JP2648183B2 - Extrusion molding method of inorganic lightweight plate - Google Patents

Extrusion molding method of inorganic lightweight plate

Info

Publication number
JP2648183B2
JP2648183B2 JP23793388A JP23793388A JP2648183B2 JP 2648183 B2 JP2648183 B2 JP 2648183B2 JP 23793388 A JP23793388 A JP 23793388A JP 23793388 A JP23793388 A JP 23793388A JP 2648183 B2 JP2648183 B2 JP 2648183B2
Authority
JP
Japan
Prior art keywords
extruded
plate
fiber
weight
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23793388A
Other languages
Japanese (ja)
Other versions
JPH0286407A (en
Inventor
郁夫 讃岐
理 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP23793388A priority Critical patent/JP2648183B2/en
Publication of JPH0286407A publication Critical patent/JPH0286407A/en
Application granted granted Critical
Publication of JP2648183B2 publication Critical patent/JP2648183B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は無機質軽量板材の押出成形方法に関し、詳
しくは無石綿配合とされた無機質軽量板材の押出成形方
法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for extruding an inorganic lightweight plate, and more particularly, to a method for extruding an inorganic lightweight plate containing no asbestos.

〔従来の技術〕[Conventional technology]

従来、セメント等の水硬性物質を原料とする成形品の
補強繊維として石綿が非常に有効であることが周知であ
り、押出成形においては、上記に加え押出成形材料に滑
性並びに未硬化成形品に対する保形性、保水性をも付与
すると言った利点を有する。
Conventionally, it is well known that asbestos is very effective as a reinforcing fiber for molded articles made of a hydraulic substance such as cement as a raw material. It has the advantage of providing shape retention and water retention.

しかしながら、石綿は粉塵公害の原因物質であること
より使用の全廃が強く要請され、これに代わる繊維が種
々模索されている現状である。
However, asbestos is a cause of dust pollution, and its use is strongly required to be completely abolished. At present, various fibers are being sought.

一方、押出成形法により無機質製品を製造する場合、
どうしても組織が緻密となり比重が大きくなり易く、軽
量化を目的として各種軽量骨材を添加することが有る。
On the other hand, when manufacturing inorganic products by extrusion molding method,
Inevitably, the structure becomes dense and the specific gravity tends to increase, and various lightweight aggregates may be added for the purpose of weight reduction.

この場合も石綿はマトリックス強度向上に大きく寄与
しており、石綿全廃の要請下においてこれに代わる繊維
を見出すのは容易でない。
Also in this case, asbestos greatly contributes to the improvement of the matrix strength, and it is not easy to find an alternative fiber under the request of completely eliminating asbestos.

〔従来技術の問題点〕[Problems of the prior art]

上記現状において製品の軽量化を図るため、粒径の大
きな発泡骨材を使用する場合はそれだけセメントマトリ
ックスの占める容積割合が減るため、長大な補強繊維を
用いる必要が有るが、石綿以外のガラス繊維、金属繊維
などで、長大な繊維を用いると押出成形性が低下すると
同様に成形品表面に繊維端が飛び出し、成形品外観が非
常に悪くなり、表面平滑性も損なわれる欠点が有る。
In order to reduce the weight of the product in the current situation described above, if a foamed aggregate having a large particle size is used, the volume ratio occupied by the cement matrix will be reduced accordingly, so it is necessary to use a long reinforcing fiber, but glass fibers other than asbestos If a long fiber such as a metal fiber is used, the extrudability deteriorates, and similarly, the fiber ends protrude from the surface of the molded product, so that the appearance of the molded product becomes extremely poor and the surface smoothness is impaired.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

この発明は上記欠点に鑑み、表面平滑性に富み、しか
も破壊強度も強くさらには破壊後の破片の飛散等も有効
に防止できる無機質軽量板材の押出成形方法を提供する
ことを目的としてなされたものである。
In view of the above drawbacks, the present invention has been made with the object of providing an extrusion method of an inorganic lightweight plate material which is rich in surface smoothness, has high breaking strength, and can effectively prevent scattering of fragments after breaking. It is.

〔課題を解決するに至った技術〕[Technology that solved the problem]

即ち、この発明の無機質軽量板材の押出成形方法はセ
メント等の水硬性原料、シリカ質骨材、パルプ繊維、無
機質系滑材及び押出成形助剤からなる常法に従った無機
質押出成形配合物に対し、5〜30重量%の軽量骨材と、
0.3〜10重量%の径0.3mm又は幅が1mm以上で長さが15mm
以上の石綿以外の補強繊維を添加し、水と混練して押出
原料とし、該原料より板状体を押出成形し、該押出成形
板上に前記押出原料のうち、軽量骨材と補強繊維とを含
まない押出原料を板状に押出成形して積層し、該積層体
をプレスし、一体化した後、常法により養生硬化させる
ことを特徴とするものである。
That is, the extrusion method of the inorganic lightweight plate material of the present invention is performed by a conventional method comprising a hydraulic material such as cement, a siliceous aggregate, pulp fiber, an inorganic lubricant and an extrusion molding aid. On the other hand, a lightweight aggregate of 5 to 30% by weight,
0.3 to 10% by weight 0.3mm in diameter or 1mm or more in width and 15mm in length
The above-mentioned reinforcing fibers other than asbestos are added, kneaded with water to obtain an extruded raw material, and a plate-like body is extruded from the raw material. Is extruded into a plate, extruded and laminated, and the laminated body is pressed and integrated, and then cured and cured by an ordinary method.

〔作用〕[Action]

この発明におけるセメント等の水硬性原料、珪砂等の
骨材、無機質系滑材、パルプ繊維及び軽量骨材はいずれ
も、無機質押出成形における従来の配合と同一であり、
例えば30〜60重量%のセメント等の水硬性原料と、30〜
60重量%の珪砂等の骨材と、3〜30重量%の無機質系滑
材と、1〜8重量%のパルプ繊維と0.3〜1重量%の押
出成形助剤とからなる配合とされ特に説明するような特
徴は無い。
Hydraulic raw materials such as cement in the present invention, aggregates such as silica sand, inorganic lubricating materials, pulp fibers and lightweight aggregates are all the same as the conventional compounding in inorganic extrusion molding,
For example, 30 to 60% by weight of a hydraulic material such as cement,
It is a composition comprising 60% by weight of an aggregate such as silica sand, 3 to 30% by weight of an inorganic lubricant, 1 to 8% by weight of pulp fiber and 0.3 to 1% by weight of an extrusion aid. There is no feature to do.

上記配合原料に添加される5〜30重量%の軽量骨材
は、押出成形物の軽量化をはかるためで、粒径は3mm以
下であればパーライト、人工軽量骨材等任意のものが使
用できる。
The lightweight aggregate of 5 to 30% by weight to be added to the compounding raw material is used to reduce the weight of the extruded product. If the particle size is 3 mm or less, any material such as pearlite and artificial lightweight aggregate can be used. .

この軽量骨材の添加量を5〜30重量%とするのは、5
重量%より少ないと軽量化の目的が達成されず、30重量
%より多くなると後述の繊維補強効果をもってしても成
形品の強度低下を招来し不都合だからである。
The amount of the lightweight aggregate to be 5 to 30% by weight is 5
If the amount is less than 30% by weight, the object of weight reduction cannot be achieved. If the amount is more than 30% by weight, even if it has a fiber reinforcing effect described below, the strength of the molded article is reduced, which is inconvenient.

また、上記配合原料に添加される石綿以外の補強繊維
としては、ポリプロピレン繊維、フィブリル化されたポ
リプロピレン繊維、合成繊維又はこれらを集束剤で集束
したもの、ステンレス繊維、スチール繊維、炭素繊維を
集束剤で集束したもの、あるいは木毛、竹繊維等が使用
される。
Further, as the reinforcing fibers other than asbestos added to the compounding raw material, polypropylene fibers, fibrillated polypropylene fibers, synthetic fibers or those obtained by bundling these with a sizing agent, stainless steel fibers, steel fibers, and carbon fibers are used as sizing agents. Used, or wool, bamboo fiber, or the like.

上記繊維はいずれも径0.3mm以上又は幅1mm以上で長さ
15mm以上のものが使用される。
All of the above fibers are 0.3 mm or more in diameter or 1 mm or more in width and length
15mm or more is used.

この理由は軽量骨材を配合した原料において、セメン
トマトリックスの補強として長大な繊維が必要であるか
らであり、径又は幅及び長さが上述の範囲より短いと曲
げ破壊強度が充分に上げられないからである。
The reason for this is that, in the raw material containing the lightweight aggregate, a long fiber is necessary for reinforcing the cement matrix, and if the diameter, width, and length are shorter than the above ranges, the bending fracture strength cannot be sufficiently increased. Because.

なお、上述の範囲より大きい場合は均一混合並びに押
出成形できる範囲において可能な限り長くすることが出
来る。
In addition, when it is larger than the above range, it can be made as long as possible within a range where uniform mixing and extrusion can be performed.

上述の長大な繊維を添加した押出原料により押出成形
すると、表面に繊維が露出し、かつ、表面状態も非常に
悪い。
When extrusion molding is performed using the above-described extruded raw material to which long fibers are added, the fibers are exposed on the surface and the surface condition is very poor.

そこで、上記配合原料中補強繊維と軽量骨材を除いた
原料にて、板状体を別途押出成形し、前述の押出成形品
表面に積層して表面を平滑に仕上げるのである。
Therefore, a plate-like body is separately extruded with the raw materials except for the reinforcing fiber and the lightweight aggregate in the above-mentioned raw materials, and is laminated on the surface of the above-mentioned extruded product to finish the surface smoothly.

上記積層体はプレスされるが、この場合下地となる板
材表面には補強繊維の一部が露出していること及び表面
がささくれたように平滑状態となっていないことにより
接触面積の増加が図れ、積層体は層間剥離を起こすこと
なく一体化される。
The laminate is pressed, but in this case, the contact area can be increased because a part of the reinforcing fiber is exposed on the surface of the base material, and the surface is not smooth as if the surface was cramped. The laminate is integrated without delamination.

上記プレスは平板プレスの他、ロールプレスでも良
い。
The press may be a roll press other than a flat plate press.

また、このプレス時に同時に表面凹凸模様を付するこ
とが出来る。
In addition, a surface unevenness pattern can be formed simultaneously with this pressing.

そして、以後常法により養生硬化させれば、きわめて
強靭な板材が成形出来るのである。
Then, if the composition is cured and hardened by a conventional method, an extremely tough plate material can be formed.

〔実施例〕〔Example〕

次にこの発明の実施例を説明する。 Next, an embodiment of the present invention will be described.

(実施例1) 表1の(イ),(ロ)に示す材料を用意し、ニーダー
で均一混合し、材料(イ)を幅20cm、厚さ2cmに押出成
形すると同時に同一幅で厚さ5mmに材料(ロ)を前記材
料(イ)の押出成形板上に押出成形し、パレット上に受
け、次いでロールプレスにより圧縮した。
(Example 1) The materials shown in (a) and (b) of Table 1 were prepared and uniformly mixed with a kneader, and the material (a) was extruded to a width of 20 cm and a thickness of 2 cm, and at the same time, the same width and a thickness of 5 mm The material (b) was extruded on an extruded plate of the material (a), received on a pallet, and then compressed by a roll press.

表1中MC(メチルセルロース)及び水の添加量は外割
重量%を示す。
In Table 1, the amounts of MC (methylcellulose) and water are shown by weight percent.

上記において、材料(イ)の押出成形にあっては表面
に均一分散状にポリプロピレン繊維の端部が露出し、か
つ、表面がささくれた状態であっが、材料(ロ)の成形
板積層によって完全に覆いかくされ、きわめて平滑な表
面の板材となった。
In the above, in the extrusion molding of the material (a), the end of the polypropylene fiber is exposed in a uniformly dispersed state on the surface, and the surface is flared, but the material (b) is completely formed by laminating the molded plate. It became a plate with a very smooth surface.

次に得た板材を24時間自然養生後、160℃×12時間オ
ートクレーブ養生を行ない、その直後に破壊強度試験を
行なったところ、120kg/cm2の強度を示し、かつ、破壊
後は試験片が分割されたもののこれらは補強繊維により
破片がたれ下った状態となり***して落下することはな
かった。
Next, after the obtained plate material was naturally cured for 24 hours, it was subjected to autoclave curing at 160 ° C. for 12 hours, and immediately after that, when a fracture strength test was performed, it showed a strength of 120 kg / cm 2 , and after the fracture, the test piece was Although they were divided, they were broken down by the reinforcing fibers and did not fall apart.

(実施例2) 実施例1に示した配合中補強繊維としてのポリプロピ
レン繊維に代え炭素繊維を集束したものを用いた他は実
施例1と同様の配合として表2に示す材料(イ)、
(ロ)を用い、実施例1と同様板材を成形し、積層、プ
レス後養生硬化を行い、破壊強度試験を行なったとこ
ろ、122kg/cm2の強度を示し、破片も実施例1と同じ状
態にたれ下り完全に***落下することは無かった。
(Example 2) Materials (A) shown in Table 2 were used in the same composition as in Example 1 except that a carbon fiber bundle was used instead of the polypropylene fiber as the reinforcing fiber in the composition shown in Example 1.
Using (b), a plate material was formed in the same manner as in Example 1, laminated, pressed, cured and cured, and subjected to a fracture strength test. The result showed a strength of 122 kg / cm 2 , and the fragments were in the same state as in Example 1. It did not fall and fall completely.

(実施例3) 実施例1に示した配合中補強繊維としてのポリプロピ
レン繊維に代えステンレス繊維を用いた他は実施例1と
同様の配合として表3に示す材料(イ),(ロ)を用
い、実施例1と同様板材を成形し、積層、プレス後養生
硬化を行い、破壊強度試験を行なったところ230kg/cm2
の強度を示し、かつ、破片も実施例1と同様な状態とな
った。
(Example 3) Materials (a) and (b) shown in Table 3 were used in the same composition as in Example 1 except that stainless steel fiber was used instead of polypropylene fiber as the reinforcing fiber in the composition shown in Example 1. , by molding the same sheet as in example 1, stacked and pressed after curing cured, 230 kg was subjected to a breaking strength test / cm 2
And the fragments were in the same state as in Example 1.

〔効果〕 この発明は以上説明したように強度向上は図れるが、
成形性に悪影響を及ぼす補強繊維を含む配合原料で板材
を成形した場合、その表面を別途成形性の良い材料で押
出成形した板材を積層し一体化しているので、表面平滑
性に富む板材が成形でき、しかも積層面は凹凸に富む面
とされているので硬化時に強固に一体化し、層間密着も
強く、軽量骨材の大量使用と相俟って軽量かつ高強度な
板材が押出成形できるのである。
[Effect] Although the present invention can improve the strength as described above,
When a plate material is molded from a blended material containing reinforcing fibers that adversely affect formability, the surface is extruded from a material with good moldability, and the plate material is laminated and integrated. In addition, since the laminated surface is a surface with rich irregularities, it is firmly integrated at the time of curing, strong adhesion between layers, and it is possible to extrude a lightweight and high-strength plate material with the use of a large amount of lightweight aggregate. .

さらに、補強繊維は太く長いため、板材が何らかの理
由で破損されても破片が脱落することが無く、高所の壁
面構築用壁板として使用した場合安全であるなどの効果
を付与出来るのである。
Further, since the reinforcing fibers are thick and long, even if the plate material is broken for some reason, the fragments do not fall off, and it is possible to provide an effect such as being safe when used as a wall plate for constructing a wall at a high place.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】セメント等の水硬性原料、シリカ質骨材、
パルプ繊維、無機質系滑材及び押出成形助剤からなる常
法に従った無機質押出成形配合物に対し、5〜30重量%
の軽量骨材と、0.3〜10重量%の径0.3mm又は幅が1mm以
上で長さが15mm以上の石綿以外の補強繊維を添加し、水
と混練して押出原料とし、該原料より板状体を押出成形
し、該押出成形板上に前記押出原料のうち、軽量骨材と
補強繊維とを含まない押出原料を板状に押出成形して積
層し、該積層体をプレスし、一体化した後、常法により
養生硬化させることを特徴とする無機質軽量板材の押出
成形方法。
1. A hydraulic material such as cement, a siliceous aggregate,
5 to 30% by weight based on an inorganic extruded composition according to a conventional method comprising pulp fiber, inorganic lubricating material and extrusion aid.
Of lightweight aggregate and 0.3 to 10% by weight of reinforcing fibers other than asbestos having a diameter of 0.3 mm or a width of 1 mm or more and a length of 15 mm or more, and kneading with water to obtain an extruded raw material, and a plate-like material from the raw material An extruded body is extruded, and on the extruded plate, among the extruded raw materials, extruded raw materials not containing the lightweight aggregate and the reinforcing fiber are extruded into a plate shape and laminated, and the laminated body is pressed and integrated. And then curing and curing by a conventional method.
JP23793388A 1988-09-22 1988-09-22 Extrusion molding method of inorganic lightweight plate Expired - Lifetime JP2648183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23793388A JP2648183B2 (en) 1988-09-22 1988-09-22 Extrusion molding method of inorganic lightweight plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23793388A JP2648183B2 (en) 1988-09-22 1988-09-22 Extrusion molding method of inorganic lightweight plate

Publications (2)

Publication Number Publication Date
JPH0286407A JPH0286407A (en) 1990-03-27
JP2648183B2 true JP2648183B2 (en) 1997-08-27

Family

ID=17022607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23793388A Expired - Lifetime JP2648183B2 (en) 1988-09-22 1988-09-22 Extrusion molding method of inorganic lightweight plate

Country Status (1)

Country Link
JP (1) JP2648183B2 (en)

Also Published As

Publication number Publication date
JPH0286407A (en) 1990-03-27

Similar Documents

Publication Publication Date Title
US4528238A (en) Production of fibre-reinforced cementitious composition
JP2888629B2 (en) Fiber reinforced cement composition
JP2619908B2 (en) Manufacturing method of inorganic plate
JP2648183B2 (en) Extrusion molding method of inorganic lightweight plate
JPH06293546A (en) Production of hydraulic and inorganic material molding
JPH0816020B2 (en) Method for producing inorganic extrudate
JP2574182B2 (en) Extrusion molding method of inorganic plate
JP2688155B2 (en) Extrusion molding method for fiber reinforced inorganic products
JPH0328394B2 (en)
JP2755505B2 (en) Extrusion molding method for cement products
KR102248035B1 (en) Construction material composition without using asbestos for pressure extrusion type and its production
JPH061648A (en) Extrusion molding method for cement-based building material
JPS6219385B2 (en)
JP2702900B2 (en) Extrusion building material cement composition
JPS6218511B2 (en)
JPH0733298B2 (en) Method for producing inorganic extrudate
JPH0733492A (en) Hydraulic inorganic composition
KR960012713B1 (en) Method for preparing carbon fiber reinforced cement composites
JPH07108798B2 (en) Cement composition and method for producing cement molded product using the same
JPH06144913A (en) Fiber reinforced cement plate
JP3737173B2 (en) Light wood cement board with fiber
JPH0781990A (en) Cement composition and cement hardened body
JP2674915B2 (en) Extrusion molding method for cement-based building materials
JP2709757B2 (en) Building board manufacturing method
JP3215353B2 (en) Calcium silicate plate and method for producing the same