JP2631445B2 - Microcrystalline sintered body and method for producing the same - Google Patents

Microcrystalline sintered body and method for producing the same

Info

Publication number
JP2631445B2
JP2631445B2 JP5261989A JP26198993A JP2631445B2 JP 2631445 B2 JP2631445 B2 JP 2631445B2 JP 5261989 A JP5261989 A JP 5261989A JP 26198993 A JP26198993 A JP 26198993A JP 2631445 B2 JP2631445 B2 JP 2631445B2
Authority
JP
Japan
Prior art keywords
glass
cao
sio
sintered body
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5261989A
Other languages
Japanese (ja)
Other versions
JPH07118078A (en
Inventor
英雄 居上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5261989A priority Critical patent/JP2631445B2/en
Publication of JPH07118078A publication Critical patent/JPH07118078A/en
Application granted granted Critical
Publication of JP2631445B2 publication Critical patent/JP2631445B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ガラス屑の廃材を主原
料とし少量のカルシウムシリケート乃至カルシウムアル
ミネートを副原料として形成され、業界最初に天然と同
一のβCaO・SiO2の針状結晶を主に構成されたセ
ラミックス系の焼結体とその製造方法に係り、特に、軽
量曲げ強度が高く、耐衝撃力が大で熱膨脹率が低く、低
コストで製造し得て主に建設乃至は工業材料として広く
利用される可能性が大である微結晶質焼結体とその製造
方法に関する。
BACKGROUND OF THE INVENTION This invention is formed of a small amount of calcium silicate to a calcium aluminate with a scrap glass waste as the main raw material as an auxiliary material, the first natural identical and βCaO · SiO 2 industry needles The present invention relates to a ceramics sintered body mainly constituted and a method for producing the same, particularly, it can be manufactured at a low cost with a high lightweight bending strength, a large impact resistance, a low coefficient of thermal expansion, and is mainly used for construction or industrial use. The present invention relates to a microcrystalline sintered body that is likely to be widely used as a material and a method for producing the same.

【0002】[0002]

【従来の技術】ガラス組成物に結晶核形成剤を加えて溶
融しガラス相の製品とした後、再加熱および冷却条件を
精密にコントロールしながら前記ガラス相に0.02乃
至20[ミクロン]程度の微結晶を均一に分布生成させ
て製造されるガラスセラミック製品が従来よりある。当
該ガラスセラミック製品はパイロセラム(米国コーニン
グ社開発のもの)およびネオセラム(我国で開発のも
の)として広く実用化されている。前記ガラスセラミッ
ク製品は前記のようにガラス組成物と結晶核形成剤を高
温度で溶融し所定形状に成形して第一次製品としてから
結晶化処理をして最終製品とするものである。また、前
記のものはガラス組成物としてはLi2O−Al23
SiO2系又はMgO−Al23−SiO2系が使用さ
れ、結晶核形成剤としては金,銀等の貴金属,銅又は酸
化チタンを使用するものでいずれも高価なものである。
また、イタリヤで製造されたガラスモザイクタイルがあ
るが、これはガラスカレット(ガラス屑)に粗粒子の珪
砂粉末を入れ、再溶融し成形して製作されるもので結晶
化されたものではない。また、ガラスを主原料として粘
土,珪石等を配合し、粉末成形した後に800[℃]程
度の低温で焼成して製作されるタイルが研究されている
が、この物は低温度で急速に軟化変形し、かつ著しい収
縮率を有することから実用化されるまでに到っていな
い。また、ガラスセラミックスとして近年市場に普及さ
れている商品名ネオパリエと称するガラス板がある。こ
のものは粒度を調整したガラスカレット又はガラス粉末
を金属又は耐久物の平板上に敷いて900[℃]乃至1
000[℃]で再溶融して形成されるものであるが、ガ
ラスの軟化点600[℃]乃至800[℃]で急速に変
化し、形状,寸法精度を要求される製品には適用し得な
い。
2. Description of the Related Art After a crystal nucleating agent is added to a glass composition to melt it into a glass phase product, the glass phase is added in an amount of about 0.02 to 20 [micron] while precisely controlling reheating and cooling conditions. There has been a glass ceramic product manufactured by uniformly distributing and producing microcrystals. The glass-ceramic products have been widely put into practical use as Pyroceram (developed by Corning, USA) and Neoceram (developed in Japan). As described above, the glass ceramic product is obtained by melting the glass composition and the crystal nucleating agent at a high temperature, forming the glass composition and the nucleating agent into a predetermined shape, forming a primary product, and then performing a crystallization treatment to obtain a final product. In addition, the above-mentioned glass composition is Li 2 O—Al 2 O 3
An SiO 2 system or an MgO—Al 2 O 3 —SiO 2 system is used, and a noble metal such as gold or silver, copper or titanium oxide is used as a crystal nucleating agent, and both are expensive.
There is also a glass mosaic tile manufactured in Italy, which is manufactured by putting coarse silica sand powder into glass cullet (glass waste), re-melting and molding, and not crystallized. In addition, tiles manufactured by mixing clay, silica, and the like with glass as a main material, forming a powder, and firing at a low temperature of about 800 ° C. have been studied, but this material is rapidly softened at a low temperature. It has not been practically used since it is deformed and has a remarkable shrinkage. In addition, there is a glass plate called Neoparie, which is a product that has been widely used in the market in recent years as a glass ceramic. In this method, a glass cullet or a glass powder having an adjusted particle size is laid on a flat plate made of metal or a durable material, and 900 ° C. to 1 ° C.
Although it is formed by re-melting at 000 [° C], it changes rapidly at the softening point of glass from 600 [° C] to 800 [° C] and can be applied to products that require shape and dimensional accuracy. Absent.

【0003】[0003]

【発明が解決しようとする課題】前記したように、パイ
ロセラムやネオセラムのようなセラミック焼成品は構成
材料が高価であり実用的ではない。また、ガラス材の場
合にはその軟化点で急速に変形し、大きな収縮を示すと
共に熱の急変化に対して弱く、焼成時の冷却過程で熱ワ
レが発生する。この欠点を解決するため、例えば、Si
2,Al23,CaO等の原料を加えて成分調整して
も、主原料であるガラス粒子の溶融が約800[℃]以
下の低温度で起った後に周辺の化学成分との反応が開始
されるため、焼成過程では極めて不安定な状態となり、
変形,亀裂を解消することは難しい。
As described above, ceramic fired products such as pyroceram and neoceram are not practical because of their expensive constituent materials. In the case of a glass material, it is rapidly deformed at its softening point, shows large shrinkage, is weak against a rapid change in heat, and generates heat cracks in a cooling process during firing. To solve this drawback, for example, Si
Even if the components are adjusted by adding raw materials such as O 2 , Al 2 O 3 , and CaO, the melting of the glass particles, which is the main raw material, occurs at a low temperature of about 800 ° C. or less, and after that, with the surrounding chemical components, Because the reaction starts, it becomes extremely unstable during the firing process,
It is difficult to eliminate deformation and cracks.

【0004】一方、本願の発明者は特許登録番号172
6273号の「陶磁器質焼結体の製造方法」に示すよう
に、天然又は人工のガラス質の原料に水硬性セメント
(水和反応化合物の一種)を加えて成形,焼成,焼結し
てなる陶磁器製品の製造方法について登録を受け実用化
しているが、その研究過程において次の現象を確認し
た。すなわち、ガラス質の特定の組成範囲においてガラ
ス粉末に水和反応化合物を混在させて焼成すると水和反
応化合物の熱分解時に発生する[K2O+Na2O]及び
CaO成分を含む熱アルカリ蒸気が成型体内の圧縮され
た状態にあるガラス粒子に約200[℃]の低温度域か
ら熱水反応を起し当該ガラス粒子を失透させる(結晶化
させる)と共に、水和反応化合物の結晶水が完全に脱水
する温度まで前記反応が続く。そのため、結晶化が微細
となり、ガラス粒子はNa2O−3CaO−6SiO2
デビトライトの結晶が生成されることが熱分析(D・T
・A)で確認された。
On the other hand, the inventor of the present application has a patent registration number 172.
No. 6273, "Method of Manufacturing Porcelain Sintered Body", a natural or artificial vitreous raw material is added with hydraulic cement (a type of hydration reaction compound), molded, fired, and sintered. The manufacturing method of ceramic products has been registered and put into practical use, but the following phenomena were confirmed during the research process. That is, when a hydration reaction compound is mixed with glass powder and fired in a glassy specific composition range, [K 2 O + Na 2 O] generated during thermal decomposition of the hydration reaction compound and hot alkali vapor containing CaO component are formed. A hydrothermal reaction is caused from a low temperature range of about 200 [° C.] to the glass particles in a compressed state in the body to devitrify (crystallize) the glass particles and complete the crystallization water of the hydration reaction compound. The reaction continues to a temperature at which dehydration occurs. Therefore, crystallization becomes fine, glass particles that crystals of Debitoraito of Na 2 O-3CaO-6SiO 2 are generated thermal analysis (D · T
・ Confirmed in A).

【0005】一方、従来よりガラスカレットは回収され
てリサイクルされていたが、近年では特に有色瓶などは
分別するためのコストが高いためリサイクルされずに廃
棄される場合が多くその処理に困っていた、また、一般
にガラスカレットのリサイクルは付加価値が低く製品化
コストが合わない問題点があった。
[0005] On the other hand, glass cullets have been conventionally collected and recycled. However, in recent years, in particular, colored bottles and the like are expensive to separate and are often discarded without being recycled. In addition, the recycling of glass cullet generally has a problem that the added value is low and the production cost is not suitable.

【0006】本発明は、以上の事情に鑑みて創案された
ものであり、ガラスとして最も広く普及されているソー
ダ,石灰ガラスが使用出来、そのガラスカレットのリサ
イクル後の製品価値が高く、かつ曲げ強度が高く、熱膨
脹率が低く、低コストで製造し得る微結晶質焼結体とそ
の製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and can use soda or lime glass, which is the most widely used glass, and has a high product value after recycling of the glass cullet and bending. An object of the present invention is to provide a microcrystalline sintered body having high strength, a low coefficient of thermal expansion, and which can be manufactured at low cost, and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】前記したように、SiO
2,Al23,MgO,CaO等のガラス質の微粉砕粒
子にCaO−SiO2−H2O系又はCaO−Al23
2O系の水和反応化合物を混在させると、CaO成分
を含む熱アルカリ蒸気によりガラス粒子が低温度から熱
水反応を起し、矢透し結晶化しガラスの軟化点である6
50[℃]付近ではガラス粒子は殆ど矢透し結晶化され
る。そのためガラス特有の軟化変形が全く生じない。そ
の結果、正確な形状を保ち、一般の陶磁器質と同じ焼成
条件で焼成することが出来る。水硬性セメントの代表的
なポルトランドセメントの場合、結晶水の脱水は260
[℃]から480[℃]迄に起るが、ガラス質との混合
比や加熱条件,昇温速度等の成形焼成条件を工夫するこ
とにより700[℃]位まで脱水が残存させることが出
来る。また、珪酸カルシウム系の気泡軽量コンクリート
(A・L・C)のようなトベモライト結晶相のものは7
50[℃]まで結晶水の残存が可能であり、更に、ゾノ
トライト結晶相のものは約1000[℃]まで結晶水の
脱水が残存させることが出来る。すなわち、水和反応化
合物の選択により蒸発水の残存する温度の調整が可能で
ある。以上のように特定の成分のガラス組成物と水和反
応化合物とを混在調整し一定温度で加熱焼成して得られ
た焼結物は乳白色の磁器質からなり、X線回析によると
βCaO・SiO2(β型フラストナイト)の微細な針
状結晶体と微量β2CaO・SiO2(ラーナイト)の
粉状結晶物が形成されることがわかった。針状結晶のβ
CaO・SiO2は普通天然物にしか存在せず人工的に
合成された場合は偽ワラストとなり針状結晶とならない
ものである。そのため、本発明の焼結物はβCaO・S
iO2を主晶とするため曲げ強度が高いものとなった。
また、吸水率が低く膨脹率も低い特性を有するものが得
られる。
As mentioned above, as described above, SiO 2
2, Al 2 O 3, MgO , CaO-SiO 2 in finely divided particles of vitreous such as CaO -H 2 O system or CaO-Al 2 O 3 -
When an H 2 O-based hydration reaction compound is mixed, the glass particles undergo a hydrothermal reaction from a low temperature due to hot alkali vapor containing a CaO component, and are crystallized and crystallized, which is the softening point of the glass.
At around 50 ° C., the glass particles are almost transparent and crystallized. Therefore, softening deformation peculiar to glass does not occur at all. As a result, an accurate shape can be maintained and firing can be performed under the same firing conditions as general ceramics. For Portland cement, a typical example of hydraulic cement, dehydration of crystallization water is 260
It occurs from [° C] to 480 [° C], but dehydration can remain up to about 700 [° C] by devising the molding and firing conditions such as the mixing ratio with the vitreous material, heating conditions, and heating rate. . In addition, those having a crystal phase of tobemorite, such as calcium silicate-based aerated lightweight concrete (ALC), are used.
Water of crystallization can remain up to 50 [° C.], and dehydration of water of crystallization can remain up to about 1000 [° C.] in the case of zonotlite crystal phase. That is, the temperature at which the evaporating water remains can be adjusted by selecting the hydration reaction compound. As described above, the sintered product obtained by mixing and adjusting the glass composition of the specific component and the hydration reaction compound and heating and firing at a constant temperature is made of milky white porcelain, and according to X-ray diffraction, βCaO. It was found that fine needle-like crystals of SiO 2 (β-type frustonite) and powdery crystals of trace amounts of β2CaO.SiO 2 (lanite) were formed. Needle crystal β
CaO · SiO 2 is the case where only the ordinary natural products artificially synthesized absent are those that do not needle-like crystals and false Warasuto. Therefore, the sintered product of the present invention is βCaO · S
Since iO 2 was used as the main crystal, the bending strength was high.
In addition, a material having a low water absorption and a low expansion coefficient can be obtained.

【0008】具体的には、本発明は、以上の目的を達成
するために、SiO260[%]乃至75[%],Al2
31[%]乃至6[%],MgOが0[%]乃至4
[%],CaO5[%]乃至15[%],K2O+Na2
がO9[%]乃至15[%]の化学成分からなるガラス
及び/又は人工的に合成されたガラス質の微粉砕粉末小
計100重量と、CaO−SiO2系又はCaO−Al2
3系の単独又は両者を含む水和反応化合物10重量乃
至50重量とが混合調整されており、焼成されている焼
結体であって、βCaO・SiO2の針状結晶が重量で
全体の1[%]以上80[%]以下含まれてなる微結晶
質焼結体を構成するものである。また、その製造方法と
してはSiO2を60[%]乃至75[%],Al23
を1[%]乃至6[%],MgOを0[%]乃至4
[%],CaOを5[%]乃至15[%],K2O+N
2Oを9[%]乃至15[%]とを含有する化学成分
からなる板ガラス,瓶ガラス及び人工的に合成されたガ
ラス質を微粉砕してガラス粉末としたものを主原料と
し、該主原料の重量比100[%]にCaO−SiO2
−H2O系又はCaO−Al23−H2Oの単独又は両者
を含む水和反応化合物を重量比で10[%]乃至50
[%]加え、必要により成形助剤を重量で0.1[%]
乃至1[%]を添加し均一に混合調整した後、該組成物
を乾式又は湿式で所望の形状に成形し、乾燥した後、ア
ルカリ性の[K2O+Na2O]及びCaOの水蒸気の水
熱加熱過程を経て1000[℃]以上1250[℃]以
下の温度範囲で焼成,焼結されることを特徴とする。ま
た、更に、具体的には、前記水和反応化合物が、ポルト
ランドセメント,高炉セメント,アルミナセメントから
生成されるもの及び珪酸カルシウム系組成分を水熱合成
して生成してなるトバモライト{3CaO・2SiO2
・3H2O}及びゾノトライト{Ca6(Si617
(OH)2}等の1つ以上のものが採用される。
[0008] Specifically, the present invention has been made to achieve the above object by providing SiO 2 at 60 [%] to 75 [%], Al 2
O 3 1% to 6%, MgO is 0% to 4%
[%], CaO5 [%] to 15 [%], K 2 O + Na 2
There O9 [%] to 15 [%] and finely ground powder Subtotal 100 weight of the glass and / or artificially synthesized glassy consisting chemical components, CaO-SiO 2 system or CaO-Al 2
A mixture of 10 to 50 weights of a hydration reaction compound containing an O 3 system alone or both is mixed and baked, and the sintered body is βCaO · SiO 2 needle-like crystals in weight. This constitutes a microcrystalline sintered body containing 1% or more and 80% or less. In addition, as a manufacturing method, SiO 2 is 60 [%] to 75 [%], Al 2 O 3
From 1% to 6%, and MgO from 0% to 4%.
[%], 5% to 15% of CaO, K 2 O + N
plate glass consisting of chemical components containing a a a 2 O 9 [%] to 15 [%], what was glass powder jar glass and artificially synthesized glassy comminuted as a main raw material, said the main raw material weight ratio of 100 [%] CaO-SiO 2
-H 2 O-based compound or a hydration compound containing CaO-Al 2 O 3 -H 2 O alone or both in a weight ratio of 10% to 50%.
[%] In addition, if necessary, a molding aid is added at 0.1 [%] by weight.
After the composition is uniformly mixed and adjusted, the composition is formed into a desired shape by a dry or wet method, dried, and then subjected to hydrothermal treatment of alkaline [K 2 O + Na 2 O] and water vapor of CaO. It is characterized in that it is fired and sintered in a temperature range from 1000 [° C.] to 1250 [° C.] through a heating process. More specifically, the hydration reaction compound is formed from Portland cement, blast furnace cement, alumina cement, and tobermorite {3CaO.2SiO produced by hydrothermal synthesis of a calcium silicate-based composition. Two
・ 3H 2 O} and Zonotorite {Ca 6 (Si 6 O 17 )
At least one such as (OH) 2 } is employed.

【0009】[0009]

【作用】請求項1に示した化学成分のガラスはソーダ,
石灰ガラスであり、最も広く普及されるものでガラスカ
レットも容易に、かつ安価に入手し得るものである。ガ
ラス組成物を主原料とし、これに融点の高いCaO−S
iO2−H2O系又はCaO−Al23−H2O系の水和
反応化合物を混在し、調整し乾燥,成形焼成することに
より前記水和反応化合物の熱分解時に発生する熱アルカ
リ蒸気が成形型内で圧縮されて封入された状態でガラス
粒子に約200[℃]の低温度域から熱水反応し、ガラ
スは矢透し、軟化変形を起すことなく結晶化する。その
結晶体には微結晶のβCaO・SiO2やβ2CaO・
SiO2の微粒子が分散し、収縮率を小さくすると共に
熱衝撃に強く、切断加工が出来る結晶体を形成する。そ
のため、寸法,形状精度の優れた建物用セラミックス材
を作ることが出来る。なお、ガラス組成物の主原料の重
量比100[%]に対し、水和反応化合物の混在率を1
0[%]乃至50[%]としたのは10[%]未満では
組織の焼結が不十分になり、50[%]を超えると融点
が上り過ぎ焼結が不十分になるためである。また、K2
O+Na2Oを9[%]乃至15[%]を存在させるの
はこれ等のアルカリ材が融点を下げる効果があり、前記
重量比の水和反応化合物との融点調整に前記[%]の範
囲が最適であると実証されたためである。また、焼成温
度を1000[℃]乃至1250[℃]としたのは10
00[℃]未満では焼結が不十分となりβCaO・Si
2の結晶形成が不十分となり、1250[℃]を超え
ると熔解部分が多くなりβCaO・SiO2の生成が少
なくなり過ぎ、曲げ強度の向上効果が少なくなるためで
ある。本発明品は微結晶が多いため曲げ強度が強く、か
つ耐衝撃力が大となり熱膨脹率も低くなる。
The glass having the chemical composition described in claim 1 is soda,
Lime glass, which is the most widely used, and glass cullet can be easily and inexpensively obtained. Glass composition as main raw material, which is added to CaO-S with high melting point
A hot alkali generated at the time of thermal decomposition of the hydration reaction compound by mixing, adjusting, drying and molding and firing a hydration reaction compound of iO 2 —H 2 O type or CaO—Al 2 O 3 —H 2 O type While the steam is compressed and enclosed in the mold, the glass particles undergo a hydrothermal reaction from a low temperature range of about 200 ° C., and the glass crystallizes without causing softening deformation. The crystals include microcrystalline βCaO.SiO 2 and β2CaO.
The fine particles of SiO 2 are dispersed to form a crystal which can reduce the shrinkage and is resistant to thermal shock and can be cut. Therefore, it is possible to produce a ceramic material for a building having excellent dimensions and shape accuracy. In addition, the mixing ratio of the hydration reaction compound is 1 with respect to 100% by weight of the main material of the glass composition.
The reason for setting the range from 0 [%] to 50 [%] is that if it is less than 10 [%], the sintering of the structure becomes insufficient, and if it exceeds 50 [%], the melting point becomes too high and sintering becomes insufficient. . Also, K 2
The reason for the presence of 9% to 15% of O + Na 2 O is that these alkali materials have the effect of lowering the melting point. Is proved to be optimal. Further, the firing temperature was set to 1000 [° C.] to 1250 [° C.]
If the temperature is less than 00 [° C], sintering becomes insufficient and βCaO · Si
This is because the crystal formation of O 2 becomes insufficient, and if it exceeds 1250 [° C.], the melted portion increases, so that βCaO · SiO 2 is generated too little and the effect of improving the bending strength is reduced. Since the product of the present invention has many microcrystals, it has high bending strength, high impact resistance, and low thermal expansion coefficient.

【0010】[0010]

【実施例】次に、本発明の実施例を説明する。なお、実
施例ではガラス質の主原料に水和反応化合物を混在させ
る重量比[%]を特定するだけでなく、ALC粉末(気
泡軽量コンクリート粉末),コーデライト粉末{コーデ
ィライトセラミックス(2MgO・2A23・5SiO
2)の粉末}および成形接着剤のC・M・Cの混在
[%]も特定した実施例が示されている。表1はそれ等
の配合率[%]を示すものである。
Next, embodiments of the present invention will be described. In the examples, not only the weight ratio [%] in which the hydration reaction compound is mixed with the vitreous main material is specified, but also ALC powder (cellular lightweight concrete powder), cordierite powder {cordierite ceramics (2MgO · 2A) 2 O 3 · 5SiO
An example is also shown in which the mixture [%] of 2 ) of powder} and C, M, C of the molding adhesive is also specified. Table 1 shows the blending ratios [%].

【0011】[0011]

【表1】 [Table 1]

【0012】本実施例における主原料のガラス組成物
(ガラス粉末)は、SiO2を72[%],Al23
2[%],CaOを10[%],Na2Oを14[%]
の化学組成を有する瓶ガラス粉末からなり、水和反応化
合物は市販品のポルトランドセメントを使用し、ALC
粉末,コーディライト粉末も市販品のものが使用され
る。これ等のものを100[メッシュ]以下に粉砕し、
乾燥粉末として配合する。成形は成形水分15[%]を
加えて湿潤粉末としたものを成形圧力250[kg/c
2]の油圧成形機で加圧して行われ、100[mm]
×50[mm]×10[mm]の成形品を作成した。ま
た、焼成は30[℃]/分の昇温速度に調整したローラ
ハースキルンを用いて耐火板上に成形品を立てて焼成を
行ない高温変形の観察を行った。なお、焼成温度は11
40[℃]にした。その結果、表2に示す特性を有する
焼結物A,B,Cが得られた。
The glass composition (glass powder) of the main raw material in this embodiment is as follows: 72% of SiO 2 , 2 % of Al 2 O 3 , 10% of CaO, and 14% of Na 2 O. %]
The hydration reaction compound uses a commercially available Portland cement, and the ALC
Commercially available powders and cordierite powders are also used. These are crushed to 100 [mesh] or less,
Formulated as a dry powder. Molding was performed by adding a molding moisture of 15% to form a wet powder, and molding pressure of 250 kg / c.
m 2 ] of a hydraulic forming machine and pressurized to 100 [mm]
A molded product of × 50 [mm] × 10 [mm] was prepared. In addition, for firing, a molded product was placed on a fireproof plate using a roller hearth kiln adjusted to a heating rate of 30 [° C.] / Min, firing was performed, and high-temperature deformation was observed. The firing temperature is 11
The temperature was set to 40 [° C]. As a result, sintered products A, B, and C having the characteristics shown in Table 2 were obtained.

【0013】[0013]

【表2】 [Table 2]

【0014】従来の陶磁器質タイルは曲げ強度約270
[kg/cm2]で熱膨脹率は約80×[10-7/℃]
からなり、A,B,Cのいずれの焼結物も従来品よりは
るかに大きい曲げ強度を有し、かつ熱膨脹率も小さいこ
とがわかる。これは前記したように本来人工的には作れ
ないβCaO・SiO2の1[μ]乃至50[μ]の微
細な微結晶相が均一に分散されているためであり、水和
物の脱水により微細な気孔が分散生成し収縮率を少なく
している。なお、これ等の焼結物は切断加工が可能であ
り、建材はセラミックとして極めて好都合のものであ
る。また、ガラスカレットを使用しているため従来品よ
りもはるかに安価に(約1/10)に製作することが出
来る。
A conventional ceramic tile has a bending strength of about 270.
[Kg / cm 2 ] and coefficient of thermal expansion is about 80 × [10 -7 / ° C]
It can be seen that each of the sintered products A, B, and C has much higher bending strength than the conventional product and also has a lower coefficient of thermal expansion. This is because, as described above, fine microcrystalline phases of 1 [μ] to 50 [μ] of βCaO · SiO 2 , which cannot be produced artificially, are uniformly dispersed. Fine pores are dispersed and generated to reduce the shrinkage. These sintered products can be cut, and the building materials are extremely convenient as ceramics. Also, since glass cullet is used, it can be manufactured at a much lower cost (about 1/10) than conventional products.

【0015】前記実施例ではガラス組成物の一部をコー
ディライトで置換た場合を示したが、LiO2化合物で
置換すると熱膨脹率が低く耐熱性のある焼結体を得るこ
とが出来る。また、Fe34やフェライト粉末を入れて
磁性を有する焼結体を作ることも可能になる。
In the above embodiment, the case where a part of the glass composition is replaced with cordierite is shown. However, when the glass composition is replaced with a LiO 2 compound, a sintered body having a low coefficient of thermal expansion and a heat resistance can be obtained. Further, it becomes possible to produce a sintered body having magnetism by adding Fe 3 O 4 or ferrite powder.

【0016】[0016]

【発明の効果】本発明によれば、次のような顕著な効果
を奏する。 1)本発明は、現在廃棄されているガラスカレットをリ
サイクル使用し得るもので資源の有効利用と環境保護に
大きく貢献すると共に低コスト(従来の1/10程度)
で製作することが出来る。 2)ソーダ,石灰系のガラス組成物に水和反応化合物を
混在調整して焼成することによりガラスの有する軟化,
変形の欠点が解消され、変形のない高品質の形状の製品
を作ることが出来る。 3)ガラスが低温度から矢透し結晶化すると共に、針状
結晶のβCaO・SiO2の微結晶相が均一に分散する
ため、曲げ強度が大となる。 4)高温度まで脱水が続くため結晶が微細化し、収縮率
を少なくすると共に熱衝撃に強い物性を有するものが製
作される。また、熱膨脹率も低下する。 5)特に針状結晶のβCaO・SiO2(β型珪灰石)
は学術的には天然にしか産出されない鉱物であり人工的
には出来なかったものであるが、本発明は業界最初にこ
のものを焼結体内に生成することが出来たため学術的に
も極めて貴重なデータを提供することになる。
According to the present invention, the following remarkable effects are obtained. 1) The present invention can recycle glass cullet which is currently discarded, greatly contributes to effective use of resources and environmental protection, and has low cost (about 1/10 of the conventional one).
It can be manufactured with. 2) Softening of the glass by mixing and adjusting the hydration reaction compound to the soda and lime glass composition,
The disadvantage of deformation is eliminated, and a high-quality product without deformation can be produced. 3) The glass is crystallized from a low temperature, and the microcrystalline phase of βCaO · SiO 2 of the acicular crystal is uniformly dispersed, so that the bending strength is increased. 4) Since the dehydration continues to a high temperature, the crystals are refined, the shrinkage is reduced, and a material having physical properties resistant to thermal shock is manufactured. Also, the coefficient of thermal expansion decreases. 5) βCaO · SiO 2 (β-type wollastonite), especially needle-shaped crystals
Is a mineral that can only be produced in nature scientifically and could not be artificially produced, but the present invention was the first in the industry to produce this in a sintered body, so it is extremely valuable scientifically Data will be provided.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 SiO260[%]乃至75[%],A
231[%]乃至6[%],MgOが0[%]乃至4
[%],CaO5[%]乃至15[%],K2O+Na2
がO9[%]乃至15[%]の化学成分からなるガラス
及び/又は人工的に合成されたガラス質の微粉砕粉末小
計100重量と、CaO−SiO2系又はCaO−Al2
3系の単独又は両者を含む水和反応化合物10重量乃
至50重量とが混合調整されており、焼成されている焼
結体であって、βCaO・SiO2の針状結晶が重量で
全体の1[%]以上80[%]以下含まれていることを
特徴とする微結晶質焼結体。
1. A method according to claim 1, wherein the SiO 2 is 60% to 75%,
l 2 O 3 1 [%] to 6 [%], MgO is 0 [%] to 4
[%], CaO5 [%] to 15 [%], K 2 O + Na 2
There O9 [%] to 15 [%] and finely ground powder Subtotal 100 weight of the glass and / or artificially synthesized glassy consisting chemical components, CaO-SiO 2 system or CaO-Al 2
A mixture of 10 to 50 weights of a hydration reaction compound containing an O 3 system alone or both is mixed and baked, and the sintered body is βCaO · SiO 2 needle-like crystals in weight. A microcrystalline sintered body characterized by being contained in an amount of 1% to 80%.
【請求項2】 SiO2を60[%]乃至75[%],
Al23を1[%]乃至6[%],MgOを0[%]乃
至4[%],CaOを5[%]乃至15[%],K2
+Na2Oを9[%]乃至15[%]とを含有する化学
成分からなる板ガラス,瓶ガラス及び人工的に合成され
たガラス質を微粉砕してガラス粉末としたものを主原料
とし、該主原料の重量比100[%]にCaO−SiO
2−H2O系又はCaO−Al23−H2Oの単独又は両
者を含む水和反応化合物を重量比で10[%]乃至50
[%]加え、必要により成形助剤を重量で0.1[%]
乃至1[%]を添加し均一に混合調整した後、該組成物
を乾式又は湿式で所望の形状に成形し、乾燥した後、ア
ルカリ性の[K2O+Na2O]及びCaOの水蒸気の水
熱加熱過程を経て1000[℃]以上1250[℃]以
下の温度範囲で焼成,焼結することを特徴とする微結晶
質焼結体の製造方法。
2. The method according to claim 1, wherein the SiO 2 content is 60% to 75%,
Al 2 O 3 1% to 6%, MgO 0% to 4%, CaO 5% to 15%, K 2 O
The main raw material is a plate glass, a bottle glass, and a glass powder obtained by finely pulverizing artificially synthesized vitreous glass containing chemical components containing 9% to 15% of + Na 2 O. CaO-SiO to 100% by weight of main raw material
2 -H 2 O system or a CaO-Al 2 O 3 -H 2 O alone or the hydration reaction compound containing both a weight ratio of 10 [%] to 50
[%] In addition, if necessary, a molding aid is added at 0.1 [%] by weight.
After the composition is uniformly mixed and adjusted, the composition is formed into a desired shape by a dry or wet method, dried, and then subjected to hydrothermal treatment of alkaline [K 2 O + Na 2 O] and water vapor of CaO. A method for producing a microcrystalline sintered body, characterized by firing and sintering in a temperature range from 1000 [° C] to 1250 [° C] through a heating process.
【請求項3】 前記水和反応化合物が、ポルトランドセ
メント,高炉セメント,アルミナセメントから生成され
るもの及び珪酸カルシウム系組成分を水熱合成して生成
してなるトバモライト{3CaO・2SiO2・3H
2O}及びゾノトライト{Ca6(Si617)(O
H)2}の内から選ばれた1以上のものである請求項2
の微結晶質焼結体の製造方法。
Wherein the hydration compound, Portland cement, blast furnace cement, and those calcium silicate compositions fraction produced alumina cement formed by produced by hydrothermal synthesis tobermorite {3CaO · 2SiO 2 · 3H
2 O} and zonotolite {Ca 6 (Si 6 O 17 ) (O
H) at least one selected from 2 }.
The method for producing a microcrystalline sintered body of the above.
JP5261989A 1993-10-20 1993-10-20 Microcrystalline sintered body and method for producing the same Expired - Lifetime JP2631445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5261989A JP2631445B2 (en) 1993-10-20 1993-10-20 Microcrystalline sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5261989A JP2631445B2 (en) 1993-10-20 1993-10-20 Microcrystalline sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07118078A JPH07118078A (en) 1995-05-09
JP2631445B2 true JP2631445B2 (en) 1997-07-16

Family

ID=17369464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5261989A Expired - Lifetime JP2631445B2 (en) 1993-10-20 1993-10-20 Microcrystalline sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2631445B2 (en)

Also Published As

Publication number Publication date
JPH07118078A (en) 1995-05-09

Similar Documents

Publication Publication Date Title
US20070131145A1 (en) Multi-function composition for settable composite materials and methods of making the composition
US20140243182A1 (en) Glass-ceramic composition and method for manufacturing the same
US6743383B2 (en) Process for the production of ceramic tiles
CZ2003197A3 (en) Glass-ceramics, process for their preparation and use
RU2374206C1 (en) Raw mixture for making ceramic objects
WO2009146470A1 (en) The method of manufacturing building brick
US9321695B2 (en) Method for manufacturing glass-ceramic composite
US5393472A (en) Method of producing wollastonite & ceramic bodies containing wollastonite
US5284712A (en) Cement-containing ceramic articles and method for production thereof
JP2631445B2 (en) Microcrystalline sintered body and method for producing the same
JP2000063172A (en) Production of highly strong lightweight ceramic plate
JP3094226B2 (en) Crystallized glass composite ceramics and method for producing the same
EP0323009A1 (en) Cement-containing ceramic articles and method for production thereof
US2516893A (en) Refractory concrete
JPS5827223B2 (en) Manufacturing method of sintered body
Kumar et al. Novel geopolymeric building materials through synergistic utilisation of industrial waste
KR100579189B1 (en) Method for preparing the crystallized glass tile using cullet
JPH049747B2 (en)
JPH04119978A (en) Production of ceramic sintered body
JP3017829B2 (en) Calcium silicate sintered body and method for producing the same
KR940011449B1 (en) Glass ceramics
AU2002249548A1 (en) Process for the production of ceramic tiles
CN115236106A (en) Autoclaved wall material raw material activity evaluation method and application thereof
JPH0587466B2 (en)
JPH05132375A (en) Method for production pottery sintered compact