JP2646729B2 - Electrostatic floating device - Google Patents

Electrostatic floating device

Info

Publication number
JP2646729B2
JP2646729B2 JP4493089A JP4493089A JP2646729B2 JP 2646729 B2 JP2646729 B2 JP 2646729B2 JP 4493089 A JP4493089 A JP 4493089A JP 4493089 A JP4493089 A JP 4493089A JP 2646729 B2 JP2646729 B2 JP 2646729B2
Authority
JP
Japan
Prior art keywords
electrode
electrodes
floating device
electrostatic
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4493089A
Other languages
Japanese (ja)
Other versions
JPH02228263A (en
Inventor
正明 荻原
道夫 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP4493089A priority Critical patent/JP2646729B2/en
Priority to EP19900301900 priority patent/EP0384751B1/en
Priority to DE1990623522 priority patent/DE69023522T2/en
Publication of JPH02228263A publication Critical patent/JPH02228263A/en
Priority to US08/074,283 priority patent/US5303117A/en
Application granted granted Critical
Publication of JP2646729B2 publication Critical patent/JP2646729B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Non-Mechanical Conveyors (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、帯電物体を静電気的な力を利用して容器
に非接触状態に保持するための静電浮遊装置に関し、主
として宇宙の微小重力環境下での材料開発、地上での粉
体工業や原子力工業における物体の非接触ハンドリング
に応用できるものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic floating device for holding a charged object in a non-contact state with a container by using an electrostatic force, and mainly relates to microgravity in space. It can be applied to material development under the environment, non-contact handling of objects in the powder industry and the nuclear industry on the ground.

[従来の技術] 物体を空間の一点に非接触状態で保持する必要がある
場合として宇宙の微小重力環境での材料開発や地上での
粉体工業や原子力工業における非接触ハンドリングなど
がある。
2. Description of the Related Art Materials that need to be held in a non-contact state at one point in space include materials development in a microgravity environment in space and non-contact handling in the powder industry and nuclear power industry on the ground.

例えば宇宙での材料開発においては、微小重力環境を
利用して材料を無容器で加熱、溶融、凝固処理を行うこ
とが考えられているが、浮遊している物体が必ずしも一
定の位置にとどまっているわけでないため何等かの方法
で空間の一点に非接触状態で保持することが必要となっ
ている。
For example, in the development of materials in space, heating, melting, and solidification of materials using a microgravity environment without a container is considered, but floating objects always remain at fixed positions. Therefore, it is necessary to hold a point in space in a non-contact state by some method.

その一つの方法として静電場を用いる方法があり、対
象とする物体が帯電物体であればこれを空間の所定の位
置に浮遊させて保持させることが可能である。
As one of the methods, there is a method using an electrostatic field. If the target object is a charged object, the object can be floated and held at a predetermined position in space.

このような静電場を利用した従来の浮遊装置は、例え
ば第5図(a)に示すように、2つの皿形電極1,1を上
下に配置して直流電源2によって電界Eを形成するよう
にしたり、同図(b)に示すように、4つの球形電極3,
3,3,3を立方体の対角線の端打4か所に配置してそれぞ
れに独立した直流電源4を接続することにより電界Eを
形成するようにしており、電極間に置かれた物体の位置
をビデオカメラなどでモニタし、定位置からずれると元
の位置に戻すように電極電圧をコントロールすようにな
っている。
In a conventional floating device using such an electrostatic field, for example, as shown in FIG. 5 (a), an electric field E is formed by arranging two dish-shaped electrodes 1, 1 above and below by a DC power supply 2. Or, as shown in FIG.
The electric field E is formed by arranging 3, 3, 3 at the four corners of the diagonal line of the cube, and connecting the independent DC power supplies 4 to each other, so that the position of the object placed between the electrodes is Is monitored by a video camera or the like, and the electrode voltage is controlled so as to return to the original position when it deviates from a fixed position.

[発明が解決しようとする課題] ところが、従来の浮遊装置では、電界Eの形成のため
皿形電極1間や球形電極3間に直流電圧を印加するだけ
であるため、物体の位置の変動に対し、ビデオカメラな
どでモニタして位置検出を行い、非常に応答性良く、電
源をコントロールして安定位置に戻すことが技術的に難
しく、物体の安定浮遊が難しいという問題がある。
[Problems to be Solved by the Invention] However, in the conventional floating device, since only a DC voltage is applied between the dish-shaped electrodes 1 and between the spherical electrodes 3 to form the electric field E, fluctuations in the position of the object may occur. On the other hand, there is a problem that it is technically difficult to control the power supply to return to a stable position by controlling the power supply and to return to a stable position by monitoring the position by monitoring with a video camera or the like, and it is difficult to stably float the object.

また、皿形電極1間に発生する電界Eでは、物体を横
方向に拘束する閉じ込み力が無く、球形電極3間に発生
する電界Eでも横方向の閉じ込み力が弱いため物体を散
逸し易いという問題がある。
Also, in the electric field E generated between the dish-shaped electrodes 1, there is no confining force for restraining the object in the lateral direction, and even in the electric field E generated between the spherical electrodes 3, the object is dissipated because the lateral confining force is weak. There is a problem that it is easy.

そこで、これらの欠点を解消するため格子形電極を用
いる静電浮遊装置に新たに提案しており(特願昭63−29
6782参照)、例えば第5図(c)に示すように、平行な
2本1組の棒状電極5を2組互いに直交させて空間を形
成するように配置し、これら棒状電極5の各組に交流電
源6または直流分を重畳した交流電源を接続するように
して構成されている。
Therefore, in order to solve these drawbacks, a new proposal has been made for an electrostatic floating device using a grid electrode (Japanese Patent Application No. 63-29).
For example, as shown in FIG. 5 (c), two pairs of parallel rod-shaped electrodes 5 are arranged so as to form a space orthogonal to each other and form a space. The AC power supply 6 or an AC power supply in which a DC component is superimposed is connected.

このような偶数組の棒状電極5を用いる静電浮遊装置
によれば、交流方式で立体構造であるため、皿形電極や
球状電極の場合に比べ、制御変数が電圧と周波数の2つ
になり、位置制御性を向上できるが、物体を安定に浮遊
させることができる空間の範囲が小さく、改良の余地が
ある。
According to the electrostatic floating device using such an even number of pairs of rod-shaped electrodes 5, the control variables are two, voltage and frequency, as compared with the case of a dish-shaped electrode or a spherical electrode, because of the three-dimensional structure of the alternating current method. Although the position controllability can be improved, the range of the space in which the object can stably float is small, and there is room for improvement.

この発明は、かかる現状に鑑みてなされたもので、安
定に浮遊させることができる範囲を拡大することができ
るとともに、制御変数を増加できる静電浮遊装置を提供
しようとするものである。
The present invention has been made in view of such a situation, and an object of the present invention is to provide an electrostatic floating device capable of expanding a range in which a stable floating can be performed and increasing a control variable.

[課題を解決するための手段] 上記課題を解決するためこの発明の静電浮遊装置は、
帯電物体を静電気的な力で空間に保持する静電浮遊装置
において、中心軸方向の閉じ込め力を発生させる第1電
極および中心軸方向と直交する方向の閉じ込め力を発生
させるための第2電極を中心部に空間を形成して設け、
前記第1電極間に直流電源を接続する一方、前記第2電
極間に少なくとも交流分を含む電源を接続したことを特
徴とするものである。
[Means for Solving the Problems] In order to solve the above problems, the electrostatic floating device of the present invention comprises:
In an electrostatic floating device for holding a charged object in a space by an electrostatic force, a first electrode for generating a confinement force in a central axis direction and a second electrode for generating a confinement force in a direction orthogonal to the central axis direction are provided. Form a space in the center and provide
A DC power source is connected between the first electrodes, and a power source including at least an AC component is connected between the second electrodes.

[作用] この静電浮遊装置によれば、直流が印加される中心軸
方向の球状電極などの第1電極と、これと直交する交流
または直流分を含む交流が印加される4本の棒状電極ま
たは3つのリング状電極などの第2電極とで電界を形成
するようにしており、互いに直角方向に閉じ込め力を発
生させて空間の広範囲の部分で帯電物体を安定した状態
で浮遊させることができるようにするとともに、電源と
して交流および直流の使用をも可能とし、交流及び直流
電圧のみならず、周波数も変えることで制御パラメータ
の増大をはかっている。
[Operation] According to this electrostatic floating device, a first electrode such as a spherical electrode in the direction of the central axis to which a direct current is applied, and four rod-shaped electrodes to which an alternating current or an alternating current including a direct current component is applied. Alternatively, an electric field is formed with a second electrode such as three ring-shaped electrodes, and a confining force is generated in a direction perpendicular to each other, so that the charged object can float in a stable state over a wide area of the space. In addition, AC and DC can be used as a power source, and the control parameters are increased by changing not only the AC and DC voltages but also the frequency.

[実施例] 以下、この発明の実施例を図面に基づき詳細に説明す
る。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図はこの発明の静電浮遊装置にかかる一実施例の
概略斜視図である。
FIG. 1 is a schematic perspective view of one embodiment according to the electrostatic floating device of the present invention.

この静電浮遊装置10では、軸方向の閉じ込め力を発生
させる第1電極11と、これと直交する方向の閉じ込め力
を発生する第2電極12とを備えている。
The electrostatic floating device 10 includes a first electrode 11 for generating a confinement force in an axial direction and a second electrode 12 for generating a confinement force in a direction orthogonal to the first electrode.

そこで、説明の便宜上、空間の軸方向(上下方向)を
z方向とし、これと直交する方向(左右方向)をr方向
とした座標系で考える。
Therefore, for convenience of explanation, a coordinate system in which the axial direction (vertical direction) of the space is defined as the z direction and the direction (horizontal direction) orthogonal thereto is defined as the r direction.

まず、空間の左右方向の閉じ込め力を発生させる第2
電極12は、例えば第1図に示すように、2本1組の棒状
電極12a,12aおよびもう1組の棒状電極12b,12bの4本で
構成され、空間の原点を通る中心軸(z)から等距離
(r)の位置にz軸に沿うよう配置され、平面状態では
各電極12a,12a,12b,12bが正方形の頂点に位置してい
る。
First, the second to generate the confinement force in the horizontal direction of the space
As shown in FIG. 1, for example, the electrode 12 is composed of four rods, one set of two rod-shaped electrodes 12a and 12a and another set of rod-shaped electrodes 12b and 12b, and a central axis (z) passing through the origin of space. The electrodes 12a, 12a, 12b, and 12b are located at the vertices of a square in a planar state at a distance (r) equidistant from.

次に、空間の上下方向の閉じ込み力を発生させ第1電
極11は、2個1組の球形電極又は平板電極(説明図は球
状で示してある)11a,11aで構成され、空間の原点を挟
む中心軸(z)上の上下に等距離の位置に配置されてい
る。
Next, a confining force in the vertical direction of the space is generated, and the first electrode 11 is composed of a set of two spherical electrodes or flat electrodes (illustrated in the form of spheres) 11a, 11a. Are arranged at equal distances up and down on the central axis (z) sandwiching.

そして、これら第1電極11に電圧を印加する電源13
は、直流電源が使用される。
A power source 13 for applying a voltage to these first electrodes 11
Uses a DC power supply.

一方、4本の棒状電極12a,12a,12b,12bで構成された
第2電極12に電圧を印加する電源14は、少なくとも交流
分を含む電源が使用され、例えば交流のみの交流電源や
直流を重畳した交流電源が使用される。この場合の電源
14の交流分の周波数は、低周波から商用周波数を含む高
周波までの広い範囲のものの適用が可能である。
On the other hand, as the power supply 14 for applying a voltage to the second electrode 12 composed of the four rod-shaped electrodes 12a, 12a, 12b, 12b, a power supply including at least an AC component is used. A superimposed AC power supply is used. Power supply in this case
The frequency of the 14 AC components can be applied in a wide range from a low frequency to a high frequency including a commercial frequency.

次に、このように構成された静電浮遊装置10の作用に
ついて、第2図を参照しながら説明する。
Next, the operation of the thus configured electrostatic floating device 10 will be described with reference to FIG.

第1電極11である球状電極11a,11aに電源13から帯電
物体15の極性と同一の直流電圧を印加するとともに、第
2電極12である棒状電極12a,12a,と棒状電極12b,12bと
の間に電源14から交流電圧を印加し、空間の中心部に帯
電物体15を位置させる。
A DC voltage having the same polarity as that of the charged object 15 is applied from a power source 13 to the spherical electrodes 11a and 11a as the first electrodes 11, and the rod electrodes 12a and 12a and the rod electrodes 12b and 12b as the second electrodes 12 are connected to each other. During this time, an AC voltage is applied from the power supply 14 to position the charged object 15 at the center of the space.

すると、第1電極11である球形電極11a,11aによって
z方向(上下方向)の反発力としての閉じ込め力が発生
するとともに、第2電極12である棒状電極12a,12aと12
b,12b間にr方向(左右方向)の閉じ込め力が発生し、
この場合の電気力線パターンのイメージは、平面状態で
示すと第2図(a)のようになり、側面状態で示すと第
2図(b)のようになる。
Then, the spherical electrodes 11a, 11a, which are the first electrodes 11, generate a confining force as a repulsive force in the z direction (vertical direction), and the rod-shaped electrodes 12a, 12a, 12a, which are the second electrodes 12, are formed.
A confinement force in the r direction (left / right direction) is generated between b and 12b,
In this case, the image of the electric force line pattern is as shown in FIG. 2A when viewed in a plane state, and as shown in FIG. 2B when viewed in a side state.

このような電界Eによって左右方向(r方向)につい
ては、帯電物体15は電気力線パターンに沿って運動し、
第2電極12の中心部に向かって閉じ込め力が作用し散逸
が防止されるとともに、上下方向(z方向)について
は、上下の電極11の極性と(強制的に同じ極性になるよ
うに荷電された)同極性の帯電物体15が、第1電極11間
の反発力(閉じ込め力)によって重力に逆らって浮上さ
れることとなり、帯電物体15は左右方向(r方向)及び
上下方向(z方向)の閉じ込め力で第1,第2電極11,12
の中央部で安定した状態で浮上される。
With such an electric field E, in the left-right direction (r direction), the charged object 15 moves along an electric flux line pattern,
The confinement force acts toward the center of the second electrode 12 to prevent dissipation, and in the vertical direction (z-direction), the polarities of the upper and lower electrodes 11 are changed (forcibly charged to the same polarity). The charged object 15 having the same polarity is levitated against gravity by the repulsive force (confining force) between the first electrodes 11, and the charged object 15 is moved in the left-right direction (r direction) and the up-down direction (z direction). Of the first and second electrodes 11, 12
Floats in a stable state at the center of the.

次に、この発明の静電浮遊装置の他の一実施例につい
て、第3図及び第4図により説明する。
Next, another embodiment of the electrostatic floating device of the present invention will be described with reference to FIG. 3 and FIG.

この静電浮遊装置20では、軸方向と直交する方向の閉
じ込め力を発生する第2電極21の形状のみが異なり、他
の構成は既に説明した静電浮遊装置10と同一であるの
で、同一部分に同一番号を記し説明を省略する。
In this electrostatic floating device 20, only the shape of the second electrode 21 that generates a confining force in a direction perpendicular to the axial direction is different, and the other configuration is the same as that of the electrostatic floating device 10 already described. Are given the same numbers, and descriptions thereof are omitted.

この第2電極21は3個のリング状電極21a,21b,21cで
構成されており、中心軸(z軸)を中心とし、かつ上下
方向(z方向)に一定の間隔を明けて配置されている。
The second electrode 21 is composed of three ring-shaped electrodes 21a, 21b, and 21c. The second electrode 21 is arranged around a central axis (z-axis) and at regular intervals in the vertical direction (z-direction). I have.

そして、中央部のリング状電極21bが接地され、これ
を挟む両側のリング状電極21a,21cに交流分を含む電源1
4が接続されている。
Then, the ring-shaped electrode 21b at the center is grounded, and the ring-shaped electrodes 21a and 21c on both sides sandwiching the grounded electrode 21b include a power source 1 including an AC component.
4 is connected.

このように構成された静電浮遊装置20によれば、第4
図に示すような電気力線パターンの電界が発生する。
According to the electrostatic floating device 20 configured as described above, the fourth
An electric field having an electric flux line pattern as shown in the figure is generated.

この結果、既に説明した静電浮遊装置10と同様に、r
方向(左右方向)の閉じ込め力とz方向(上下方向)の
反発力としての閉じ込め力が発生し、散逸が防止されて
第1,第2電極11,21の中心部に帯電物体15が安定した状
態で浮遊される。
As a result, similar to the electrostatic floating device 10 already described, r
A confinement force as a repulsive force in the z-direction (vertical direction) and a repulsive force in the z-direction (vertical direction) are generated, the dissipation is prevented, and the charged object 15 is stabilized at the center of the first and second electrodes 11 and 21. Floated in the state.

したがって、このような静電浮遊装置10,20を用いる
ことで、宇宙の微小重力環境下での材料開発や地上での
粉体工業や原子力工業における物体の非接触ハンドリン
グを容易に行うことができ、しかも浮遊物体の安定浮遊
領域を拡大することができる。
Therefore, by using such electrostatic floating devices 10 and 20, it is possible to easily perform material development in the microgravity environment of space and non-contact handling of objects on the ground in the powder industry and nuclear power industry. In addition, the stable floating area of the floating object can be enlarged.

なお、上記実施例では、第1電極として球形電極を用
い、第2電極として2本1組の棒状電極を2組用いる場
合と3つのリング状電極を用いる場合で説明したが、電
極形状はこれに限らず他の形状であっても良く、さらに
電極の個数や組数を増大するようにしても良い。
In the above embodiment, the case where the spherical electrode is used as the first electrode and the case where two sets of two rod-shaped electrodes are used as the second electrode and the case where three ring-shaped electrodes are used are described. However, the present invention is not limited to this, and other shapes may be used, and the number and the number of sets of electrodes may be increased.

また、この発明の範囲を逸脱しない範囲で各構成要素
を変更しても良いことは言うまでのもない。
It goes without saying that each component may be changed without departing from the scope of the present invention.

[発明の効果] 以上、実施例とともに具体的に説明したようにこの発
明の静電浮遊装置によれば、直流が印加される中心軸方
向の第1電極と、これと直交する交流または直流分を含
む交流が印加される第2電極とで電界を形成して帯電物
体を浮上するようにしたので、互いに直角方向に閉じ込
み力を発生させて帯電物体を浮上することができ、空間
の広範囲に渡って帯電物体を安定した状態で浮遊させる
ことができる。
[Effect of the Invention] As described above in detail with the embodiment, according to the electrostatic floating device of the present invention, the first electrode in the central axis direction to which the DC is applied, and the AC or DC component orthogonal to the first electrode. And the second electrode to which an alternating current is applied to form an electric field to levitate the charged object, so that a confining force can be generated at right angles to each other to levitate the charged object, and the , The charged object can be floated in a stable state.

また、第2電極に電圧を印加する電源として交流およ
び直流の使用をも可能とし、交流及び直流電圧のみなら
ず、周波数も変えることで、制御パラメータの増大をは
かることができ、制御性を向上できる。
In addition, it is possible to use AC and DC as a power source for applying a voltage to the second electrode. By changing not only the AC and DC voltage but also the frequency, it is possible to increase control parameters and improve controllability. it can.

【図面の簡単な説明】[Brief description of the drawings]

第1図および第2図はこの発明の静電浮遊装置にかかる
一実施例の概略斜視図および電気力線パターンの平面状
態と側面状態の説明図、第3図および第4図はこの発明
の静電浮遊装置にかかる他の一実施例の概略断面図およ
び電気力線パターンの説明図、第5図は従来の静電浮遊
装置の概略構成図である。 10:静電浮遊装置、11:第1電極、11a,11a:球形電極、1
2:第2電極、12a,12a,12b,12b:棒状電極、13:直流電
源、14:交流分を含む電源、15:帯電物体、 20:静電浮遊装置、21:第2電極、21a,21b,21c:リング状
電極。
1 and 2 are schematic perspective views of an embodiment of the electrostatic floating device according to the present invention, and explanatory views of a plane state and a side state of a line of electric force pattern, and FIGS. FIG. 5 is a schematic cross-sectional view of another embodiment of the electrostatic floating device and an explanatory diagram of electric flux lines, and FIG. 5 is a schematic configuration diagram of a conventional electrostatic floating device. 10: electrostatic floating device, 11: first electrode, 11a, 11a: spherical electrode, 1
2: 2nd electrode, 12a, 12a, 12b, 12b: rod-shaped electrode, 13: DC power supply, 14: power supply including AC component, 15: charged object, 20: electrostatic floating device, 21: second electrode, 21a, 21b, 21c: Ring electrodes.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】帯電物体を静電気的な力で空間に保持する
静電浮遊装置において、中心軸方向の閉じ込め力を発生
させる第1電極および中心軸方向と直交する方向の閉じ
込め力を発生させる第2電極を中心部に空間を形成して
設け、前記第1電極間に直流電源を接続する一方、前記
第2電極間に少なくとも交流分を含む電源を接続したこ
とを特徴とする静電浮遊装置。
A first electrode for generating a confinement force in a central axis direction and a first electrode for generating a confinement force in a direction orthogonal to the central axis direction. An electrostatic floating device characterized in that two electrodes are formed in a space at the center and a DC power supply is connected between the first electrodes, while a power supply containing at least an AC component is connected between the second electrodes. .
JP4493089A 1989-02-23 1989-02-23 Electrostatic floating device Expired - Lifetime JP2646729B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4493089A JP2646729B2 (en) 1989-02-23 1989-02-23 Electrostatic floating device
EP19900301900 EP0384751B1 (en) 1989-02-23 1990-02-22 Electrostatic locating apparatus
DE1990623522 DE69023522T2 (en) 1989-02-23 1990-02-22 Electrostatic chuck.
US08/074,283 US5303117A (en) 1989-02-23 1993-06-09 Electrostatic positioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4493089A JP2646729B2 (en) 1989-02-23 1989-02-23 Electrostatic floating device

Publications (2)

Publication Number Publication Date
JPH02228263A JPH02228263A (en) 1990-09-11
JP2646729B2 true JP2646729B2 (en) 1997-08-27

Family

ID=12705195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4493089A Expired - Lifetime JP2646729B2 (en) 1989-02-23 1989-02-23 Electrostatic floating device

Country Status (1)

Country Link
JP (1) JP2646729B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2180451B1 (en) * 2001-07-09 2003-12-16 Ruiz Jose Cebrian SPHERE SUSPENDED BY MAGNETIC EFFECTS
JP4540096B2 (en) * 2004-03-25 2010-09-08 エアー トリック インコーポレイテッド Electrostatic floating furnace
US7225674B2 (en) * 2004-04-30 2007-06-05 The Regents Of The University Of California Self-stabilizing, floating microelectromechanical device

Also Published As

Publication number Publication date
JPH02228263A (en) 1990-09-11

Similar Documents

Publication Publication Date Title
US5155651A (en) Levitator with rotation control
DE69133015T2 (en) Friction welding machine with drive for an orbital oscillating movement
US6992407B2 (en) Precision machining stage equipment
US4521854A (en) Closed loop electrostatic levitation system
US20180205157A1 (en) Loop Antenna Array and Loop Antenna Array Group
US6195083B1 (en) Active joystick with optical positions sensor
JP2007185086A (en) Magnetically elevated wide-area stage device
EP3331141B1 (en) Three degree-of-freedom electromagnetic machine control system and method
JP2646729B2 (en) Electrostatic floating device
CA3141948A1 (en) Transport device
KR101790297B1 (en) Device for controlling a magnetic field for driving the micro robot and method thereof
KR101729684B1 (en) Gripper using magnetic levitation
JP2014168357A (en) Control method of spherical motor
JP2615944B2 (en) Electrostatic floating device
Wang et al. A magnetic levitation transport path
Luengviriya et al. Stability of scroll ring orientation in an advective field
JP2816578B2 (en) Electrostatic floating device
JP3158464B2 (en) Electrostatic floating device
CN110340938B (en) Mixed magnetic field device
US3523206A (en) Plasma containment means
JP2701467B2 (en) Position control method for static floating objects
JP2621464B2 (en) Electrostatic floating furnace
KR100598996B1 (en) Precision processing stage apparatus
JP3762863B2 (en) Sand iron magnetic active vibration controller
JP4045618B2 (en) Electrostatic floating furnace position control method and apparatus