JP2650036B2 - Calculation method of center coordinates of long hole or square hole by 3D measurement robot - Google Patents

Calculation method of center coordinates of long hole or square hole by 3D measurement robot

Info

Publication number
JP2650036B2
JP2650036B2 JP62309588A JP30958887A JP2650036B2 JP 2650036 B2 JP2650036 B2 JP 2650036B2 JP 62309588 A JP62309588 A JP 62309588A JP 30958887 A JP30958887 A JP 30958887A JP 2650036 B2 JP2650036 B2 JP 2650036B2
Authority
JP
Japan
Prior art keywords
hole
coordinates
point
measurement
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62309588A
Other languages
Japanese (ja)
Other versions
JPH01152303A (en
Inventor
孝志 役山
俊昭 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP62309588A priority Critical patent/JP2650036B2/en
Publication of JPH01152303A publication Critical patent/JPH01152303A/en
Application granted granted Critical
Publication of JP2650036B2 publication Critical patent/JP2650036B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/26Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

[産業上の利用分野] 本発明は、三次元計測ロボットによる長穴又は角穴の
中心座標の算出方法に関する。 [従来の技術] 従来、ティーチングプレイバック方式の三次元計測ロ
ボットにより長穴の中心座標を自動計測により求めるに
は、計測対象となる長穴のティーチングデータによる計
測開始点に三次元計測ロボットのプローブをアプローチ
させて該長穴内において、プローブを計測開始点を通っ
て長穴内を横断又は縦断させて第1及び第2の接触点の
座標を読みとるとともにこれらの第1及び第2の接触点
の中点の座標を求め、次にプローブを前記中点を通りか
つ前記移動方向と直角に長穴内を縦断又は横断させて第
3及び第4の接触点の座標を読みとるとともにこれら第
3及び第4の接触点の中点の座標を求めてこれにより長
穴の中心座標の求めるものである。そして、この場合、
オペレータが長穴の計測開始点(中心と思われる点)に
接触式のプローブをアプローチさせ、また長穴内でプロ
ーブを横・縦断させて穴の縁から第1ないし第4の接触
点の座標データを得るためにプローブの移動方向を教示
しておき、このティーチングデータに基いてプローブを
自動操作して自動計測を行うものである。 [発明が解決しようとする問題点] ところで従来の方法では、ティーチングの誤差や被計
測物の加工精度に起因する計測対象となる穴位置のバラ
ツキ等により、必ずしも正確に穴の中心座標を求めるこ
とができないという問題があった。 すなわち、第4図は従来の長穴の中心座標を算出する
方法の一例を示すものであり、P′は計測開始点、
P′は第1の接触点、P′は第2の接触点、M′
はP′とP′の中点、P′は第3の接触点、P′
は第4の接触点、M′はP′とP′の中点であ
り、このM′が計測上での長穴の中心点となる。しか
しM′は真の中心座標0に対して大きな誤差があるこ
とがわかる。計測開始点P′は本来、長穴の中心と思
われる箇所に、また第1ないし第4の接触点の座標を得
るためにプローブは長穴内を正確な方向性をもって縦横
断させるよう予めティーチングしておくのであるが、実
際の計測ではティーチングの誤差や計測対象となる長穴
の位置のバラツキ等により、第3図のように計測開始点
P′が真の中心天0から外れたり、またプローブの穴
内での縦横断方向が斜めになることが多々あり、これら
が原因で計測精度が悪くなる。 本発明は上記従来の問題点を解決するためのものであ
り、誤差を極力小さくして中心座標算出の精度を向上さ
せ得る三次元計測ロボットによる長穴又は角穴の中心座
標の算出方法を提供することを目的とする。 [問題点を解決するための手段] 上記の問題点は本発明によれば、 計測対象となる穴のティーチングデータによる形状認
識計測開始点に三次元計測ロボットのプローブをアプロ
ーチさせて該穴内において、プローブを前記計測開始点
を通って穴内を横断又は縦断させて第1及び第2の接触
点の座標を読みとるとともにこれらの第1及び第2の接
触点の第1中点座標を求め、次にプローブを前記中点を
通りかつ前記移動方向と直角に穴内を縦断又は横断させ
て第3及び第4の接触点の座標を読みとるとともにこれ
らの第3及び第4の接触点の第2の中点座標を求めて、
次いで、上記穴の形状認識計測に基づく上記第2中点座
標を上記穴の正しい中心座標計測開始点とし、上記プロ
ーブを前記正しい中心座標計測開始点を通りかつ前記最
初の横断又は縦断方向と平行に穴内を横断又は縦断させ
て第5及び第6の接触点の座標を読みとるとともにこれ
ら第5及び第6の接触点の第3中点座標を求め、さら
に、この中点を通りかつ前記第2の計測開始点を含む移
動方向と直角に穴内を縦断又は横断させて第7及び第8
の接触点の座標を読みとり、これら第7及び第8の接触
点の第4中点座標を求める1回の中心座標計測によって
穴の正しい中心座標とすることを特徴とする三次元計測
ロボットによる長穴又は角穴の中心座標の算出方法。 とすることで解決することができる。 [作用] 上記の手段を有する本発明方法では、まず従来方法通
りにプローブを計測対象となる穴の計測開始点からスタ
ートさせて穴内を縦横断して第1ないし第4の接触点の
座標を読みとり、第3及び第4の接触点の中点の座標を
求める。従来の方法ではこの中点をもって穴の中心点と
するものであるが、本発明ではこの中点の求めるまでの
計測を第1段階とし、この中点を第2の計測開始点とし
ての点からスタートして第2段階の計測を行うものであ
り、第2段階の計測では第1ないし第4の接触点の座標
を計測すると同様な手順で第5ないし第8の接触点の座
標を読みとり、第7及び第8の接触点の中点の座標を穴
の中心座標として算出するものである。すなわち、本発
明方法ではティーチングデータによりプローブをアプロ
ーチさせる計測開始点と計測途中で演算により求められ
る第2の計測開始点の二つの計測開始点が存在し、第2
の計測開始点は最初の計測開始点に比べてより真の中心
に接近している。したがって第2の計測開始点は最初の
計測開始点の補正した点であるとも云え、前述のように
計測開始点は、本来ティーチング時に穴の中心と思われ
る箇所に決めかつ真の穴の中心と計測開始点がより接近
すればする程、計測の精度が向上することから、ティー
チングデータによる最初の計測開始点より常に真の中心
に接近した第2の計測開始点を利用して計測する本発明
方法では、中心座標の計測精度においてより有利に作用
するものである。 [実 施 例] 以下、本発明の実施例を図面によって説明する。 第3図は三次元計測ロボットの一例を示すもので、1
は直交3軸の計測機機構であり、2はその計測機機構の
1のアームに設けた多関節アーム、3は多関節アーム2
の先端に設けた被計測物に接触する接触式のプローブで
ある。 直交3軸の計測機機構1は、被計測物を載置する定盤
4に沿って水平に配置した固定ベース5と、この固定ベ
ース5の上面に長手方向に設けたレール6,7上を移動可
能に設けた移動ベース8と、移動ベース8上に垂直に立
設したコラム9と、このコラム9上に摺動可能に配設し
たヘッド本体10と、固定ベース5とコラム9に夫々直交
しヘッド本体10を貫通して摺動可能に配設したアーム11
とで構成される。 また、この直交3軸の計測機機構は従来より十分に公
知であるため、詳しい説明は省略するが、各動作踏は所
定の駆動機構を備えている。すなわち、移動ベース8上
には移動ベース駆動用の交流三相サーボモータが配設さ
れ、このモータにて減速機を介して回転駆動されるピニ
オンギヤが固定ベース5に沿って配設されるラックギヤ
と噛み合うことでベース8を固定ベース5上に沿って駆
動する。またコラム9の頂部にはヘッド本体10の駆動用
の交流三相サーボモータ及び減速機が配設され、この減
速機の出力軸と連結されたボールねじ軸がコラム9内に
配設されるとともにヘッド本体10に固定されたボールね
じナットと螺合されており、モータによりボールねじ軸
を回駆動することによりヘッド本体10をコラム9に沿っ
て上下動する。またヘッド本体10にはアーム11の駆動用
の交流三相サーボモータが配設され、このモータにて減
速機を介して回転駆動されるピニオンギヤがアーム11に
沿って配設されるラックギヤと噛み合うことでアーム11
をヘッド本体10に対して駆動可能にしている。 多関節アーム2は、直交3軸の計測機機構1のアーム
11の先端に配設され、このアーム11と同軸に回転可能に
配設される第1回転アーム部12と、この第1回転アーム
部12に対して曲折可能に配設される第1曲折アーム部13
と、この第1曲折アーム13と同軸に回転可能に配設され
る第2回転アーム部14と、この第2回転アーム部14に対
して曲折可能に配設される第2曲折アーム部15とからな
り、この第2曲折アーム部15の先端に接触子3が設けら
れる。 なお、各アーム部には駆動用の直流サーボモータ及び
減速機が内臓され、これら減速機の出力軸に各アーム部
が連結されており、回転・曲折アーム部はこれら駆動機
構によって所定の角度範囲で回動・曲折される。 16ははコンピュータ装置を含む制御装置であり、ティ
ーチング時に三次元計測機機構1及び多関節アーム2の
姿勢及びそれに至る経路等を前記角度センサーの検出値
によりティーチングデータとして記憶し、次に自動計測
の際にティーチングデータに基いて各動作部を駆動制御
するとともにプローブ3が計測点と接触してON信号を発
生したときに前記各角度センサーの検出値を読みとって
計測点の座標の計測を行う。 本発明は、このようなティーチングプレイバック方式
の三次元計測ロボットにおいてティーチングのデータに
基づいて自動計測による長穴又は角穴の中心座標を算出
する方法であり、コンピュータプログラムに従って実行
される。 以下詳述すると、第1図のような長穴20に対し、その
内部に設定された計測開始点P0にプローブ3をアプロー
チさせ、プローブ3を長穴20内の横断させ長穴20の縁に
接触させて第1及び第2の接触点P1,P2の座標を読みと
る。これら座標値はコンピュータへ入力され第1及び第
2の接触点P1,P2の第1中心点M1座標が演算される。中
点M1の座標が求まると、次にプローブ3を中点M1の位置
まで移動させるとともに前記横断方向と直角に縦断させ
長穴20の縁に接触させて第3及び第4の接触点P3,P4
座標を読みとる。そしてコンピュータにて第3及び第4
の接触点P3,P4の第2中点M2座標が演算される。以上の
計測で上記穴の形状が認識される。次いで、上記中点M2
は第2の計測開始点でもあり、プローブを第2計測開始
点M2に移動させ、この点からスタートして前記縦断方向
と直角に長穴20内を横断させ長穴20の縁に接触させて第
5及び第6の接触点P5,P6の座標を読みとり、これら座
標値からその第3中点M3座標が演算される。さらにプロ
ーブ3を中点M3の位置まで移動させるとともに前記縦断
方向と平行に横断させ長穴20の縁に接触させて第7及び
第8の接触点P7,P8の座標を読みとり、これら第7及び
第8の接触点P7,P8の座標から算出されるこれら接触点
の第4中点M4座標をもって長穴20の中心点の座標とする
ものである。即ち、上記穴の形状認識のための計測を基
として単なる1回の中心座標計測で正しい中心座標を計
測することができる。 第1図に図示する例ではティーチングデータによる計
測開始点P0が真の中心点0より大きく離れ、またプロー
ブの長穴内での縦・横断方向が斜めとなっているため、
従来方法で求めた場合の中心点(第1図ではM2)は真の
中心点0に対して大きな誤差を生じるが、本発明方法で
は計測開始点P0より真の中心点0に接近した第2の計測
開始点からさらに計測を続けるため、それより得られる
計測上の中心点M4は真の中心点0にきわめて接近し精度
の高い計測ができることがわかる。 なお、実施例で説明した計測では第1,第2,第5及び第
6の接触点P1,P2,P5,P6を長穴20の横断方向に、また第
3,第4,第7及び第8の接触点P3,P4,P7,P8を縦断方向に
とったが、これを逆にしてもよい。しかし、プローブの
長穴内での縦・横断方向が大きく傾いた場合等のときは
前者の方がより精度の高い計測が可能になる。
[Industrial application field] The present invention relates to a method of calculating the center coordinates of a long hole or square hole by a three-dimensional measuring robot. [Prior art] Conventionally, in order to obtain the center coordinates of a long hole by a teaching playback type three-dimensional measurement robot by automatic measurement, a probe of a three-dimensional measurement robot is used at a measurement start point based on teaching data of a long hole to be measured. In the elongated hole, the probe is traversed or traversed in the elongated hole through the measurement starting point to read the coordinates of the first and second contact points, and to read the coordinates of the first and second contact points. The coordinates of the point are determined, and then the probe is traversed or traversed in the slot at right angles to the direction of movement through the midpoint and the coordinates of the third and fourth contact points are read, and the third and fourth coordinates are read. The coordinates of the middle point of the contact point are obtained, and the center coordinates of the elongated hole are thereby obtained. And in this case,
The operator makes the contact type probe approach the measurement start point (point considered to be the center) of the long hole, and makes the probe cross and cross in the long hole, and the coordinate data of the first to fourth contact points from the edge of the hole. The movement direction of the probe is taught in order to obtain it, and the probe is automatically operated based on the teaching data to perform automatic measurement. [Problems to be Solved by the Invention] In the conventional method, the center coordinates of the hole are not always accurately obtained due to errors in teaching and variations in the position of the hole to be measured due to the processing accuracy of the workpiece. There was a problem that can not be. That is, FIG. 4 shows an example of a conventional method of calculating the center coordinates of a long hole, where P ′ 0 is a measurement start point,
P ′ 1 is the first contact point, P ′ 2 is the second contact point, M ′ 1
Midpoint of P '1 and P' 2, P '3 is the third contact point, P'
The fourth contact point 4, M '2 is P' 'is a middle point of 4, the M' 3 and P 2 is the central point of the long hole on the measurement. But M '2 it is seen that there is a large error with respect to the true center coordinates 0. Original measurement starting point P '0 is the location seems to be the center of the elongated hole, also the first to fourth probes to obtain the coordinates of the contact point of the pre-teaching so as to vertically cross with a precise orientation within the elongated hole However, in the actual measurement, the measurement start point P ′ 0 deviates from the true center top 0 as shown in FIG. 3 due to an error in teaching, a variation in the position of the long hole to be measured, or the like. In addition, the longitudinal and transverse directions in the hole of the probe are often oblique, which deteriorates the measurement accuracy. The present invention is to solve the above-mentioned conventional problems, and provides a method of calculating the center coordinates of a long hole or a square hole by a three-dimensional measurement robot capable of improving the accuracy of calculating the center coordinates by minimizing an error as much as possible. The purpose is to do. [Means for Solving the Problem] According to the present invention, the above problem is solved by causing a probe of a three-dimensional measurement robot to approach a shape recognition measurement start point based on teaching data of a hole to be measured, within the hole, The probe is traversed or traversed in the hole through the measurement start point to read the coordinates of the first and second contact points and to determine the first midpoint coordinates of these first and second contact points, A probe passes through the midpoint and traverses or traverses the hole at right angles to the direction of movement to read the coordinates of the third and fourth contact points and a second midpoint of the third and fourth contact points. Find the coordinates,
Next, the second center coordinate based on the shape recognition measurement of the hole is set as a correct center coordinate measurement start point of the hole, and the probe passes through the correct center coordinate measurement start point and is parallel to the first transverse or longitudinal direction. To read the coordinates of the fifth and sixth contact points, determine the third midpoint coordinates of the fifth and sixth contact points, and further pass through the midpoint and the second 7 and 8 by traversing or crossing the inside of the hole at right angles to the movement direction including the measurement start point of
The three-dimensional measuring robot reads the coordinates of the contact point of the third point and obtains the correct center coordinate of the hole by one-time center coordinate measurement for obtaining the fourth middle point coordinates of the seventh and eighth contact points. Calculation method of center coordinates of hole or square hole. Can solve the problem. [Operation] In the method of the present invention having the above-described means, first, the probe is started from the measurement start point of the hole to be measured as in the conventional method, and traverses the inside of the hole vertically to determine the coordinates of the first to fourth contact points. Then, the coordinates of the middle point of the third and fourth contact points are obtained. In the conventional method, the center point is set as the center point of the hole. However, in the present invention, the measurement up to obtaining the center point is the first stage, and the center point is determined from the point as the second measurement start point. Start and perform the second-stage measurement. In the second-stage measurement, read the coordinates of the fifth to eighth contact points in the same procedure as measuring the coordinates of the first to fourth contact points, The coordinates of the middle point of the seventh and eighth contact points are calculated as the center coordinates of the hole. That is, in the method of the present invention, there are two measurement start points: a measurement start point at which the probe approaches the teaching data and a second measurement start point obtained by calculation during the measurement.
Is closer to the true center than the first measurement start point. Therefore, it can be said that the second measurement start point is a point obtained by correcting the first measurement start point. As described above, the measurement start point is determined at a position which is originally considered to be the center of the hole at the time of teaching, and is determined as the center of the true hole. The present invention performs measurement using the second measurement start point that is always closer to the true center than the first measurement start point based on the teaching data because the measurement accuracy is improved as the measurement start point is closer. The method works more advantageously in the measurement accuracy of the center coordinates. [Embodiment] An embodiment of the present invention will be described below with reference to the drawings. FIG. 3 shows an example of a three-dimensional measuring robot.
Is an orthogonal 3-axis measuring mechanism, 2 is an articulated arm provided on one arm of the measuring mechanism, 3 is an articulated arm 2
This is a contact-type probe that comes in contact with an object to be measured, which is provided at the tip of the device. The orthogonal three-axis measuring machine mechanism 1 includes a fixed base 5 horizontally arranged along a surface plate 4 on which an object to be measured is placed, and rails 6 and 7 provided on an upper surface of the fixed base 5 in a longitudinal direction. A movable base 8 movably provided, a column 9 vertically erected on the movable base 8, a head body 10 slidably disposed on the column 9, a fixed base 5 and a column 9 orthogonal to the column 9, respectively. Arm 11 slidably disposed through the head body 10
It is composed of Further, since the orthogonal three-axis measuring mechanism is well known in the related art, detailed description thereof will be omitted, but each operation step has a predetermined driving mechanism. That is, an AC three-phase servomotor for driving the moving base is provided on the moving base 8, and a pinion gear rotationally driven by the motor via a reduction gear is provided with a rack gear provided along the fixed base 5. The meshing drives the base 8 along the fixed base 5. At the top of the column 9, an AC three-phase servomotor for driving the head body 10 and a speed reducer are provided. A ball screw shaft connected to an output shaft of the speed reducer is provided in the column 9. It is screwed with a ball screw nut fixed to the head body 10, and the head body 10 is moved up and down along the column 9 by rotating the ball screw shaft by a motor. An AC three-phase servomotor for driving the arm 11 is provided on the head body 10, and a pinion gear that is rotationally driven by the motor via a speed reducer meshes with a rack gear provided along the arm 11. In arm 11
Can be driven with respect to the head body 10. The articulated arm 2 is an arm of the measuring machine mechanism 1 having three orthogonal axes.
A first rotating arm portion 12 disposed at the tip of the arm 11 and rotatably disposed coaxially with the arm 11, and a first bent arm disposed to be bent with respect to the first rotating arm portion 12 Part 13
A second rotating arm 14 disposed coaxially and rotatable with the first bending arm 13, and a second bending arm 15 disposed so as to be bent with respect to the second rotating arm 14. The contact 3 is provided at the tip of the second bent arm portion 15. Each arm has a built-in DC servomotor for driving and a speed reducer, and each arm is connected to the output shaft of these speed reducers. Is turned and bent. Reference numeral 16 denotes a control device including a computer device, which stores the posture of the three-dimensional measuring device mechanism 1 and the articulated arm 2 and the route to the same during teaching as the teaching data based on the detected value of the angle sensor, and then automatically measures In this case, the operation of each operating section is controlled based on the teaching data, and when the probe 3 comes into contact with the measurement point and generates an ON signal, the detection value of each angle sensor is read to measure the coordinates of the measurement point. . The present invention is a method for calculating the central coordinates of a long hole or square hole by automatic measurement based on teaching data in such a teaching playback type three-dimensional measurement robot, and is executed according to a computer program. More specifically, the probe 3 approaches the elongated hole 20 as shown in FIG. 1 at a measurement start point P 0 set inside the elongated hole 20, and the probe 3 traverses the elongated hole 20, thereby forming an edge of the elongated hole 20. To read the coordinates of the first and second contact points P 1 and P 2 . These coordinate values are first and second first center point M 1 coordinates of the contact point P 1, P 2 is input to the computer is calculated. When the coordinates of the middle point M 1 is obtained, then the third and fourth contact points said transverse direction perpendicular to contacting the edges of the longitudinal and allowed long hole 20 moves the probe 3 to the position of the middle point M 1 Read the coordinates of P 3 and P 4 . And the third and fourth by computer
The second center point M 2 coordinates of the contact point P 3, P 4 are calculated. The shape of the hole is recognized by the above measurement. Then, the midpoint M 2
Is also a second measurement starting point, moving the probe to a second measurement starting point M 2, and start to contact the edge of the longitudinal direction perpendicular to slot 20 is transverse to the elongated hole 20 from this point Te are read fifth and sixth contact point P 5, the coordinates of P 6, its third midpoint M 3 coordinates is computed from these coordinates. Further as read the longitudinal direction and the seventh and the contact point P 7 of the 8 parallel to contacting the edge of the cross is not long hole 20, the coordinates of P 8 moves the probe 3 to the position of the middle point M 3, these with seventh and fourth middle point M 4 coordinates of the contact point which is calculated from the eighth contact point coordinates P 7, P 8 of it is an coordinates of the center point of the slot 20. That is, the correct center coordinates can be measured by a single center coordinate measurement based on the measurement for the hole shape recognition. In the example shown in FIG. 1, the measurement start point P 0 based on the teaching data is far away from the true center point 0, and the vertical and transverse directions within the oblong hole of the probe are oblique.
Although the center point (M 2 in FIG. 1) obtained by the conventional method has a large error with respect to the true center point 0, in the method of the present invention, the center point is closer to the true center point 0 than the measurement start point P 0 . to continue further measurement from the second measurement starting point, measured on the center point M 4 of obtained from it it can be seen that a high measurement with close proximity accuracy true center point 0. In the measurement described in the embodiment, the first, second, fifth, and sixth contact points P 1 , P 2 , P 5 , and P 6 are set in the transverse direction of the elongated hole 20, and
Third, the fourth, seventh and eighth contact points P 3 , P 4 , P 7 , P 8 are taken in the longitudinal direction, but they may be reversed. However, when the longitudinal and transverse directions in the elongated hole of the probe are greatly inclined, the former enables more accurate measurement.

【発明の効果】【The invention's effect】

以上述べたように発明の三次元計測ロボットによる長
穴又は角穴の中心座標を算出方法では、ティーチングデ
ータによる計測開始点からプローブをスタートさせる上
記穴の形状認識のための計測により上記穴の正しい中心
座標のための計測開始点を求め、次に前記計測開始点に
比べて真の中心座標により近づいた上記中心座標のため
の計測開始点からプローブをスタートさせる上記中心座
標のための計測により長穴又は角穴の中心座標を単なる
1回で求めるため、極めて能率的であり、しかも、ティ
ーチングの誤差や計測対象となる穴位置のバラツキによ
り計測開始点が真の中心座標より大きく外れても精度の
高い中心座標の算出が可能になる。
As described above, in the method of calculating the center coordinates of a long hole or a square hole by the three-dimensional measurement robot of the present invention, the probe is started from the measurement start point based on the teaching data. A measurement start point for the center coordinate is obtained, and then the probe is started from the measurement start point for the center coordinate which is closer to the true center coordinate than the measurement start point. Since the center coordinates of a hole or square hole are determined only once, it is extremely efficient. In addition, even if the measurement start point deviates greatly from the true center coordinates due to teaching errors or variations in the position of the hole to be measured, the accuracy is high. The calculation of the center coordinate with a high value becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例に係る長穴の中心座標を算出す
る計測の説明図、第2図は長穴又は角穴の中心座標を算
出する方法の手順を示すフローチャート、第3図は三次
元計測ロボットの全体図、第4図は従来の長穴の中心座
標を算出する計測の説明図である。 3〜プローブ、20〜長穴 P0〜計測開始点、P1〜第1の接触点 P2〜第2の接触点、P3〜第3の接触点 P4〜第4の接触点、P5〜第5の接触点 P6〜第6の接触点、P7〜第7の接触点 P8〜第8の接触点 M1〜P1とP2の中点 M2〜P3とP4の中点(第2の計測開始点) M3〜P5とP6の中点 M4〜P7とP8の中点(計測により算出した穴の中心)
FIG. 1 is an explanatory view of measurement for calculating the center coordinates of a long hole according to an embodiment of the present invention, FIG. 2 is a flowchart showing a procedure of a method of calculating the center coordinates of a long hole or a square hole, and FIG. FIG. 4 is an overall view of a three-dimensional measuring robot, and FIG. 4 is an explanatory view of measurement for calculating the center coordinates of a conventional elongated hole. 3 probe, 20 slot P 0 ~ measurement starting point, P 1 ~ first contact point P 2 ~ second contact point, P 3 ~ third contact point P 4 ~ fourth contact point, P 5 to fifth contact point P 6 ~ sixth contact point, P 7 ~ 7 midpoint M 2 to P 3 and P contact point P 8 contact points M 1 th to 8 to P 1 and P 2 of 4 midpoint midpoint (second measurement starting point) M 3 to P 5, the midpoint M 4 to P 7 and P 8 in the P 6 (the center of the hole was calculated by the measurement)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】計測対象となる穴のティーチングデータに
よる形状認識計測開始点に三次元計測ロボットのプロー
ブをアプローチさせて該穴内において、プローブを前記
計測開始点を通って穴内を横断又は縦断させて第1及び
第2の接触点の座標を読みとるとともにこれらの第1及
び第2の接触点の第1中点座標を求め、次にプローブを
前記中点を通りかつ前記移動方向と直角に穴内を縦断又
は横断させて第3及び第4の接触点の座標を読みとると
ともにこれらの第3及び第4の接触点の第2の中点座標
を求めて、次いで、上記穴の形状認識計測に基づく上記
第2中点座標を上記穴の正しい中心座標計測開始点と
し、上記プローブを前記正しい中心座標計測開始点を通
りかつ前記最初の横断又は縦断方向と平行に穴内を横断
又は縦断させて第5及び第6の接触点の座標を読みとる
とともにこれら第5及び第6の接触点の第3中点座標を
求め、さらに、この中点を通りかつ前記第2の計測開始
点を含む移動方向と直角に穴内を縦断又は横断させて第
7及び第8の接触点の座標を読みとり、これら第7及び
第8の接触点の第4中点座標を求める1回の中心座標計
測によって穴の正しい中心座標とすることを特徴とする
三次元計測ロボットによる長穴又は角穴の中心座標の算
出方法。
1. A probe of a three-dimensional measuring robot approaches a shape recognition measurement start point based on teaching data of a hole to be measured, and in the hole, a probe is traversed or cut through the hole through the measurement start point. The coordinates of the first and second contact points are read, and the first midpoint coordinates of these first and second contact points are determined. Then, the probe passes through the midpoint and passes through the hole at right angles to the moving direction. Read the coordinates of the third and fourth contact points by traversing or traversing and determine the second midpoint coordinates of these third and fourth contact points, and then, based on the shape recognition measurement of the hole, The second center point coordinate is defined as the correct center coordinate measurement start point of the hole, and the probe is traversed or traversed in the hole through the correct center coordinate measurement start point and parallel to the first traversal or longitudinal direction. And the coordinates of the sixth contact point are read, the third midpoint coordinates of the fifth and sixth contact points are obtained, and the third midpoint coordinate is perpendicular to the moving direction passing through the midpoint and including the second measurement start point. The coordinates of the seventh and eighth contact points are read by traversing or traversing the inside of the hole, and the center coordinates of the hole are determined by a single center coordinate measurement for obtaining the fourth middle point coordinates of the seventh and eighth contact points. A method for calculating the center coordinates of a long hole or a square hole by a three-dimensional measuring robot, characterized in that:
JP62309588A 1987-12-09 1987-12-09 Calculation method of center coordinates of long hole or square hole by 3D measurement robot Expired - Lifetime JP2650036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62309588A JP2650036B2 (en) 1987-12-09 1987-12-09 Calculation method of center coordinates of long hole or square hole by 3D measurement robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62309588A JP2650036B2 (en) 1987-12-09 1987-12-09 Calculation method of center coordinates of long hole or square hole by 3D measurement robot

Publications (2)

Publication Number Publication Date
JPH01152303A JPH01152303A (en) 1989-06-14
JP2650036B2 true JP2650036B2 (en) 1997-09-03

Family

ID=17994839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62309588A Expired - Lifetime JP2650036B2 (en) 1987-12-09 1987-12-09 Calculation method of center coordinates of long hole or square hole by 3D measurement robot

Country Status (1)

Country Link
JP (1) JP2650036B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2653560B2 (en) * 1991-02-21 1997-09-17 シャープ株式会社 Hole position detector

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4485453A (en) * 1982-03-29 1984-11-27 International Business Machines Corporation Device and method for determining the location and orientation of a drillhole

Also Published As

Publication number Publication date
JPH01152303A (en) 1989-06-14

Similar Documents

Publication Publication Date Title
US4653011A (en) Method of measuring by coordinate measuring instrument and coordinate measuring instrument
JPS6128921B2 (en)
JPH07248213A (en) Apparatus for measuring three-dimensional shape
JP2650036B2 (en) Calculation method of center coordinates of long hole or square hole by 3D measurement robot
JPH09264738A (en) Method for measurement of gear and machine therefor
JP2933187B2 (en) Three-dimensional measuring devices
JP3042157U (en) Three-dimensional coordinate measuring machine
JP3064111B2 (en) Comparison judgment device
JPS5997873A (en) Method of correcting positional displacement of work in robot
JP2552884B2 (en) A method for finding holes in automatic measurement of a teaching playback type three-dimensional measuring robot.
JPH08247755A (en) Three-dimensional coordinate measuring machine
JP2538287B2 (en) Origin adjustment method for horizontal joint robot
JPH0726839B2 (en) Gear tooth profile measuring device
JP2627006B2 (en) Method for controlling mutual distance between robot and workpiece and calibration data creation device therefor
JP7458579B2 (en) A three-dimensional measuring machine and a measuring method using a three-dimensional measuring machine,
JP2758810B2 (en) Shape measurement method
JP2572936B2 (en) Shape measuring instruments
JPH0718698B2 (en) Automatic dimension measurement method using non-contact type displacement gauge
JP3064109B2 (en) Articulated comparative measuring device
JPS63253206A (en) Shape measuring instrument
JP3478387B2 (en) Edge position detecting method and device, and edge distance measuring method and device
JPH0743606Y2 (en) Equipment for measuring internal gears
JPH0637444Y2 (en) Machined surface vertical direction detector
TWM638219U (en) A teaching machine and an automatic welding equipment of using the same
JP2726658B2 (en) Processing line teaching method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 11