非常に伸び難い。そのため、上記
張力焼鈍下では結晶粒内の変形はほとんど期待されず、
主として結晶粒界での熱拡散型の変形−いわゆるクリー
プ変形が支配的である。
The present invention will be described in detail below. The present inventors have searched for advantageous metallurgical conditions in the grain-oriented electrical steel sheet in order to solve the contradiction between the strain relief and the flattening effect in the continuous tension annealing. Generally, in continuous tension annealing, annealing is continuously performed while applying tension in the rolling direction of the coil. On the other hand, a unidirectional electrical steel sheet in which a so-called Goss structure having a {110} plane on the steel sheet surface and a <001> axis in the rolling direction is highly integrated is difficult to machine because the rolling direction is difficult to machine. It is difficult to grow. Therefore, under the above-mentioned tension annealing, deformation within the crystal grains is hardly expected,
The thermal diffusion type deformation mainly at the grain boundaries-so-called creep deformation is dominant.

【0016】また、このような結晶粒界で発生した内部
歪みは通常の800〜900℃で数分の焼鈍では回復し
難く、鉄損特性を悪化させる主原因となる。そこで、こ
の連続張力焼鈍を効果的に行うためには、鋼板中に存在
する結晶粒界を減らし、クリープが発生する張力限界を
高めることが有効であろうと推定していた。
The internal strain generated at such crystal grain boundaries is difficult to recover by annealing at 800 to 900 ° C. for a few minutes, which is a main cause of deterioration of iron loss characteristics. Therefore, in order to effectively carry out this continuous tension annealing, it was estimated that it would be effective to reduce the grain boundaries existing in the steel sheet and increase the tension limit at which creep occurs.

【0017】本発明者らは、上記のような状況を定量的
に把握するため、Siを3.0〜3.5%を含有する一
方向性電磁鋼板につき、そのインヒビターと製造条件を
種々に変化させて、板厚0.23〜0.35mmの製品の
2次再結晶粒径を意図的に変えた。そして、得られた鋼
板について歪取焼鈍を行った後、0.4〜2.5kg/mm
2 の張力範囲で860℃2分の張力焼鈍を行い、その前
後の鉄損劣化代を測定した。また、鋼板の2次再結晶平
均粒径を画像処理法で算出し、2次再結晶平均粒径と鉄
損悪化代の関係を調査した。その結果を図1に示す。
In order to quantitatively understand the above situation, the inventors of the present invention have various inhibitors and manufacturing conditions for the grain-oriented electrical steel sheet containing 3.0 to 3.5% of Si. The secondary recrystallized grain size of a product having a plate thickness of 0.23 to 0.35 mm was intentionally changed by changing the grain size. Then, after performing stress relief annealing on the obtained steel sheet, 0.4 to 2.5 kg / mm
Performs a tension annealing of 860 ℃ 2 minutes in 2 of the tension range, to measure the iron loss deterioration margin of the front and back. Further, the secondary recrystallization average grain size of the steel sheet was calculated by an image processing method, and the relationship between the secondary recrystallization average grain size and the iron loss deterioration margin was investigated. The result is shown in FIG.

【0018】ここで、2次再結晶の結晶粒径と平均粒径
の計算方法を述べると、通常の0.23〜0.35mmの
板厚においては、2次再結晶粒は板厚を貫通している。
従って、鋼板の片面についてのみ計算すれば十分であ
る。いま、ひとつの結晶粒の面積をSmmとすれば、この
結晶粒径Dmmは、D=2√(S/π)で計算できる。次
に、多結晶粒の平均粒径は総面積をAmm2 とし、そこに
含まれる結晶粒の個数をNとした時、平均粒径Dmmは、
平均粒径D=2√(A/πN)で計算される。
Here, the calculation method of the crystal grain size and the average grain size of the secondary recrystallization will be described. In the ordinary plate thickness of 0.23 to 0.35 mm, the secondary recrystallized grains penetrate the plate thickness. are doing.
Therefore, it is sufficient to calculate only one side of the steel sheet. Now, assuming that the area of one crystal grain is Smm, this crystal grain size Dmm can be calculated by D = 2√ (S / π). Next, when the total area of the polycrystal grains is Amm 2 and the number of crystal grains contained therein is N, the average grain size Dmm is
It is calculated by the average particle diameter D = 2√ (A / πN).

【0019】図1から明らかなように、2次再結晶平均
粒径と張力焼鈍による鉄損特性劣化の間に相関があるこ
とが判った。2次再結晶平均粒径が4mmより小さい鋼板
は、鋼板張力を高めるにともない鉄損特性が劣化してい
くが、平均粒径が4mm以上の鋼板は2.0kg/mm2 程度
まで鋼板張力を高めても鉄損が劣化しない。すなわち、
鋼板の2次再結晶平均粒径を4mm以上に制御することに
より、形状矯正のための鋼板張力を極めて高く設定する
ことを可能にならしめることを示している。
As is clear from FIG. 1, it was found that there is a correlation between the average grain size of secondary recrystallization and the deterioration of iron loss characteristics due to tension annealing. Steel sheets with a secondary recrystallization average grain size of less than 4 mm deteriorate in iron loss characteristics as the steel sheet tension increases, but steel sheets with an average grain size of 4 mm or more have a steel sheet tension up to about 2.0 kg / mm 2. Even if it is raised, iron loss does not deteriorate. That is,
It is shown that by controlling the secondary recrystallization average grain size of the steel sheet to 4 mm or more, it becomes possible to set the steel sheet tension for shape correction to be extremely high.

【0020】一般的に鋼板の磁束密度B8 を高く制御す
ると、2次再結晶粒径も大きくなるので、高磁束密度化
を狙った公知の技術の多くはそのまま2次再結晶粒径の
制御に適用できる。例えば、インヒビターにAlNとM
nSを用い強圧下冷延を特徴とする特公昭40−156
44号公報や1次再結晶領域と2次再結晶領域の境界に
温度勾配焼鈍を施す特公昭57−50295号公報等の
技術も、2次再結晶結晶粒径を大きくするために有効な
方法である。しかし前述のとおり、工業的に安定して平
均4mm以上の結晶粒径を確保する技術を持っていなかっ
たのが実情である。
Generally, if the magnetic flux density B 8 of the steel sheet is controlled to be high, the secondary recrystallized grain size also increases. Therefore, most of the known techniques aiming at higher magnetic flux density directly control the secondary recrystallized grain size. Applicable to For example, the inhibitors are AlN and M
Japanese Patent Publication No. 40-156 characterized by cold rolling under high pressure using nS
No. 44 and Japanese Patent Publication No. 57-50295 which perform temperature gradient annealing on the boundary between the primary recrystallization region and the secondary recrystallization region are also effective methods for increasing the secondary recrystallization grain size. Is. However, as described above, the reality is that we did not have the technology to ensure a crystal grain size of 4 mm or more on average in an industrially stable manner.

【0021】ところで、本発明者らは、特開平6−88
14号公報、特開平6−88173公報等に示している
とおり、AlNを主インヒビターとする一方向性電磁鋼
板用の素材に、Biを添加含有せしめることにより、現
在市販されている高磁束密度電磁鋼板のB8 =1.93
T程度をはるかに超える1.95T以上、2Tにおよぶ
超高磁束密度一方向性電磁鋼板を発明している。また、
この鋼板の2次再結晶粒は従来の高磁束密度一方向性電
磁鋼板に比較して著しく大きく、2次再結晶粒径が30
0mmにも及ぶ巨大粒を呈することもある。
By the way, the inventors of the present invention disclosed in Japanese Patent Laid-Open No. 6-88.
No. 14, JP-A-6-88173, etc., a high magnetic flux density electromagnetic current commercially available by adding Bi to a material for unidirectional electrical steel sheet containing AlN as a main inhibitor is added. steel plate of B 8 = 1.93
We have invented an ultra-high magnetic flux density unidirectional electrical steel sheet with a magnetic flux density of 1.95T or more, which is much higher than T, and 2T. Also,
The secondary recrystallized grains of this steel sheet are remarkably larger than the conventional high magnetic flux density unidirectional electrical steel sheet, and the secondary recrystallized grain size is 30
It may show a huge grain as large as 0 mm.

【0022】本発明者らは、各公知技術が2次再結晶粒
径に与える効果を定量的に把握するため、Siを3.0
〜3.5%を含有する一方向性電磁鋼板につき、そのイ
ンヒビターと製造条件を種々に変化させて、板厚0.2
3〜0.35mmの製品の結晶粒径を意図的に変えた。こ
れら鋼板の磁束密度B8 と画像処理法で算出した2次再
結晶平均粒径の関係を図2に示す。
The inventors of the present invention quantitatively understand the effect of each known technique on the secondary recrystallized grain size.
For the grain-oriented electrical steel sheet containing .about.3.5%, the inhibitor and manufacturing conditions are variously changed to obtain a sheet thickness of 0.2.
The grain size of the product of 3 to 0.35 mm was intentionally changed. FIG. 2 shows the relationship between the magnetic flux density B 8 of these steel sheets and the secondary recrystallization average grain size calculated by the image processing method.

【0023】図中の(a)はMnS、MnSe、Sb等
を主インヒビターとし2段冷却法を特徴とする、U.S.P.
2,158,065及び特公昭49−61019号公報等記載の
方法、(b)はAlNとMnSを主インヒビターとし強
圧下冷延を特徴とする特公昭40−15644号公報記
載の方法、(c)は単体を主インヒビターとし低温スラ
ブ加熱を特徴とする特公昭61−60896号公報記載
の方法をベースとし、温度勾配焼鈍法を含む種々の製造
条件を適用した。また、△印は(a)にBiを、●印は
(b)または(c)にBi添加し温度勾配焼鈍法以外の
製造条件を適用した。
(A) in the figure is a USP characterized by a two-stage cooling method using MnS, MnSe, Sb, etc. as main inhibitors.
2,158,065 and Japanese Patent Publication No. 49-61019, etc., (b) is a method described in Japanese Patent Publication No. 40-15644, which is characterized by cold rolling under high pressure with AlN and MnS as main inhibitors, and (c) is a single substance. Various manufacturing conditions including a temperature gradient annealing method were applied on the basis of the method described in Japanese Patent Publication No. 61-60896, which is characterized by low temperature slab heating as a main inhibitor. Further, the Δ mark added Bi to (a), and the ● mark added Bi to (b) or (c), and manufacturing conditions other than the temperature gradient annealing method were applied.

【0024】図2から明らかなように、磁束密度B8
上げると2次再結晶粒径は大きくなる傾向にある。ま
た、本発明で必須とされる4mm以上の2次再結晶平均粒
径は、MnS(Se)とSbの複合インヒビターでは得
られず、インヒビターとしてのAlNが必要であること
が判る。さらにAlNを主インヒビターとする素材にB
iを添加することにより、4mm以上の2次再結晶平均粒
径が安定して得られることが判る。
As is clear from FIG. 2, when the magnetic flux density B 8 is increased, the secondary recrystallized grain size tends to increase. Further, it can be seen that the secondary recrystallization average particle size of 4 mm or more, which is essential in the present invention, cannot be obtained by the composite inhibitor of MnS (Se) and Sb, and AlN as the inhibitor is necessary. In addition, B is used as a material with AlN as the main inhibitor.
It is understood that the secondary recrystallization average grain size of 4 mm or more can be stably obtained by adding i.

【0025】本発明はかかる観点から、連続焼鈍時にお
いて鉄損特性を損なうことなく張力を高めることを可能
にし、鋼板の形状を効果的に矯正できる。2次再結晶粒
が大きな一方向性電磁鋼板を提供し、またこの一方向性
電磁鋼板をBi添加により安定的に製造する方法を発明
した。
From this point of view, the present invention makes it possible to increase the tension without impairing the iron loss characteristics during continuous annealing, and to effectively correct the shape of the steel sheet. The present invention provides a unidirectional electrical steel sheet having a large secondary recrystallized grain, and invents a method for stably producing this unidirectional electrical steel sheet by adding Bi.

【0026】次に、本発明に必要な製造工程の構成要素
のうち、鋼成分及びその限定理由について述べる。本発
明において、素材が含有する成分としてはSi:2.5
〜4.0%、酸可溶性Al:0.010〜0.065
%、残部Fe及び不可避的不純物であり、これらを必須
成分としてそれ以外は限定しない。
Next, among the constituent elements of the manufacturing process necessary for the present invention, the steel components and the reasons for limiting them will be described. In the present invention, the material contains Si: 2.5.
~ 4.0%, acid soluble Al: 0.010 to 0.065
%, The balance Fe and unavoidable impurities, and these are essential components, and the others are not limited.

【0027】Siは、2.5%未満では製品の渦電流損
が増大し、また4.0%超では常温での冷延が困難にな
り、いずれも好ましくない。酸可溶性Alは窒化物を形
成し、高磁束密度一方向性電磁鋼板製造のための主イン
ヒビター構成元素であり、図2から判るように本発明の
必須元素である。またインヒビター効果が強いため、2
次再結晶粒径を大きくするための必須元素である。粒径
を大きくするために0.010%未満では量的に不足
し、インヒビター強度が不足する。一方、0.065%
超では析出窒化アルミニウムが粗大化し、結果としてイ
ンヒビター強度を低下させるので好ましくない。
If Si is less than 2.5%, the eddy current loss of the product increases, and if it exceeds 4.0%, cold rolling at room temperature becomes difficult, which is not preferable. The acid-soluble Al forms a nitride and is a main inhibitor constituent element for producing a high magnetic flux density unidirectional electrical steel sheet, and is an essential element of the present invention as can be seen from FIG. In addition, because the inhibitor effect is strong, 2
It is an essential element for increasing the secondary recrystallized grain size. If it is less than 0.010% in order to increase the particle size, the amount is insufficient, and the inhibitor strength is insufficient. On the other hand, 0.065%
If it exceeds the above range, the precipitated aluminum nitride is coarsened, and as a result, the inhibitor strength is lowered, which is not preferable.

【0028】その他のインヒビター構成元素として、M
n、S、Se、V、N、B、Nb、Sn、Cu、Ti、
Zr、Ta、Mo等を複合して添加することができる。
Biは2次再結晶粒径を粗大化するための必要元素であ
り、添加含有量は、0.0005から0.05%の範囲
が有効である。0.0005%未満では2次再結晶粒径
の粗大化効果が僅かであり、また0.05%超では磁束
密度向上の効果が飽和するとともに熱延板の端部に割れ
が発生するので上限を0.05%に限定する。更に、薄
手製品の2次再結晶を安定化させる元素として、Sn等
を添加することもできるが、2次再結晶粒径を小さくす
る作用もあり有効ではない。
As other inhibitor constituent elements, M
n, S, Se, V, N, B, Nb, Sn, Cu, Ti,
Zr, Ta, Mo, etc. can be added in combination.
Bi is a necessary element for coarsening the secondary recrystallized grain size, and the content of addition is effectively in the range of 0.0005 to 0.05%. If it is less than 0.0005%, the effect of coarsening the secondary recrystallized grain size is small, and if it exceeds 0.05%, the effect of improving the magnetic flux density is saturated and cracks occur at the edges of the hot-rolled sheet, so the upper limit. Is limited to 0.05%. Further, Sn or the like can be added as an element for stabilizing the secondary recrystallization of a thin product, but it is not effective because it has the effect of reducing the secondary recrystallization grain size.

【0029】次に、製造プロセス条件について説明す
る。上記のごとく成分を調整した超高磁束密度一方向性
電磁鋼板用素材は通常の如何なる溶解法、造塊法を用い
た場合でも本発明の素材とすることが出来る。次いでこ
の電磁鋼板用素材は通常の熱間圧延により熱延コイルに
圧延される。
Next, the manufacturing process conditions will be described. The material for ultra-high magnetic flux density unidirectional electrical steel sheet whose components have been adjusted as described above can be used as the material of the present invention even when any ordinary melting method or ingot making method is used. Next, this raw material for electromagnetic steel sheets is rolled into a hot rolled coil by ordinary hot rolling.

【0030】引き続いて1ステージの冷間圧延または中
間焼鈍を含む複数ステージの冷間圧延によって最終板厚
とするが、2次再結晶粒径が大きく、磁束密度が高い一
方向性電磁鋼板を得ることから最終冷延の圧延率(1ス
テージの冷間圧延の場合はその圧延率)は65〜95%
の強圧下が好ましい。最終圧延以外のステージの圧延率
は特に規定しなくてもよい。また、窒化アルミニウム等
のインヒビターを強化するため、最終冷延前に焼鈍およ
び冷却を行ってもよい。
Subsequently, one-stage cold rolling or multiple-stage cold rolling including intermediate annealing is performed to obtain the final sheet thickness, but a secondary recrystallized grain size is large and a unidirectional electrical steel sheet having a high magnetic flux density is obtained. Therefore, the final cold rolling reduction rate (in the case of one-stage cold rolling, the reduction rate) is 65 to 95%.
The strong reduction of is preferable. The rolling ratio of the stages other than the final rolling need not be specified. Further, in order to strengthen the inhibitor such as aluminum nitride, annealing and cooling may be performed before the final cold rolling.

【0031】最終製品厚に圧延した冷延コイルは、通常
の方法で1次再結晶焼鈍を兼ねた脱炭焼鈍が施される。
脱炭焼鈍の条件は特に規定しないが、好ましくは700
〜900℃の温度範囲で30秒〜30分間湿潤な水素ま
たは水素と窒素の混合雰囲気で行うのが良い。また、脱
炭焼鈍後に窒化アルミニウム等のインヒビターを強化す
るため、アンモニア雰囲気等で窒化処理を施してもよ
い。
The cold-rolled coil rolled to the final product thickness is subjected to decarburization annealing which also serves as primary recrystallization annealing, by a usual method.
The conditions for decarburization annealing are not particularly specified, but preferably 700
It is preferable to carry out in a temperature range of 900 ° C. to 900 ° C. for 30 seconds to 30 minutes in wet hydrogen or a mixed atmosphere of hydrogen and nitrogen. Further, in order to strengthen the inhibitor such as aluminum nitride after decarburization annealing, nitriding treatment may be performed in an ammonia atmosphere or the like.

【0032】また、脱炭焼鈍後の鋼板表面には、2次再
結晶焼鈍における焼き付きを防止する一方、グラス皮膜
生成のため通常のMgOを主成分とする焼鈍分離剤や、
グラス皮膜のない鏡面材製造のため特開平5−1563
62号公報等に記載するAl2 3 等を塗布してもよ
い。
On the surface of the steel sheet after decarburization annealing, while preventing seizure in the secondary recrystallization annealing, an ordinary annealing separating agent containing MgO as a main component for forming a glass film,
Manufacturing of mirror surface material without glass coating
Al 2 O 3 or the like described in JP-A-62-62 may be applied.

【0033】続いて、脱炭焼鈍コイルに対して通常の方
法で2次再結晶仕上げ焼鈍が施される。この2次再結晶
焼鈍後の結晶粒径が大きな鋼板を、その後の連続張力焼
鈍において鉄損特性を劣化させず効果的に形状矯正を行
うことが本発明の主眼とするところである。すなわち、
鋼板の2次再結晶粒径が4〜50mmであることを必須条
件とする。
Then, the decarburization annealing coil is subjected to secondary recrystallization finish annealing by a usual method. The main purpose of the present invention is to effectively correct the shape of a steel sheet having a large crystal grain size after the secondary recrystallization annealing in the subsequent continuous tension annealing without deteriorating the iron loss characteristics. That is,
It is an essential condition that the secondary recrystallized grain size of the steel sheet is 4 to 50 mm.

【0034】図1から明らかなように、2次再結晶平均
粒径が4mmより小さい場合、張力焼鈍時に粒界変形が多
くなり鉄損特性が悪化するので、2次再結晶平均粒径が
4mm以上に限定する。また、2次再結晶粒径は大きけれ
ば大きいほどよいが、図2から明らかなように、3%S
i鋼の飽和磁束密度の2.03Tで平均結晶粒径が50
mmであり、実質的な限界値と判断し上限を50mm以下と
した。
As is clear from FIG. 1, when the secondary recrystallization average grain size is smaller than 4 mm, the grain boundary deformation is increased during the tensile annealing and the iron loss characteristics are deteriorated. Therefore, the secondary recrystallization average grain size is 4 mm. Limited to the above. Also, the larger the secondary recrystallized grain size, the better, but as is clear from FIG.
The average crystal grain size is 50 at the saturation magnetic flux density of 2.03T for i steel.
mm, which was determined to be a practical limit value and the upper limit was set to 50 mm or less.

【0035】2次再結晶仕上焼鈍については、AlNを
主インヒビターとする一方向性電磁鋼板を素材とする場
合、平均粒径が4mm以上の2次再結晶粒を得るために、
コストアップになるが上記の温度勾配焼鈍法や、特公昭
56−33450号公報等に記載する徐加熱法等を行う
ことが好ましい。ただし、本発明のインヒビターとして
Biを含有する場合には、このような特殊な操作を行う
必要がなく、安定して2次再結晶平均粒径が4mm以上の
一方向性電磁鋼板が得られる。
Regarding the secondary recrystallization finish annealing, when a unidirectional electrical steel sheet containing AlN as a main inhibitor is used as a material, in order to obtain secondary recrystallized grains having an average grain size of 4 mm or more,
Although the cost increases, it is preferable to perform the temperature gradient annealing method, the gradual heating method described in Japanese Patent Publication No. 56-33450, or the like. However, when Bi is contained as the inhibitor of the present invention, it is not necessary to perform such a special operation, and a unidirectional electrical steel sheet having a secondary recrystallization average grain size of 4 mm or more can be stably obtained.

【0036】引き続き余分の焼鈍分離剤を除去後、コイ
ルセット等を矯正するための連続張力焼鈍を行う。本発
明の特徴として、図1から明らかなように、2次再結晶
平均粒径が4mm以上の鋼板は、従来より高い0.4〜
2.0kg/mm2 の範囲の張力を付与しても鉄損特性を損
なうことなく形状矯正を行うことが可能である。張力が
0.4kg/mm2 より小さいと形状矯正効果が少なく、ま
た通常の形状不良の矯正では2.0kg/mm2 以上の張力
は必要ない。また通常はこの連続張力焼鈍中に絶縁皮膜
を塗布、焼き付けする。
After removing the excess annealing separator, continuous tension annealing is performed to straighten the coil set and the like. As a feature of the present invention, as is clear from FIG. 1, a steel sheet having a secondary recrystallization average grain size of 4 mm or more has a higher 0.4-
Even if a tension in the range of 2.0 kg / mm 2 is applied, the shape can be corrected without impairing the iron loss characteristics. When the tension is less than 0.4 kg / mm 2 , the shape-correcting effect is small, and in the ordinary correction of defective shape, the tension of 2.0 kg / mm 2 or more is not necessary. Further, normally, an insulating film is applied and baked during this continuous tension annealing.

【0037】更に、必要に応じてレーザー照射等の磁区
細分化処理を施す。本発明は2次再結晶粒径を大きく制
御するものであるため、鉄損特性を改善する意味から磁
区細分化処理は有効である。磁区細分化の方法は特に限
定する必要はない。
Further, magnetic domain subdivision processing such as laser irradiation is performed as necessary. Since the present invention largely controls the secondary recrystallized grain size, the magnetic domain refinement treatment is effective from the viewpoint of improving the iron loss characteristics. The method of subdividing the magnetic domains is not particularly limited.

【0038】[0038]

【実施例】【Example】

(実施例1) C:0.09%、Si:3.05%、Mn:0.07
%、S:0.023%、酸可溶性Al:0.026%、
N:0.008%を含有する珪素鋼を溶製した。そして
鋳片に鋳造後、1350℃に加熱し、抽出後直ちに2.
3mm板厚まで熱延し、熱延後20℃水冷し550℃で保
定した。熱延板を1150℃の温度で2分間焼鈍し、直
ちに100℃の水中に急冷した。次いで酸洗後0.30
mmまで途中で250℃での時効処理を5回はさんで冷延
した。引き続き850℃で脱炭を行い、MgOを主成分
とする焼鈍分離剤を塗布した。それから、900℃まで
15℃/hr. で昇温し、950℃までの温度区間を温度
勾配なしで5、10、15℃/hr. の3水準の加熱速度
で、また15℃/hr. の加熱速度で圧延直角方向に2、
4、6℃/cmの3水準の温度勾配で2次再結晶仕上焼鈍
を行い、引き続いて1200℃で20時間の純化焼鈍を
行った。
(Example 1) C: 0.09%, Si: 3.05%, Mn: 0.07
%, S: 0.023%, acid-soluble Al: 0.026%,
Silicon steel containing N: 0.008% was melted. After casting into a slab and heating to 1350 ° C., immediately after extraction, 2.
After hot rolling to a plate thickness of 3 mm, after hot rolling, it was cooled at 20 ° C with water and held at 550 ° C. The hot-rolled sheet was annealed at a temperature of 1150 ° C for 2 minutes and immediately quenched in water of 100 ° C. Then after pickling 0.30
Cold rolling was carried out 5 times by aging treatment at 250 ° C halfway up to mm. Subsequently, decarburization was performed at 850 ° C., and an annealing separator containing MgO as a main component was applied. Then, the temperature is raised to 900 ° C. at 15 ° C./hr., And the temperature section up to 950 ° C. is heated at three levels of heating rates of 5, 10, 15 ° C./hr. 2 at the heating rate in the direction perpendicular to the rolling,
Secondary recrystallization finish annealing was performed at three levels of temperature gradients of 4 and 6 ° C./cm, followed by purification annealing at 1200 ° C. for 20 hours.

【0039】水洗乾燥後800℃2時間の歪取り焼鈍を
行った。そして1.0kg/mm2 の張力で860℃2分間
の張力焼鈍を行い、焼鈍前後の磁気特性を測定し、また
2次再結晶平均粒径を測定した。2次再結晶平均粒径と
鉄損劣化代ΔW17/50 の関係を表1に示す。表1より明
らかなように、比較例の2次再結晶平均粒径が4mmより
小さい鋼板は鉄損の劣化が0.02W/kg以上と大きい
のに対して、実施例の2次再結晶平均粒径が4mm以上の
鋼板は鉄損の劣化が0.005W/kg以下と極めて小さ
い。
After washing with water and drying, strain relief annealing was carried out at 800 ° C. for 2 hours. Then, tension annealing was performed at a tension of 1.0 kg / mm 2 for 2 minutes at 860 ° C., the magnetic characteristics before and after the annealing were measured, and the secondary recrystallization average grain size was measured. Table 1 shows the relationship between the secondary recrystallization average grain size and the iron loss deterioration allowance ΔW 17/50 . As is clear from Table 1, the steel sheets having a secondary recrystallization average grain size of less than 4 mm in the comparative example have a large iron loss deterioration of 0.02 W / kg or more, while the secondary recrystallization average in the examples is large. Steel sheets with a grain size of 4 mm or more have a very small iron loss deterioration of 0.005 W / kg or less.

【0040】[0040]

【表1】 [Table 1]

【0041】(実施例2) C:0.09%、Si:3.25%、Mn:0.07
%、S:0.025%、酸可溶性Al:0.027%、
N:0.008%、Sb:0.05%を含有する珪素鋼
を溶製し、Bi含有量を0、0.0004、0.000
7、0.0031、0.0306、0.0612%と
し、それぞれ鋳片に分注鋳造後、1350℃に加熱し、
抽出後直ちに2.0mm板厚まで熱延し、熱延後20℃水
冷し550℃で保定した。熱延板については側面の割れ
を観察した。その後熱延板を1120℃の温度で3分間
焼鈍し、直ちに100℃の水中に急冷した。
(Example 2) C: 0.09%, Si: 3.25%, Mn: 0.07
%, S: 0.025%, acid-soluble Al: 0.027%,
Silicon steel containing N: 0.008% and Sb: 0.05% is melted, and the Bi content is 0, 0.0004, 0.000.
7, 0.0031, 0.0306, 0.0612%, respectively, after dispensing casting into a slab and heating to 1350 ° C.,
Immediately after extraction, the product was hot-rolled to a plate thickness of 2.0 mm, and after hot-rolling, it was water-cooled at 20 ° C and held at 550 ° C. Regarding the hot rolled sheet, cracks on the side surface were observed. Then, the hot rolled sheet was annealed at a temperature of 1120 ° C. for 3 minutes and immediately quenched in water of 100 ° C.

【0042】次いで酸洗後0.23mmまで途中で250
℃での時効処理を5回はさんで冷延した。引き続き85
0℃で脱炭を行い、MgOを主成分とする焼鈍分離剤を
塗布した。それから、1200℃まで15℃/hr. で昇
温し、引き続いて1200℃で20時間の純化焼鈍を行
った。水洗乾燥後800℃2時間の歪取り焼鈍を行っ
た。そして1.5、3.0kg/mm2 の張力で860℃2
分間の張力焼鈍を行い、焼鈍前後の磁気特性を測定し、
また2次再結晶平均粒径を測定した。2次再結晶平均粒
径と鉄損劣化代ΔW17/50 及び熱延板の割れの関係を表
2に示す。
Next, after pickling, 250 in the middle up to 0.23 mm
It was cold rolled by sandwiching the aging treatment at ℃ 5 times. Continue to 85
Decarburization was performed at 0 ° C., and an annealing separator containing MgO as a main component was applied. Then, the temperature was raised to 1200 ° C. at a rate of 15 ° C./hr., And subsequently, a purification annealing was performed at 1200 ° C. for 20 hours. After washing with water and drying, strain relief annealing was performed at 800 ° C. for 2 hours. Then, at a tension of 1.5 and 3.0 kg / mm 2 , 860 ° C 2
Conduct tension annealing for minutes, measure the magnetic properties before and after annealing,
Further, the secondary recrystallization average grain size was measured. Table 2 shows the relationship between the secondary recrystallization average grain size, the iron loss deterioration allowance ΔW 17/50, and the cracking of the hot-rolled sheet.

【0043】表2より明らかなように、張力1.5kg/
mm2 の場合、比較例のBi含有量が0.0005%より
少ない材料は、2次再結晶平均粒径が4mmより小さく鉄
損の劣化も0.02W/kg以上と大きいのに対して、実
施例のBi含有量が0.0005%以上の材料は、4mm
以上の2次再結晶平均粒径が安定して鉄損の劣化が0.
005W/kg以下と極めて小さい。しかし、張力を2.
0kg/mm2 超まで高めると、鉄損の劣化は大きくなる。
なお、Bi含有量が0.05%を超えるものは、熱延板
の側面の割れが著しく大きかった。
As is clear from Table 2, the tension is 1.5 kg /
In the case of mm 2, the material having a Bi content of less than 0.0005% in the comparative example has a secondary recrystallization average particle size of less than 4 mm and the deterioration of iron loss is as large as 0.02 W / kg or more. The material having a Bi content of 0.0005% or more in the embodiment is 4 mm.
The above secondary recrystallization average grain size is stable, and the iron loss is not degraded.
Extremely small at 005 W / kg or less. However, if the tension is 2.
If it is increased to more than 0 kg / mm 2 , the deterioration of iron loss becomes large.
When the Bi content exceeds 0.05%, the cracks on the side surface of the hot-rolled sheet were significantly large.

【0044】[0044]

【表2】 [Table 2]

【0045】(実施例3) C:0.05%、Si:3.25%、Mn:0.10
%、S:0.007%、P:0.025%、酸可溶性A
l:0.029%、N:0.007%、Cr:0.12
%を含有する珪素鋼を溶製し,Bi含有量を0、0.0
083、0.0353%とし、それぞれ鋳片に分注鋳造
後、1150℃に加熱し、抽出後直ちに2.3mm板厚ま
で熱延し、熱延後20℃水冷し550℃で保定した。そ
の後熱延板を1120℃の温度で30秒900℃で90
秒焼鈍し、750℃まで空冷後80℃の水中に急冷し
た。次いで酸洗後0.23mmまで途中で250℃での時
効処理を5回はさんで冷延した。引き続き1次再結晶平
均粒径が23μmになるように脱炭・1次再結晶焼鈍を
行い、引き続いてNH3 雰囲気でN含有量が200ppm
になるよう窒化焼鈍を行った。Al2 3 を主成分とす
る焼鈍分離剤を塗布後60mmの曲率に曲げた。
(Example 3) C: 0.05%, Si: 3.25%, Mn: 0.10.
%, S: 0.007%, P: 0.025%, acid-soluble A
1: 0.029%, N: 0.007%, Cr: 0.12
% Of silicon steel is melted and the Bi content is 0, 0.0
The content was 083 and 0.0353%, respectively, and the mixture was dispensed and cast into slabs, heated to 1150 ° C., hot-rolled immediately to a thickness of 2.3 mm after extraction, hot-rolled to 20 ° C., water-cooled and held at 550 ° C. Then, the hot-rolled sheet is heated at 1120 ° C for 30 seconds at 900 ° C for 90
Second annealing, air cooling to 750 ° C., and rapid cooling to 80 ° C. water. Then, after pickling, aging treatment at 250 ° C. was carried out 5 times and cold-rolled to 0.23 mm. Subsequently, decarburization and primary recrystallization annealing were performed so that the average primary recrystallization particle size was 23 μm, and subsequently the N content was 200 ppm in an NH 3 atmosphere.
Nitriding annealing was performed so that After applying an annealing separating agent containing Al 2 O 3 as a main component, it was bent to a curvature of 60 mm.

【0046】それから、1200℃まで15℃/hr. で
昇温し、引き続いて1200℃で20時間の純化焼鈍を
行った。水洗乾燥後0.5、1.5、2.5kg/mm2
張力で860℃2分間の張力焼鈍を行い、焼鈍前後の磁
気特性を測定し、また2次再結晶平均粒径と圧延方向3
00mmの鋼板の反り量を測定した。2次再結晶平均粒径
と鉄損劣化代ΔW17/50 及び反り量の関係を表3に示
す。
Then, the temperature was raised to 1200 ° C. at a rate of 15 ° C./hr., And subsequently, purification annealing was carried out at 1200 ° C. for 20 hours. After washing with water and drying, tension annealing was performed for 2 minutes at 860 ° C with a tension of 0.5, 1.5 and 2.5 kg / mm 2 to measure the magnetic properties before and after annealing, and the secondary recrystallization average grain size and rolling direction. Three
The amount of warpage of a 00 mm steel plate was measured. Table 3 shows the relationship between the secondary recrystallization average grain size, the iron loss deterioration allowance ΔW 17/50, and the amount of warpage.

【0047】表3より明らかなように、比較例のBi含
有量が0.0005%より少ない材料は、2次再結晶平
均粒径が4mmより小さく鉄損の劣化も0.02W/kg以
上と大きいのに対して、実施例のBi含有量が0.00
05%以上の材料は、4mm以上の2次再結晶平均粒径が
安定して鉄損の劣化が0.005W/kg以下と極めて小
さい。しかし、張力を2.5kg/mm2 まで高めると、鉄
損の劣化は大きくなる。また、鋼板張力を1.5kg/mm
2 以上にすることにより、鋼板の反り量は0mmとなり、
曲率60mmのコイルセットが可能であった。
As is clear from Table 3, the materials having a Bi content of less than 0.0005% in the comparative example have a secondary recrystallization average grain size of less than 4 mm and a core loss of 0.02 W / kg or more. On the other hand, the Bi content of the example is 0.00
The material with an amount of 05% or more has a stable secondary recrystallization average particle size of 4 mm or more, and the deterioration of iron loss is 0.005 W / kg or less, which is extremely small. However, when the tension is increased up to 2.5 kg / mm 2 , the deterioration of iron loss becomes large. Also, the steel plate tension is 1.5 kg / mm
By setting it to 2 or more, the warp amount of the steel plate becomes 0 mm,
A coil set with a curvature of 60 mm was possible.

【0048】[0048]

【表3】 [Table 3]

【0049】[0049]

【発明の効果】本発明は、連続焼鈍時において鉄損特性
を損なうことなく張力を高めることを可能にし、鋼板の
形状を効果的に矯正できる、2次再結晶粒が大きな一方
向性電磁鋼板を提供し、またこの一方向性電磁鋼板をB
i添加により安定的に製造する方法を発明した。この方
法により形状と鉄損特性が極めて良好な一方向性電磁鋼
帯が安定に製造でき、工業的に極めて価値が高いものと
言える。
INDUSTRIAL APPLICABILITY The present invention makes it possible to increase tension without impairing iron loss characteristics during continuous annealing, and to effectively correct the shape of a steel sheet. And this B-oriented electrical steel sheet
The inventor has invented a method for stable production by adding i. By this method, it is possible to stably produce a unidirectional electromagnetic steel strip having excellent shape and iron loss characteristics, and it can be said that the value is industrially extremely valuable.

【図面の簡単な説明】[Brief description of drawings]

【図1】各鋼板張力における2次再結晶平均粒径と鉄損
悪化量の関係を示す図表。
FIG. 1 is a graph showing the relationship between secondary recrystallization average grain size and iron loss deterioration amount at each steel plate tension.

【図2】各種インヒビターにおける磁束密度B8 と2次
再結晶平均粒径の関係を示す図表。
FIG. 2 is a chart showing the relationship between the magnetic flux density B 8 and the average secondary recrystallization particle size in various inhibitors.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量比で、 Si:2.5〜4.0%、 酸可溶性Al:0.010〜0.065%、残部Fe及
び不可避的不純物からなる電磁鋼板用スラブを熱間圧延
し、1回あるいは中間焼鈍を介入する2回以上の冷間圧
延を施して最終板厚とし、次いで脱炭焼鈍及び2次再結
晶仕上焼鈍、次いで絶縁皮膜を塗布し連続張力焼鈍を施
すことにより、一方向性電磁鋼帯を製造する方法におい
て、上記2次再結晶仕上焼鈍を施した鋼板の2次再結晶
平均粒径が4〜50mmである鋼板に、0.4〜2.0kg
/mm2 の範囲の張力を付与しつつ連続焼鈍を施すことを
特徴とする一方向性電磁鋼帯の製造方法。
1. A slab for electrical steel sheets comprising Si: 2.5 to 4.0%, acid-soluble Al: 0.010 to 0.065%, balance Fe and unavoidable impurities by hot rolling. By performing cold rolling once or twice or more with intervening intermediate annealing to obtain the final plate thickness, then decarburizing annealing and secondary recrystallization finish annealing, and then applying an insulating film and performing continuous tension annealing, In the method for producing a unidirectional electrical steel strip, 0.4 to 2.0 kg is added to a steel sheet having a secondary recrystallization average grain size of 4 to 50 mm in the steel sheet subjected to the secondary recrystallization finish annealing.
A method for producing a unidirectional electrical steel strip, which comprises performing continuous annealing while applying a tension in the range of / mm 2 .
【請求項2】 一方向性電磁鋼板の製造方法において重
量比でBi:0.0005〜0.05%を含有せしめる
ことを特徴とする請求項1記載の一方向性電磁鋼帯の製
造方法。
2. The method for producing a unidirectional electrical steel strip according to claim 1, wherein Bi: 0.0005 to 0.05% is contained in a weight ratio in the method for producing a unidirectional electrical steel sheet.
JP07017995A 1995-03-28 1995-03-28 Method of manufacturing unidirectional electromagnetic steel strip Expired - Lifetime JP3531996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07017995A JP3531996B2 (en) 1995-03-28 1995-03-28 Method of manufacturing unidirectional electromagnetic steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07017995A JP3531996B2 (en) 1995-03-28 1995-03-28 Method of manufacturing unidirectional electromagnetic steel strip

Publications (2)

Publication Number Publication Date
JPH08269571A true JPH08269571A (en) 1996-10-15
JP3531996B2 JP3531996B2 (en) 2004-05-31

Family

ID=13424050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07017995A Expired - Lifetime JP3531996B2 (en) 1995-03-28 1995-03-28 Method of manufacturing unidirectional electromagnetic steel strip

Country Status (1)

Country Link
JP (1) JP3531996B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302774A (en) * 2001-04-09 2002-10-18 Nippon Steel Corp Method of forming insulating film of grain-oriented silicon steel sheet having excellent magnetic property and excellent adhesion of coating
KR100580356B1 (en) * 1998-05-15 2006-05-16 제이에프이 스틸 가부시키가이샤 Grain oriented electromagnetic steel sheet and manufacturing thereof
JP2012031515A (en) * 2010-06-30 2012-02-16 Jfe Steel Corp Grain-oriented magnetic steel sheet, and method of manufacturing the same
JP2012052233A (en) * 2010-08-05 2012-03-15 Jfe Steel Corp Method for producing grain-oriented electromagnetic steel sheet
WO2017111547A1 (en) * 2015-12-23 2017-06-29 주식회사 포스코 Grain oriented electrical steel sheet and method for manufacturing same
WO2019181952A1 (en) * 2018-03-20 2019-09-26 日本製鉄株式会社 Production method for grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
JP2020056080A (en) * 2018-10-03 2020-04-09 日本製鉄株式会社 Grain oriented electrical steel, grain oriented electrical steel for wound core transformer, method for manufacturing wound core, and method for manufacturing wound core transformer
JPWO2021100867A1 (en) * 2019-11-21 2021-05-27
CN115505708A (en) * 2022-09-23 2022-12-23 无锡普天铁心股份有限公司 Flattening, stretching and annealing method for reducing iron loss of oriented silicon steel

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100580356B1 (en) * 1998-05-15 2006-05-16 제이에프이 스틸 가부시키가이샤 Grain oriented electromagnetic steel sheet and manufacturing thereof
JP2002302774A (en) * 2001-04-09 2002-10-18 Nippon Steel Corp Method of forming insulating film of grain-oriented silicon steel sheet having excellent magnetic property and excellent adhesion of coating
JP2012031515A (en) * 2010-06-30 2012-02-16 Jfe Steel Corp Grain-oriented magnetic steel sheet, and method of manufacturing the same
JP2012052233A (en) * 2010-08-05 2012-03-15 Jfe Steel Corp Method for producing grain-oriented electromagnetic steel sheet
WO2017111547A1 (en) * 2015-12-23 2017-06-29 주식회사 포스코 Grain oriented electrical steel sheet and method for manufacturing same
WO2019181952A1 (en) * 2018-03-20 2019-09-26 日本製鉄株式会社 Production method for grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
CN111868272A (en) * 2018-03-20 2020-10-30 日本制铁株式会社 Method for producing grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
JPWO2019181952A1 (en) * 2018-03-20 2021-03-25 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
CN111868272B (en) * 2018-03-20 2022-11-15 日本制铁株式会社 Method for producing grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet
JP2020056080A (en) * 2018-10-03 2020-04-09 日本製鉄株式会社 Grain oriented electrical steel, grain oriented electrical steel for wound core transformer, method for manufacturing wound core, and method for manufacturing wound core transformer
JPWO2021100867A1 (en) * 2019-11-21 2021-05-27
CN115505708A (en) * 2022-09-23 2022-12-23 无锡普天铁心股份有限公司 Flattening, stretching and annealing method for reducing iron loss of oriented silicon steel

Also Published As

Publication number Publication date
JP3531996B2 (en) 2004-05-31

Similar Documents

Publication Publication Date Title
JPH0753885B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
US5597424A (en) Process for producing grain oriented electrical steel sheet having excellent magnetic properties
JP3531996B2 (en) Method of manufacturing unidirectional electromagnetic steel strip
CN113710822A (en) Method for producing grain-oriented electromagnetic steel sheet
EP4353848A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet
US5261971A (en) Process for preparation of grain-oriented electrical steel sheet having superior magnetic properties
JP2607331B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP3169490B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
EP0392535B2 (en) Process for preparation of grain-oriented electrical steel sheet having superior magnetic properties
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2002129236A (en) Method for stably manufacturing grain oriented silicon steel sheet
JPH07118746A (en) Stable production of grain-oriented silicon steel sheet excellent in magnetic property
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JP2948454B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JP2948455B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP3485409B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH02263924A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3348217B2 (en) Method for stable production of unidirectional electrical steel sheets with excellent magnetic properties
JP3399721B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3287488B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH0791586B2 (en) Method for manufacturing thick unidirectional electrical steel sheet with excellent magnetic properties
JPH08176666A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH04362138A (en) Manufacture of grain-oriented thick electrical steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 10

EXPY Cancellation because of completion of term