JP2630939B2 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery

Info

Publication number
JP2630939B2
JP2630939B2 JP61265841A JP26584186A JP2630939B2 JP 2630939 B2 JP2630939 B2 JP 2630939B2 JP 61265841 A JP61265841 A JP 61265841A JP 26584186 A JP26584186 A JP 26584186A JP 2630939 B2 JP2630939 B2 JP 2630939B2
Authority
JP
Japan
Prior art keywords
battery
carbonaceous material
active material
secondary battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61265841A
Other languages
Japanese (ja)
Other versions
JPS63121248A (en
Inventor
孝之 中島
吉野  彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo KK filed Critical Asahi Kasei Kogyo KK
Priority to JP61265841A priority Critical patent/JP2630939B2/en
Publication of JPS63121248A publication Critical patent/JPS63121248A/en
Application granted granted Critical
Publication of JP2630939B2 publication Critical patent/JP2630939B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は新規な二次電池、更には小型、軽量二次電池
に関する。
Description: TECHNICAL FIELD The present invention relates to a novel secondary battery, and more particularly, to a small and lightweight secondary battery.

[従来の技術] 近年、電子機器の小型化、軽量化は目覚しく、それに
伴い電源となる電池に対しても小型軽量化の要望が非常
に大きい。一次電池の分野では既にリチウム電池等の小
型軽量電池が実用化されているが、これらは一次電池で
あるが故に繰り返し使用できず、その用途分野は限られ
たものであった。一方、二次電池の分野では従来より鉛
電池、ニッケル−カドミ電池が用いられてきたが両者
共、小型軽量化という点で大きな問題点を有している。
かかる観点から、非水系二次電池が非常に注目されてき
ているが、未だ実用化に至っていない。その理由の一つ
は該二次電池に用いる負極活物質でサイクル性、自己放
電特性等の実用物性を満足するものが見出されていない
点にある。
[Related Art] In recent years, miniaturization and weight reduction of electronic devices have been remarkable, and accordingly, there has been a great demand for a battery as a power supply to be reduced in size and weight. In the field of primary batteries, small and light batteries such as lithium batteries have already been put to practical use, but since these are primary batteries, they cannot be used repeatedly, and their application fields have been limited. On the other hand, in the field of secondary batteries, lead batteries and nickel-cadmium batteries have conventionally been used, but both have significant problems in terms of size and weight reduction.
From this viewpoint, non-aqueous secondary batteries have attracted much attention, but have not yet been put to practical use. One of the reasons is that no negative electrode active material used in the secondary battery that satisfies practical physical properties such as cycle characteristics and self-discharge characteristics has been found.

一方、従来のニッケル−カドミ電池、鉛電池などと本
質的に異なる充放電メカニズムであるドーピング現象、
又は電気二重層形成、又は層間化合物のインターカレー
ションを利用した新しい群の電極活物質が注目を集めて
いる。
On the other hand, the doping phenomenon, which is a charging and discharging mechanism that is essentially different from conventional nickel-cadmium batteries and lead batteries,
Or, a new group of electrode active materials utilizing electric double layer formation or intercalation of interlayer compounds has attracted attention.

かかる新しい電極活物質は、その充電、放電における
電気化学的反応において、複雑な化学反応を起こさない
ことから、極めて優れた充放電サイクル性が期待されて
いる。
Since such a new electrode active material does not cause a complicated chemical reaction in an electrochemical reaction in charging and discharging, extremely excellent charge / discharge cyclability is expected.

ドーピング現象を利用した電極活物質の例として、例
えば導電性高分子を電極材料に用いた新しいタイプの二
次電池が例えば特開昭56−136469号公報に記載されてい
る。しかしながら、かかる導電性高分子を用いた二次電
池も、不安定性、即ち低いサイクル性、大きな自己放電
等の問題点が未解決で未だ実用化に至っていない。
As an example of an electrode active material utilizing the doping phenomenon, a new type of secondary battery using, for example, a conductive polymer as an electrode material is described in, for example, JP-A-56-136469. However, secondary batteries using such a conductive polymer have not yet been put to practical use because the problems of instability, that is, low cycleability, large self-discharge, and the like have not been solved.

又、特開昭58−209864号公報にはフェノール系繊維の
炭化物で水素原子/炭素原子の比が0.33〜0.15の範囲の
炭素質材料を電極材料に用いることが記載されている。
主に陰イオンでp−ドープし正極材料として用いた場合
に優れた特性を発揮するとされており、同時に陽イオン
でn−ドープし負極材料として用い得る旨の記載もなさ
れている。しかしながら、かかる材料もやはりそのn−
ドープ体を負極として用いた場合、サイクル性、自己放
電特性に大きな欠点を有すると共に、利用率も極めて低
く実用上大きな欠点を有するものであった。
Japanese Patent Application Laid-Open No. 58-209864 discloses that a carbonaceous material having a hydrogen atom / carbon atom ratio in the range of 0.33 to 0.15, which is a phenolic fiber carbide, is used as an electrode material.
It is described that excellent properties are mainly exhibited when p-doped with an anion and used as a positive electrode material. At the same time, it is described that n-doped with a cation can be used as a negative electrode material. However, such materials also have their n-
When the doped material was used as a negative electrode, it had a large defect in cyclability and self-discharge characteristics, and had a very low utilization factor and a large defect in practical use.

又、特開昭58−35881、特開昭59−173979、特開昭59
−207568号公報には、活性炭等の高表面積炭素材料を電
極材料に用いることが提案されている。かかる電極材料
はドーピング現象と異なるその高表面積に基く電気二重
層形成によると思われる特異な現象が見出されており、
特に正極に用いた場合に優れた性能を発揮するとされて
いる。又、一部には負極にも用いられることが記載され
ているが、かかる高表面積炭素材料を負極として用いた
場合はサイクル特性、自己放電特性に大きな欠点を有し
ており、又、利用率、即ち炭素1原子当りに可逆的に出
入りし得る電子、(又は対陽イオン)の割合が極めて低
く、0.05以下、通常は0.01〜0.02であり、これは二次電
池の負極として用いた場合重量、体積共に極めて大きく
なることを意味し、実用化に際しての大きな欠点を有し
ている。
Also, JP-A-58-35881, JP-A-59-173979, JP-A-59
Japanese Patent No. 207568 proposes to use a high surface area carbon material such as activated carbon as an electrode material. Such an electrode material has been found to have a unique phenomenon that is thought to be due to the formation of an electric double layer based on its high surface area different from the doping phenomenon,
In particular, it is said that when used for a positive electrode, excellent performance is exhibited. In addition, although it is described that it is also used for a negative electrode in some cases, when such a high surface area carbon material is used as a negative electrode, it has a large defect in cycle characteristics and self-discharge characteristics. That is, the ratio of electrons (or counter cations) capable of reversibly entering and leaving per carbon atom is extremely low, 0.05 or less, usually 0.01 to 0.02, which is the weight when used as a negative electrode of a secondary battery. Means that the volume becomes extremely large, and has a serious drawback in practical use.

又、層状化合物のインターカレーションを利用した例
として古くから黒鉛層間化合物を二次電池電極材料とし
て用いられ得ることが知られており、特にBr ,ClO4 ,
BF4 イオン等の陰イオンを取り込んだ黒鉛層間化合物
を正極として用いることは公知である。一方Li イオン
等の陽イオンを取り込んだ黒鉛層間化合物を負極として
用いることは当然考えられ、事実、例えば特開昭59−14
3280号公報に、陽イオンを取り込んだ黒鉛層間化合物を
負極として用いることが記載されている。
 Examples using intercalation of layered compounds
The graphite intercalation compound has long been used as a secondary battery electrode material.
It is known that it can be used, especially Br , ClOFour ,
BFFour Graphite intercalation compound incorporating anions such as ions
It is known to use as a positive electrode. While Li ion
Graphite intercalation compound incorporating cations such as
It is naturally conceivable to use them.
No. 3280 discloses a graphite intercalation compound incorporating cations.
It is described that it is used as a negative electrode.

しかしながらかかる陽イオンを取り込んだ黒鉛層間化
合物は極めて不安定であり、特に電解液と極めて高い反
応性を有していることは、エイ・エヌ・ディ(A.N.De
y)等の「ジャーナル・オブ・エレクトロケミカル・ソ
サエティー(Journal of Electrochemical Society)vo
l.117,No2,P.222〜224,1970年」の記載から明らかであ
り、層間化合物を形成し得る黒鉛、グラファイトを負極
として用いた場合、自己放電等電池としての安定性に欠
けると共に、前述の利用率も極めて低く実用に耐え得る
ものではなかった。
However, graphite intercalation compounds incorporating such cations are extremely unstable, and have extremely high reactivity especially with electrolytes.
y) and other "Journal of Electrochemical Society" vo
l.117, No2, P.222-224, 1970 '', it is clear that graphite that can form an intercalation compound, when graphite is used as a negative electrode, lacks stability as a battery such as self-discharge, The above-mentioned utilization rate was extremely low and was not practically usable.

かかる点に鑑み、本発明者らは、特願昭61−103,785
号に記載の如く、特定な構造を有する炭素質材料のn−
ドープ体が、負極として高性能である、即ち、サイクル
寿命、自己放電特性等、電池としての安定性に優れ、
又、利用効率が高く、小型軽量二次電池を提供し得るこ
とを見出した。
In view of this point, the present inventors have made Japanese Patent Application No. 61-103,785.
As described in the above item, n- of the carbonaceous material having a specific structure
The doped body has high performance as a negative electrode, that is, excellent cycle stability, self-discharge characteristics, etc., and excellent stability as a battery,
Further, they have found that a small and lightweight secondary battery can be provided with high utilization efficiency.

しかしながら、初充電、初放電における電流効率が低
く、正極との組合せの電池においては、初回の負極側の
電流効率に見合った正極の量、即ち、過剰量の正極が必
要であり、小型・軽量な電池の実用化に際し、大きな欠
点を有していた。
However, the current efficiency in the first charge and the first discharge is low, and in the battery combined with the positive electrode, the amount of the positive electrode corresponding to the current efficiency of the first negative electrode side, that is, an excessive amount of the positive electrode is necessary, and the size and weight are small. In practical use of such a battery, it had a major drawback.

[発明が解決しようとする問題点] 前述の如く、ドーピングを利用した炭素質材料活物質
は本来期待されている性能は未だに実用的な観点からは
実現されていないのが現状である。
[Problems to be Solved by the Invention] As described above, at present, the performance expected of carbonaceous material active materials using doping has not yet been realized from a practical viewpoint.

[問題点を解決するための手段及び作用] 本発明は前述の問題点を解決し、電池性能、特にサイ
クル性、自己放電特性に優れた高性能、高エネルギー密
度の小型軽量二次電池を提供するためになされたもので
ある。
[Means and Actions for Solving the Problems] The present invention solves the above-mentioned problems, and provides a small-sized and lightweight secondary battery having high performance, high energy density, and excellent battery performance, especially excellent cycleability and self-discharge characteristics. It was done to do so.

本発明によれば、粉粒状炭素質材料のn−ドープ体を
負極活物質とする非水系二次電池であって、該炭素質材
料のBET法比表面積A(m2/g)が0.1<A<100の範囲
で、かつX線回折における結晶厚みLc(Å)と真密度ρ
(g/cm3)の値が下記条件1.70<ρ<2.18かつ10<Lc<1
20ρ−189を満たし、かつ、該炭素質材料が、0.1μm〜
50μmの範囲に体積換算で90%以上の粒度分布を有し、
かつ該活物質の初回の電流効率が50%以上であり、正極
活物質が充電により該炭素質材料にリチウムイオンを取
り込ませる活物質であることを特徴とする非水性二次電
池が提供される。
According to the present invention, there is provided a non-aqueous secondary battery using an n-doped powdery or granular carbonaceous material as a negative electrode active material, wherein the carbonaceous material has a BET specific surface area A (m 2 / g) of 0.1 <. In the range of A <100, the crystal thickness Lc (Å) and the true density ρ in X-ray diffraction
(G / cm 3 ) is less than 1.70 <ρ <2.18 and 10 <Lc <1
20ρ-189, and the carbonaceous material is 0.1 μm
It has a particle size distribution of 90% or more in terms of volume in the range of 50 μm,
In addition, a non-aqueous secondary battery is provided, wherein the first current efficiency of the active material is 50% or more, and the positive electrode active material is an active material capable of incorporating lithium ions into the carbonaceous material by charging. .

本発明で用いられる炭素質材料は後述のBET法比表面
積A(m2/g)が0.1より大きく、100未満でなければなら
ない。好ましくは0.1より大きく50未満、更に好ましく
は0.1より大きく25未満の範囲である。
The carbonaceous material used in the present invention must have a BET specific surface area A (m 2 / g) described later that is greater than 0.1 and less than 100. Preferably it is in the range of more than 0.1 and less than 50, more preferably more than 0.1 and less than 25.

0.1m2/g以下の場合は余りに表面積が小さく、電極表
面での円滑な電気化学的反応が進行しにくく好ましくな
い。又、100m2/g以上の比表面積を有する場合は、サイ
クル寿命特性、自己放電特性、更には電流効率特性等の
面で特性の低下が見られ好ましくない。かかる現象は余
りに表面積が大きいが故に電極表面での種々の副反応が
起こり、電池性能に悪影響を及ぼしているものと推察さ
れる。
When it is 0.1 m 2 / g or less, the surface area is too small, and a smooth electrochemical reaction on the electrode surface does not easily progress, which is not preferable. Further, when the specific surface area is 100 m 2 / g or more, the characteristics such as cycle life characteristics, self-discharge characteristics, and current efficiency characteristics are deteriorated, which is not preferable. It is presumed that such a phenomenon has an excessively large surface area, so that various side reactions occur on the electrode surface and adversely affect battery performance.

又、後述のX線回折における結晶厚みLc(Å)と真密
度ρ(g/cm3)の値が下記条件、即ち1.70<ρ<2.18か
つ10<Lc<120ρ−189の範囲でなければならない。好ま
しくは1.80<ρ<2.16かつ15<Lc<120ρ−196かつLc>
120ρ−227の範囲、更に好ましくは1.96<ρ<2.16かつ
15<Lc<120ρ−196かつLc>120ρ−227の範囲である。
Further, the value of the crystal thickness Lc (Å) and the true density ρ (g / cm 3 ) in the X-ray diffraction described later must be within the following conditions, that is, in the range of 1.70 <ρ <2.18 and 10 <Lc <120ρ-189. . Preferably 1.80 <ρ <2.16 and 15 <Lc <120ρ−196 and Lc>
120ρ-227, more preferably 1.96 <ρ <2.16 and
15 <Lc <120ρ-196 and Lc> 120ρ-227.

本発明において、該炭素質材料のn−ドープ体を安定
な電極活物質として用いる場合、前述のX線回折におけ
る結晶厚みLc(Å)と真密度ρ(g/cm3)の値は極めて
重要である。
In the present invention, when the n-doped carbonaceous material is used as a stable electrode active material, the values of the crystal thickness Lc (Å) and the true density ρ (g / cm 3 ) in the above-mentioned X-ray diffraction are extremely important. It is.

即ち、ρの値が1.70以下又はLcの値が10以下の場合
は、炭素質材料が十分に炭化していない、即ち炭素の結
晶成長が進んでおらず、無定形部分が非常に多いことを
意味する。又、その為、この範囲にある炭素質材料はそ
の炭化過程において表面積が必然的に大きくなり、本発
明の範囲のBET法比表面積の値を逸脱する。かかる炭素
質材料のn−ドープ体は極めて不安定であり、ドープ量
も低く、実質的にn−ドープ体として安定に存在するこ
とができず、電池活物質として用いることはできない。
That is, when the value of ρ is 1.70 or less or the value of Lc is 10 or less, the carbonaceous material is not sufficiently carbonized, that is, the crystal growth of carbon has not progressed, and the amorphous portion is very large. means. Therefore, the surface area of the carbonaceous material in this range inevitably increases during the carbonization process, and deviates from the value of the specific surface area by the BET method in the range of the present invention. Such an n-doped carbonaceous material is extremely unstable, has a low doping amount, cannot exist stably as an n-doped material, and cannot be used as a battery active material.

一方、ρの値が2.18以上又はLcの値が120ρ−189の値
以上の場合、炭素質材料の炭化が余りに進み過ぎ、即ち
炭素の結晶化の進んだ黒鉛、グラファイトに近い構造を
有していることを意味する。
On the other hand, if the value of ρ is 2.18 or more or the value of Lc is 120 ρ-189 or more, carbonization of the carbonaceous material proceeds too much, that is, graphite with advanced crystallization of carbon, having a structure close to graphite. Means that

かかる炭素質材料の構造を示すパラメーターとして、
本発明で限定する、真密度ρ(g/cm3)、結晶厚みLc
(Å)、BET法比表面積A(m2/g)以外に、例えばX線
回折における層間面間隔d002(Å)が挙げられる。かか
る面間隔d002(Å)の値は結晶化の進行と共に小さくな
り、特に限定はしないが、3.43Å未満、更には3.46Å未
満の値を有する炭素質材料は、本発明で限定する範囲か
ら逸脱する。
As a parameter indicating the structure of such a carbonaceous material,
True density ρ (g / cm 3 ), crystal thickness Lc defined by the present invention
(Å) In addition to the BET specific surface area A (m 2 / g), for example, the interlayer spacing d 002 (Å) in X-ray diffraction can be mentioned. The value of the interplanar spacing d 002 (Å) decreases with the progress of crystallization, and is not particularly limited. However, a carbonaceous material having a value of less than 3.43Å and further less than 3.46Å is within the range limited by the present invention. Deviate.

一方、前記ラーマンスペクトルにおける強度比R(I1
360cm-1/I1580cm-1)の値も又、炭素質材料の構造を示
すパラメーターであり、かかる強度比Rは結晶化の進行
と共に小さくなり、特に限定はしないが0.6未満又は2.5
以上の範囲、更には0.7未満又は2.5以上の範囲の値を有
する炭素質材料は本発明で限定する範囲から逸脱する。
On the other hand, the intensity ratio R (I1
360cm -1 / I1580cm -1) values are also of a parameter showing the structure of the carbonaceous material, such intensity ratio R decreases with the progress of crystallization, in particular but not limited but less than 0.6 or 2.5
Carbonaceous materials having a value in the above range, and even less than 0.7 or in a range of 2.5 or more, deviate from the range limited by the present invention.

前述の如く、黒鉛、グラファイトは規則的な層状構造
を有しており、かかる構造の炭素材料は種々のイオンを
ゲストとする層間化合物を形成すること、特にClO4 ,B
F4 等の陰イオンとのP型の層間化合物は高い電位を有
し、二次電池正極として用いようとの試みは古くからな
されている。かかる目的の場合層間化合物を形成し易い
ことが必須条件であり、例えば特開昭60−36315号公報
に記載の如く、前記ラーマン強度比R(I1360cm-1/I158
0cm-1)は可及的に小さいこと、即ち、ρの値及びLcの
値は可及的に大きいことが必須条件であった。
 As mentioned above, graphite and graphite have a regular layered structure
And the carbon material having such a structure has various ions.
Forming intercalation compounds to be guests, especially ClOFour , B
FFour P-type intercalation compounds with anions such as
However, attempts to use it as a positive electrode for secondary batteries have been around for a long time.
Have been. In such a case, an interlayer compound is easily formed.
It is an essential condition, for example, JP-A-60-36315
As described in the above, the Raman intensity ratio R (I1360 cm-1/ I158
0cm-1) Is as small as possible, ie, the value of ρ and the value of Lc
It was essential that the value be as large as possible.

本発明者らは別の観点から炭素質材料に陰イオンでは
なくLi イオン等の陽イオンを取り込ませることを種々
検討する過程において意外な事実を見出した。即ちLi
イオン等の陽イオンを取り込ませる場合、該炭素質材料
はある程度の不規則構造を有している方が優れた特性を
有することを見出した。即ち、ρの値が2.18以上、又は
Lcの値が120ρ−189の値以上を有する炭素質材料を用い
た場合、前述の如く、黒鉛、グラファイト的な挙動が発
現し、サイクル寿命特性、自己放電特性が悪く、更には
利用率が著しく低く、極端な場合二次電池として実質的
に働かない場合もあり好ましくない。
 From another point of view, the inventors of the present invention
Without Li Various incorporation of cations such as ions
In the process of considering, I found an unexpected fact. That is, Li
When incorporating cations such as ions, the carbonaceous material
Have a certain degree of irregular structure,
Was found to have. That is, the value of ρ is 2.18 or more, or
Using a carbonaceous material having a value of Lc of 120ρ-189 or more
In this case, graphite-like and graphite-like behavior occurs as described above.
The cycle life characteristics and self-discharge characteristics are poor.
Utilization rate is extremely low, and in extreme cases it is practically a secondary battery
May not work, which is not preferable.

本発明の粉粒状炭素質材料は、0.1μm〜50μmの範
囲に後述の如く、体積換算で、90%以上の粒度分布を有
し、好ましくは、0.1μm〜40μmの範囲、更に好まし
くは0.1μm〜25μmの範囲である。
The powdery and granular carbonaceous material of the present invention has a particle size distribution of 90% or more in terms of volume, preferably 0.1 μm to 40 μm, more preferably 0.1 μm to 50 μm, as described later. 2525 μm.

該範囲の粒度分布が90容量%未満で、かつ、0.1μm
未満の微粒子の割合が増加した粉粒体では、サイクル寿
命、自己放電特性、更には電流効率特性等の低下が見ら
れ、好ましくない。かかる現象は、粒子径が0.1μm未
満と小さいが故に、表面の割合が増し、主として炭素質
材料の表面官能基の酸化・還元、電解液との反応等、種
々の副反応が電極表面で起こり、電池性能に悪影響を及
ぼしているものと推察される。
The particle size distribution in the range is less than 90% by volume and 0.1 μm
In the case of the powdery particles in which the ratio of the fine particles is smaller than the above, the cycle life, the self-discharge characteristics, and the current efficiency characteristics are deteriorated, which is not preferable. This phenomenon is because the particle diameter is as small as less than 0.1 μm, the surface ratio increases, and various side reactions such as oxidation / reduction of the surface functional groups of the carbonaceous material and reaction with the electrolyte mainly occur on the electrode surface. It is presumed that the battery performance was adversely affected.

又、該範囲の粒度分布が90容量%未満で、かつ50μm
より大きな粒子の割合が増加した粉粒体では、電極とし
て成型する際、空隙が多く、嵩が高い電極となり、小
型、軽量の二次電池を供し得ない。
Further, the particle size distribution in the range is less than 90% by volume and 50 μm
A powder having an increased proportion of larger particles has a large number of voids and becomes a bulky electrode when molded as an electrode, and cannot provide a small and lightweight secondary battery.

又、50μm以下の薄手のセパレーターを用いる電池に
あっては、該粒子のセパレーター突き破りによる内部短
絡を招く恐れがあり、好ましくない。
Further, in the case of a battery using a thin separator of 50 μm or less, there is a possibility that an internal short circuit may be caused by the particles breaking through the separator, which is not preferable.

又、該範囲の粒度分布が90容量%未満でかつ0.1μm
未満の粒子及び50μmより大きい粒子の割合がともに増
加した粉粒体の場合、前述の微粒子、及び大きな粒子に
よる電池特性への悪影響が見られ好ましくない。
The particle size distribution in the range is less than 90% by volume and 0.1 μm
In the case of the powdered particles in which both the ratio of the particles having a particle size of less than 50 μm and the ratio of the particles having a particle size of more than 50 μm are increased, the above-mentioned fine particles and the large particles are unfavorably affected on the battery characteristics.

又、本発明では、該活物質の初回の電流効率が50%以
上である。50%未満であると、それに見合う正極の活物
質を大量に使用しなければならなくなる。
In the present invention, the current efficiency of the active material for the first time is 50% or more. If it is less than 50%, a large amount of the corresponding positive electrode active material must be used.

かかる本発明の条件を満たす炭素質材料として例え
ば、種々の有機化合物の熱分解、又は焼成炭化により得
られる。この場合、熱履歴温度条件は重要であり、前記
の如く、余りに熱履歴温度が低い場合には炭化が十分で
なく、電気電導度の小さいのみならず本発明の条件とす
る炭素質材料とならない。その温度下限は物により若干
異なるが、通常600℃以上、好ましくは800℃以上であ
る。更に重要なのは熱履歴温度上限であり、通常の黒
鉛、グラファイトや炭素繊維製造で行われている3,000
℃に近い温度での熱処理は、結晶の成長が余りに進み過
ぎ、二次電池としての機能が著しく損われる。2,400℃
以下、好ましくは1,800℃以下、更には1,400℃以下が好
ましい範囲である。かかる熱処理条件において、昇温速
度、冷却速度、熱処理時間等は目的に応じ任意の条件を
選択することができる。又、比較的低温領域で熱処理を
した後、所定の温度に昇温する方法も採用される。
Such a carbonaceous material that satisfies the conditions of the present invention can be obtained by, for example, thermal decomposition of various organic compounds or calcined carbonization. In this case, the heat history temperature condition is important. As described above, if the heat history temperature is too low, carbonization is not sufficient, and not only the electric conductivity is low but also the carbonaceous material which is a condition of the present invention is not obtained. . The lower limit of the temperature varies slightly depending on the product, but is usually 600 ° C. or higher, preferably 800 ° C. or higher. More important is the upper limit of the thermal history temperature, which is 3,000 in the usual graphite, graphite and carbon fiber production.
Heat treatment at a temperature close to ° C. leads to excessive progress of crystal growth, which significantly impairs the function as a secondary battery. 2,400 ℃
Below, preferably 1,800 ° C. or lower, and more preferably 1,400 ° C. or lower. In such heat treatment conditions, the heating rate, cooling rate, heat treatment time, and the like can be arbitrarily selected according to the purpose. Further, a method of performing a heat treatment in a relatively low temperature region and then raising the temperature to a predetermined temperature is also adopted.

本発明で用いられる炭素質材料が、塊状、粒状等の場
合、粉砕して、粉粒体を得る。尚、粉砕方法は、特に限
定されないが、一例を示せば、乾式又は湿式ボールミル
粉砕、振動ボールミル、気流式粉砕、ハンマークラッシ
ャー、スタンプミル、衝撃式粉砕等が挙げられる。
When the carbonaceous material used in the present invention is in the form of a lump or a granule, it is pulverized to obtain a powder. The pulverization method is not particularly limited, but examples thereof include dry or wet ball mill pulverization, vibration ball mill, airflow pulverization, hammer crusher, stamp mill, impact pulverization and the like.

本発明の条件範囲を満たす炭素質材料の一例を示せ
ば、例えば気相成長法炭素繊維が挙げられる。該気相成
長法炭素繊維は例えば、特開昭59−207823号公報に記載
の如く、ベンゼン、メタン、一酸化炭素等の炭素源化合
物を遷移金属触媒等の存在下気相熱分解(例えば600℃
〜1500℃の温度において)せしめて得られる炭素材料で
あり、公知のこれに類する方法によって得られる全ての
ものを言い、繊維を基材上(例えば、セラミックス、グ
ラファイトの基板、カーボンファイバー、カーボンブラ
ック、セラミックス粒子等である。)に生成せしめる方
法や気相に生成せしめる方法等が知られている。通常か
かる方法により繊維状、即ち炭素繊維として得られる
が、本発明においては粉砕された粉粒状として用いる。
An example of a carbonaceous material satisfying the condition range of the present invention is, for example, a vapor grown carbon fiber. For example, as described in JP-A-59-207823, a carbon source compound such as benzene, methane or carbon monoxide is vapor-phase pyrolyzed in the presence of a transition metal catalyst or the like (for example, ° C
A carbon material obtained at least at a temperature of ~ 1500 ° C. and refers to everything obtained by a method similar to the known method, and a fiber is coated on a base material (for example, a ceramic, graphite substrate, carbon fiber, carbon black). , Ceramic particles, etc.), and a method of generating a gaseous phase. Usually, a fibrous form, that is, a carbon fiber is obtained by such a method, but in the present invention, it is used as a pulverized powder.

かかる気相成長炭素繊維が易黒鉛化炭素の典型例であ
ることは公知の事実である。即ち熱処理により極めて容
易に黒鉛グラファイト化するという特徴を有している。
通常かかる熱処理は2400℃以上の温度下で行われる。か
くして得られる黒鉛化気相成長炭素繊維は極めて結晶構
造の整った黒鉛材料として種々の特徴が既に報告されて
おり、例えば遠藤らが「シンセティック・メタルズ(Sy
nthetic Metals)vol.7,P.203,1983年」に記載の如くBr
等の陰イオンと極めて容易に層間化合物を形成するこ
と、更にはかかる陰イオンとの層間化合物を正極及び負
極に用いて温度差電池をつくり得ることが知られてい
る。しかしながら、かかる電池系は通常起電力が極めて
低く実用に耐えるものではなかった。
 Such vapor grown carbon fiber is a typical example of graphitizable carbon.
Is a known fact. In other words, extremely heat treatment
It has the characteristic that it can be easily made into graphite.
Usually, such heat treatment is performed at a temperature of 2400 ° C. or higher. Or
The graphitized vapor-grown carbon fiber thus obtained has an extremely crystalline structure.
Various features have already been reported as well-formed graphite materials.
For example, Endo et al., "Synthetic Metals (Sy
nthetic Metals) vol.7, P.203, 1983 ”
Very easily forms an intercalation compound with anions such as
And an intercalation compound with such an anion as a positive electrode and a negative electrode.
It is known that temperature difference batteries can be made
You. However, such battery systems usually have extremely high electromotive force.
It was low and not practical.

一方、前述の如く、黒鉛、グラファイトは規則的な層
状構造を有しており、かかる構造の炭素材料は種々のイ
オンをゲストとする層間化合物を形成すること、特にCl
O4 ,BF4 等の陰イオンとの層間化合物は高い電位を有
し、二次電池正極として用いようとの試みは古くからな
されている。かかる目的の場合層間化合物を形成し易い
ことが必須条件であり、例えば特開昭60−36315号公報
に記載の如く、3000℃近い熱処理をした黒鉛、グラファ
イト構造が必須条件であった。本発明者らは別の観点か
ら炭素質材料に陰イオンではなく、Li イオン等の陽イ
オンを取り込ませたn−ドープ体を種々検討する過程に
おいて意外な事実を見出した。即ちLi イオン等の陽イ
オンを取り込ませる場合、該炭素質材料は過度の熱履歴
を経ない方が優れた特性を有することを見出した。
 On the other hand, as mentioned above, graphite and graphite are regular layers.
The carbon material having such a structure has various shapes.
Forming intercalation compounds with ON as guest, especially Cl
OFour , BFFour Intercalation compounds with anions such as
However, attempts to use it as a positive electrode for secondary batteries have been around for a long time.
Have been. In such a case, an interlayer compound is easily formed.
It is an essential condition, for example, JP-A-60-36315
Graphite and graphene heat-treated near 3000 ° C as described in
The site structure was an essential condition. Are we another perspective?
The carbonaceous material is not anion but Li Positive ions such as ions
In the process of variously examining n-doped bodies incorporating on
I found an unexpected fact. That is, Li Positive ions such as ions
If carbon is incorporated, the carbonaceous material has an excessive thermal history.
It has been found that those which do not pass through have excellent properties.

即ち本発明において用いられる気相成長炭素繊維は、
製造工程も含めた最高の熱履歴温度が2400℃以下、好ま
しくは2000℃以下、特に1400℃以下が好適に用いられ
る。2400℃を越すとそのn−ドープ体の特性に悪影響を
与え好ましくない。
That is, the vapor grown carbon fiber used in the present invention is:
The maximum heat history temperature including the manufacturing process is 2400 ° C. or less, preferably 2000 ° C. or less, and particularly preferably 1400 ° C. or less. If it exceeds 2400 ° C., the properties of the n-doped material are adversely affected, which is not preferable.

本発明で用いられる気相成長炭素繊維の粉粒体は該繊
維を通常の方法で適度に粉砕することにより得られる。
過度に粉砕すると0.1μm以下の微粒子の割合が増加
し、前述の如く、電池性能に悪影響を及ぼす。又、粉砕
不足では50μm以上の粒子の割合が増し、嵩高い電極、
セパレーターの突き破り等の問題を引き起こす。
The vapor-grown carbon fiber powder used in the present invention can be obtained by appropriately pulverizing the fiber by an ordinary method.
Excessive pulverization increases the proportion of fine particles of 0.1 μm or less, and adversely affects battery performance as described above. In addition, in the case of insufficient pulverization, the proportion of particles having a particle size of 50 μm or more increases,
This causes problems such as breakthrough of the separator.

又、他の例を示せば、ピッチ系炭素質材料が挙げられ
る。本発明で用いられるピッチ類の一例を示せば、石油
ピッチ、アスファルトピッチ、コールタールピッチ、原
油分解ピッチ、石油スラッジピッチ等の石油、石炭の熱
分解により得られるピッチ、高分子重合体の熱分解によ
り得られるピッチ、テトラベンゾフェナジン等の有機低
分子化合物の熱分解により得られるピッチ等が挙げられ
る。
Another example is a pitch-based carbonaceous material. Examples of pitches used in the present invention include petroleum pitch, asphalt pitch, coal tar pitch, crude oil cracking pitch, petroleum such as petroleum sludge pitch, pitch obtained by pyrolysis of coal, and pyrolysis of high-molecular polymer. And the pitch obtained by thermal decomposition of an organic low-molecular compound such as tetrabenzophenazine.

本発明の条件を満たすピッチ系焼成炭化物を得るには
熱履歴温度条件が重要であり、前述の如く高い温度での
熱履歴は結晶化が進み過ぎた焼成炭化物を与え、n−ド
ープ体の特性が著しく悪化する。熱履歴温度条件として
は2,400℃以下、好ましくは1,800℃以下、更には1,400
℃以下が好ましい範囲である。
In order to obtain a pitch-based calcined carbide satisfying the conditions of the present invention, the thermal history temperature condition is important, and as described above, the thermal history at a high temperature gives a calcined carbide that has progressed too much in crystallization, and the properties of the n-doped material Significantly worsens. The heat history temperature condition is 2,400 ° C or less, preferably 1,800 ° C or less, and further 1,400 ° C.
C. or lower is a preferred range.

又、温度下限としては少なくとも焼成炭化物として、
電気電導度等の特性の発現し始める温度600℃以上、更
には800℃以上が好ましい範囲である。
Further, as the lower temperature limit, at least as a calcined carbide,
A preferred temperature range is 600 ° C. or higher, more preferably 800 ° C. or higher, at which properties such as electrical conductivity begin to appear.

かかるピッチ系焼成炭化物の具体例を示せば、ニード
ルコークス等が挙げられる。
A specific example of such a pitch-based calcined carbide is needle coke.

かかるピッチ系焼成炭化物を適度に粉砕し、本発明で
用いられる炭素質材料の粉粒体が得られる。
Such a pitch-based calcined carbide is appropriately pulverized to obtain a powdery carbonaceous material used in the present invention.

更に本発明で用いられる炭素質材料を例示すれば、ア
クリロニトリルを主成分とする重合体の焼成炭化物の粉
粒体が挙げられる。
Further, as an example of the carbonaceous material used in the present invention, there may be mentioned powdered granules of calcined carbide of a polymer containing acrylonitrile as a main component.

本発明の条件を満たすアクリロニトリルを主成分とす
る重合体の焼成炭化物を得るには熱履歴温度条件が重要
であり、前述の如く高い温度での熱履歴は結晶の余りに
成長し過ぎた焼成炭化物を与え、そのn−ドープ体の特
性が著しく悪化する。熱履歴温度条件としては2,400℃
以下、好ましくは1,800℃以下、更には1,400℃以下が好
ましい範囲である。
Thermal hysteresis temperature conditions are important for obtaining a calcined carbide of a polymer containing acrylonitrile as a main component that satisfies the conditions of the present invention, and the heat history at a high temperature as described above can reduce the calcined carbide that has grown too much in the crystal. And the properties of the n-doped body are significantly degraded. Thermal history temperature condition is 2,400 ℃
Below, preferably 1,800 ° C. or lower, and more preferably 1,400 ° C. or lower.

又、温度下限としては少なくとも焼成炭化物として、
電気電導度等の特性の発現し始める温度600℃以上、更
には800℃以上が好ましい範囲である。
Further, as the lower temperature limit, at least as a calcined carbide,
A preferred temperature range is 600 ° C. or higher, more preferably 800 ° C. or higher, at which properties such as electrical conductivity begin to appear.

かかる焼成炭化物を適度に粉砕し、本発明で用いられ
る炭素質材料の粉粒体が得られる。
The calcined carbide is appropriately pulverized to obtain a powdery carbonaceous material used in the present invention.

本発明の炭素質材料の粉粒体が通常の黒鉛、グラファ
イトと異なるところは、層間化合物を形成し得るような
層状構造を有していないことはX線分析、ラーマン分
析、真密度測定等の結果から明らかであること。事実本
発明の条件範囲の炭素質材料は黒鉛、グラファイトと非
常に層間化合物を形成し易いClO4 ,BF4 ,Br 等の陰
イオンは全く取り込まない、又は非常に取り込みにくい
という事実がある。
 The powder of the carbonaceous material of the present invention may be made of ordinary graphite or graphite.
The difference from the site is that it can form an intercalation compound.
The absence of a layered structure was confirmed by X-ray analysis and Raman analysis.
Must be clear from the results of analysis and true density measurement. Fact book
The carbonaceous materials within the scope of the invention are graphite, graphite and non-carbonaceous materials.
ClO that always forms intercalation compoundsFour , BFFour , Br Etc. shade
Does not take in ions at all or is very difficult to take in
There is a fact that.

更に具体的に示せば、かかる陰イオンの取り込み量、
即ちp−ドープ量は0.6M−LiClO4−プロピレンカーボネ
ート電解液系において0.005未満、更には0.002未満のも
のが逆に負極として優れた性能を発揮する。
More specifically, such an anion uptake amount,
That p- doping amount 0.6M-LiClO 4 - less than 0.005 in propylene carbonate electrolyte system, more excellent performance as a negative electrode on the contrary of less than 0.002.

又、前記特開昭58−35881号公報の例の如く、活性炭
等の高表面積炭素材料に見られる表面での電気二重層形
成、即ち一種のコンデンサー的挙動と異なり、本発明の
場合、表面積と電池性能が全く相関性のないこと、むし
ろ逆に表面積が大きいと、電流効率、自己放電等の性能
面においてマイナスになること等の事実がある。
Also, as in the example of JP-A-58-35881, unlike the formation of an electric double layer on the surface seen in a high surface area carbon material such as activated carbon, that is, unlike a kind of capacitor-like behavior, in the case of the present invention, the surface area and There is a fact that there is no correlation between battery performances, and conversely, if the surface area is large, the performances such as current efficiency and self-discharge become negative.

かかる事実が従来公知の炭素材料で見出されている現
象と異っており、二次電池活物質として用いた場合、次
の特性を発揮する。サイクル寿命特性として少なくとも
100回以上、ものにより300回以上、更には500回以上の
サイクル寿命特性を有する。又、充放電における電流効
率は少なくとも90%以上、ものにより95%以上、更には
98%以上に達する。自己放電率は少なくとも30%/月以
下、ものにより20%/月以下、更には10%/月以下に達
する。更に本発明の条件を満たす炭素質材料の特徴の一
つは利用率が非常に大きいことが挙げられる。
This fact is different from the phenomenon found in conventionally known carbon materials, and when used as a secondary battery active material, the following properties are exhibited. At least as cycle life characteristics
It has a cycle life of 100 times or more, 300 times or more, and even 500 times or more. In addition, the current efficiency in charge and discharge is at least 90% or more, depending on the case, 95% or more, and furthermore
Reach 98% or more. The self-discharge rate is at least 30% / month or less, depending on the case, reaches 20% / month or even 10% / month or less. Further, one of the characteristics of the carbonaceous material satisfying the conditions of the present invention is that the utilization factor is extremely large.

本発明で云う利用率とは炭素1原子当りに可逆的に出
入りし得る電子(又は対陽イオン)の割合を意味し、下
式で定義される。
The utilization rate in the present invention means a ratio of electrons (or counter cations) that can reversibly enter and exit per carbon atom and is defined by the following formula.

ここでwは用いた炭素質材料の重量(g単位)を表わ
す。
Here, w represents the weight (g unit) of the carbonaceous material used.

本発明において利用率は少なくとも0.08以上、更には
0.15以上に達し、少ない重量、体積で多くの電気量を蓄
えることが可能である。
In the present invention, the utilization is at least 0.08 or more, and furthermore
It reaches 0.15 or more, and it is possible to store a large amount of electricity with a small weight and volume.

本発明の炭素質材料のn−ドープ体は二次電池活物質
として用いた場合優れた性能を発揮し、特に負極活物質
として用いた場合、更に優れた性能を発揮する。
The n-doped carbonaceous material of the present invention exhibits excellent performance when used as a secondary battery active material, and more particularly when used as a negative electrode active material.

次に本発明の活物質を用いた二次電池について述べ
る。本発明の二次電池負極用活物質を用い、電極を製造
するに際し、該活物質をシート状、フィルム状等任意の
形状に成形して用いる。
Next, a secondary battery using the active material of the present invention will be described. When an electrode is produced using the active material for a negative electrode of a secondary battery of the present invention, the active material is formed into an arbitrary shape such as a sheet or a film and used.

成形方法としては、活物質をテフロン粉末、ポリエチ
レン粉末等の粉末状バインダーと共に混合し圧縮成形す
る方法が一般的である。
As a molding method, a method is generally used in which the active material is mixed with a powdery binder such as Teflon powder or polyethylene powder and compression molded.

更に好ましい方法として溶媒に溶解及び/又は分散し
た有機重合体をバインダーとして電極活物質を成形する
方法が挙げられる。
A more preferable method is a method of forming an electrode active material using an organic polymer dissolved and / or dispersed in a solvent as a binder.

従来より非水系電池は高エネルギー密度、小型軽量と
いった性能面では優れているものの、水系電池に比べ出
力特性に難点があり、広く一般に用いられるまでに至っ
ていない。特に出力特性が要求される二次電池の分野で
はこの欠点が実用化を妨げている一つの要因となってい
る。
Conventionally, non-aqueous batteries have been excellent in performance such as high energy density and small size and light weight, but have disadvantages in output characteristics as compared with water-based batteries, and have not been widely used. In particular, in the field of secondary batteries that require output characteristics, this drawback is one of the factors hindering practical use.

非水系電池が出力特性に劣る原因は水系電解液の場合
イオン電導度が高く、通常10-1Ω-1cm-1オーダーの値を
有するのに対し、非水系の場合通常10-2〜10-4Ω-1cm-1
と低いイオン電導度しか有していないことに起因する。
Non-aqueous batteries have poor output characteristics because aqueous electrolytes have high ionic conductivity and usually have a value of the order of 10 -1 Ω -1 cm -1 , whereas non-aqueous batteries usually have a value of 10 -2 to 10. -4 Ω -1 cm -1
And low ion conductivity.

かかる問題点を解決する一つの方法として電極面積を
大きくすること、即ち薄膜、大面積電極を用いることが
考えられる。
One method of solving such a problem is to increase the electrode area, that is, to use a thin film or a large-area electrode.

前記方法は、かかる薄膜、大面積電極を得るのに特に
好ましい方法である。
The above method is a particularly preferable method for obtaining such a thin film and a large-area electrode.

かかる有機重合体をバインダーとして用いるに際して
は、該有機重合体を溶媒に溶解せしめたバインダー溶液
に電極活物質を分散せしめたものを塗工液として用いる
方法、又、該有機重合体の水乳化分散液に電極活物質を
分散せしめたものを塗工液として用いる方法、予め予備
成形された電極活物質に該有機重合体の溶液及び/又は
分散液を塗布する方法等が一例として挙げられる。用い
るバインダー量は特に限定するものではないが、通常、
電極活物質100重量部に対し0.1〜20重量部、好ましくは
0.5〜10重量部の範囲である。
When using such an organic polymer as a binder, a method in which an electrode active material is dispersed in a binder solution obtained by dissolving the organic polymer in a solvent is used as a coating liquid, or a method of emulsifying and dispersing the organic polymer in water. Examples thereof include a method in which a liquid in which an electrode active material is dispersed is used as a coating liquid, and a method in which a solution and / or dispersion of the organic polymer is applied to a preformed electrode active material. The amount of the binder used is not particularly limited, but usually,
0.1 to 20 parts by weight, preferably 100 parts by weight of the electrode active material, preferably
It is in the range of 0.5 to 10 parts by weight.

ここで用いられる有機重合体は特に限定されるもので
はないが、該有機重合体が25℃、周波数1kHzにおける比
誘電率が4.5以上の値を有する場合、特に好ましい結果
をもたらし、特に電池性能として、サイクル性、過電圧
等の面で優れた特性を有する。
The organic polymer used here is not particularly limited, but when the organic polymer has a value of not less than 4.5 at 25 ° C. and a frequency of 1 kHz, a particularly preferable result is obtained, and particularly as a battery performance. , Cycle characteristics, overvoltage, etc.

かかる条件を満たす有機重合体の一例を示せば、アク
リロニトリル、メタクリロニトリル、フッ化ビニル、フ
ッ化ビニリデン、クロロプレン、塩化ビニリデン等の重
合体もしくは共重合体、ニトロセルロース、シアノエチ
ルセルロース、多硫化ゴム等が挙げられる。
Examples of the organic polymer satisfying such conditions include acrylonitrile, methacrylonitrile, vinyl fluoride, vinylidene fluoride, chloroprene, polymers or copolymers such as vinylidene chloride, nitrocellulose, cyanoethylcellulose, and polysulfide rubber. Is mentioned.

かかる方法により電極を製造するに際し、前記塗工液
を基材上に塗布乾燥することにより成形される。この時
要すれば集電体材料と共に成形しても良いし、又、別法
としてニッケル箔、銅箔等の集電体を基材として用いる
こともできる。
In producing an electrode by such a method, the electrode is formed by applying and drying the coating liquid on a substrate. At this time, if necessary, it may be molded together with the current collector material, or alternatively, a current collector such as a nickel foil or a copper foil may be used as the base material.

本発明の活物質を用いて製造される電池電極には、前
記バインダー、導電補助剤、その他添加剤、例えば増粘
剤、分散剤、増量剤、粘着補助剤等が添加されても良い
が、少なくとも本発明の活物質が25重量%以上含まれて
いるものを言う。
The battery electrode manufactured using the active material of the present invention, the binder, a conductive auxiliary, and other additives, for example, a thickener, a dispersant, a bulking agent, an adhesive auxiliary may be added, A material containing at least 25% by weight of the active material of the present invention.

本発明の非水系二次電池の正極に用いる活物質は、充
電により負極活物質である炭素質材料にリチウムイオン
を取り込ませる活物質である。かかる活物質としては特
に限定されないが、一例で示せば、Li(1-x)MnO2,Li
(1-x)CoO2,LixCoySnzO2、Li(1-x)NiO2が挙げられる。好
ましくは特願昭61−103,785号記載の如く、高起電力、
サイクル寿命等の電池特性面よりLixCoySnzO2正極であ
る。
The active material used for the positive electrode of the nonaqueous secondary battery of the present invention is an active material that allows lithium ions to be taken into a carbonaceous material that is a negative electrode active material by charging. Such an active material is not particularly limited. For example, Li (1-x) MnO 2 , Li
(1-x) CoO 2, Li x Co y Sn z O 2, Li (1-x) NiO 2 and the like. Preferably, as described in Japanese Patent Application No. 61-103,785, high electromotive force,
It is a Li x Co y Sn z O 2 cathode from the viewpoint of battery characteristics such as cycle life.

本発明の非水系二次電池を組立てる場合の基本構成要
素として、前記本発明の活物質を用いた負極及び正極、
更にはセパレーター、非水系電解液が挙げられる。セパ
レーターとしては特に限定されないが、織布、不織布、
ガラス織布、合成樹脂微多孔膜等が挙げられるが、前述
の如く、薄膜、大面積電極を用いる場合には、例えば特
開昭58−59072号に開示される合成樹脂微多孔膜、特に
ポリオレフィン系微多孔膜が、厚み、強度、膜抵抗の面
で好ましい。
As a basic component when assembling the non-aqueous secondary battery of the present invention, a negative electrode and a positive electrode using the active material of the present invention,
Furthermore, a separator and a non-aqueous electrolyte are mentioned. The separator is not particularly limited, woven fabric, non-woven fabric,
Glass woven fabric, synthetic resin microporous membrane and the like are mentioned. As described above, when a thin film and a large area electrode are used, for example, a synthetic resin microporous membrane disclosed in JP-A-58-59072, particularly polyolefin Microporous membranes are preferred in terms of thickness, strength, and membrane resistance.

非水電解液の電解質としては特に限定されないが、一
例を示せば、LiClO4,LiBF4,LiAsF6,CF3SO3Li,LiPF6,Li
I,LiAlCl4,NaClO4,NaBF4,NaI,(n−Bu)4N ClO4,(n
−Bu)4N BF4,KPF6等が挙げられる。又、用いられる電
解液の有機溶媒としては、例えばエーテル類、ケトン
類、ラクトン類、ニトリル類、アミン類、アミド類、硫
黄化合物、塩素化炭化水素類、エステル類、カーボネー
ト類、ニトロ化合物、リン酸エステル系化合物、スルホ
ラン系化合物等を用いることができるが、これらのうち
でもエーテル類、ケトン類、ニトリル類、塩素化炭化水
素類、カーボネート類、スルホラン系化合物が好まし
い。更に好ましくは環状カーボネート類である。
 The electrolyte of the non-aqueous electrolyte is not particularly limited.
For example, LiClOFour, LiBFFour, LiAsF6, CFThreeSOThreeLi, LiPF6, Li
I, LiAlClFour, NaClOFour, NaBFFour, NaI, (n-Bu)FourN ClOFour, (N
−Bu)FourN BFFour, KPF6And the like. In addition,
Examples of the organic solvent for the dissolution include ethers, ketones
, Lactones, nitriles, amines, amides, sulfur
Yellow compounds, chlorinated hydrocarbons, esters, carbonate
G, nitro compounds, phosphate compounds, sulfo
Run compounds can be used.
But ethers, ketones, nitriles, chlorinated hydrocarbons
Elements, carbonates and sulfolane compounds are preferred.
No. More preferred are cyclic carbonates.

これらの代表例としては、テトラヒドロフラン、2−
メチルテトラヒドロフラン、1,4−ジオキサン、アニソ
ール、モノグライム、アセトニトリル、プロピオニトリ
ル、4−メチル−2−ペンタノン、ブチロニトリル、バ
レロニトリル、ベンゾニトリル、1,2−ジクロロエタ
ン、γ−ブチロラクトン、ジメトキシエタン、メチルフ
ォルメイト、プロピレンカーボネート、エチレンカーボ
ネート、ビニレンカーボネート、ジメチルホルムアミ
ド、ジメチルスルホキシド、ジメチルチオホルムアミ
ド、スルホラン、3−メチル−スルホラン、リン酸トリ
メチル、リン酸トリエチルおよびこれらの混合溶媒等を
あげることができるが、必ずしもこれらに限定されるも
のではない。
Representative examples of these include tetrahydrofuran, 2-
Methyltetrahydrofuran, 1,4-dioxane, anisole, monoglyme, acetonitrile, propionitrile, 4-methyl-2-pentanone, butyronitrile, valeronitrile, benzonitrile, 1,2-dichloroethane, γ-butyrolactone, dimethoxyethane, methylphor Mate, propylene carbonate, ethylene carbonate, vinylene carbonate, dimethylformamide, dimethylsulfoxide, dimethylthioformamide, sulfolane, 3-methyl-sulfolane, trimethyl phosphate, trimethyl phosphate, and a mixed solvent of these can be given, but not necessarily. It is not limited to these.

更に要すれば、集電体、端子、絶縁板等の部品を用い
て電池が構成される。又、電池の構造としては、特に限
定されるものではないが、正極、負極、更に要すればセ
パレーターを単層又は複層としたペーパー型電池、積層
型電池、又は正極、負極、更に要すればセパレーターを
ロール状に巻いた円筒状電池等の形態が一例として挙げ
られる。
If necessary, a battery is configured using components such as a current collector, a terminal, and an insulating plate. In addition, the structure of the battery is not particularly limited, but a positive electrode, a negative electrode, and, if necessary, a paper type battery having a single or multiple layers of separators, a laminated type battery, or a positive electrode, a negative electrode, For example, a form of a cylindrical battery or the like in which a separator is wound in a roll shape is given as an example.

[発明の効果] 本発明の電池は小型軽量であり、特にサイクル特性、
自己放電特性に優れ、小型電子機器用、電気自動車用、
電力貯蔵用等の電源として極めて有用である。
[Effect of the Invention] The battery of the present invention is small and lightweight, and has particularly good cycle characteristics and
Excellent self-discharge characteristics, for small electronic devices, electric vehicles,
It is extremely useful as a power source for power storage and the like.

[実施例] 以下、実施例、比較例により本発明を更に詳しく説明
する。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

尚、表面積は柴田科学器械工業(株)製BET表面積測
定装置P−700型を用いて、窒素吸着法により測定し
た。また、X線回折は「日本学術振興会法」に準じて行
った。また、真密度は、炭素質材料の粉粒体を試料と
し、25℃でブロモホルム、四塩化炭素混合溶液を用いる
浮沈法により測定した。真密度が分布を有する試料に関
しては、粉末粒子の全体の約50%が沈降するところの値
を測定値とした。
The surface area was measured by a nitrogen adsorption method using a BET surface area measuring device P-700 manufactured by Shibata Scientific Instruments Co., Ltd. The X-ray diffraction was performed according to the method of the Japan Society for the Promotion of Science. In addition, the true density was measured by a floatation method using a mixed solution of bromoform and carbon tetrachloride at 25 ° C. using a powder of a carbonaceous material as a sample. For a sample having a true density distribution, the value at which about 50% of the entire powder particles settled was taken as the measured value.

炭素質材料の粉粒体の粒度分布は、該粉粒体を1−ブ
タノール1重量部、分散剤、Hoelemann & Wolff社製K
−Solution0.01重量部に超音波分散し、堀場製作所
(株)社製 粒度分布測定装置CAPA−500を用いて、自
然沈降法、及び遠心沈降法により測定した。0.1μm〜5
0μmの範囲にある粒子の割合(体積換算)を算出し
た。
The particle size distribution of the granular material of the carbonaceous material was determined by dividing the granular material by 1 part by weight of 1-butanol, a dispersant, and K, manufactured by Hoelemann & Wolff.
The solution was ultrasonically dispersed in 0.01 parts by weight of a solution, and the dispersion was measured by a natural sedimentation method and a centrifugal sedimentation method using a particle size distribution analyzer CAPA-500 manufactured by Horiba, Ltd. 0.1 μm-5
The ratio (by volume) of the particles in the range of 0 μm was calculated.

また、初回の電流効率は下記の方法で求めた。 The initial current efficiency was determined by the following method.

本発明の炭素質材料の粉粒体10mgを用いる電極とリチ
ウム対極と0.6モル濃度のLiClO4プロピレンカーボネー
ト溶液を電解液として用いる電池を組み、0.5mA定電流
でLi /Li参照電極からの電位が0Vまで放電した後、0.5
mA定電流で電位が1.0Vまで充電を行った。この放電過程
は下式(1)で表わされるように Li によるn−ドーピング、即ち、通常の正極との組合
せにおける炭素質材料負極の充電に相当する。又、該電
池の充電過程は下式(2)で表わされるように Li のアンドーピング、即ち、通常の正極との組合せ
における炭素質材料負極の放電に相当する。
 An electrode using 10 mg of the granular material of the carbonaceous material of the present invention and lithium
Counter electrode and 0.6 molar LiClOFourPropylene carbonate
Battery using electrolyte solution as the electrolyte, 0.5mA constant current
In Li / Li after discharging the potential from the reference electrode to 0 V, 0.5
The battery was charged at a constant current of mA to a potential of 1.0 V. This discharge process
Is expressed by the following equation (1).Li N-doping, i.e. in combination with the usual positive electrode
This corresponds to the charging of the carbonaceous material negative electrode during the charging. In addition,
The charging process of the pond is expressed by the following equation (2). Li Undoping, i.e. combination with normal cathode
Corresponds to the discharge of the negative electrode of the carbonaceous material.

本発明で云う、初回の電流効率は該電池の充電電気量
の放電電気量に対する割合から下式(3)の如く求め
た。
The initial current efficiency referred to in the present invention was obtained from the ratio of the amount of charge of the battery to the amount of discharge of the battery as in the following equation (3).

比誘電率の測定は下記の条件で行った。 The relative permittivity was measured under the following conditions.

(測定温度) 25℃ (測定周波数) 1kHz (試料形状) 0.5mmシート (測定装置) TR−10C型誘電体積測定器(安藤電気
(株)社製) 実施例1 ベンゼンにビスシクロペンタジエニル鉄を1重量%溶
解し、原料液とした。
(Measurement temperature) 25 ° C (Measurement frequency) 1kHz (Sample shape) 0.5mm sheet (Measurement device) TR-10C type dielectric volume meter (manufactured by Ando Electric Co., Ltd.) Example 1 Biscyclopentadienyl iron for benzene Was dissolved at 1% by weight to obtain a raw material liquid.

カンタル線ヒーターを有する管状炉に内径60φのアル
ミナ質炉芯管を横型に設置し、両端をゴム栓でシールし
た。片方の栓には原料液を導入する内径6φのアルミナ
質パイプを貫通せしめ、該パイプの一端は予め測定した
炉内温度の510℃の位置で、炉管中心部に出口がくるよ
うに設置した。該パイプの他端は炉外に出されて、ゴム
チューブで定量ポンプに接続した。定量ポンプには原料
液を不活性ガスで加圧して定量ポンプへ送るものとし
た。また、原料導入側のゴム栓にはさらに同径のパイプ
を貫通せしめて、ゴムチューブを介して、炉内置換用の
不活性ガスおよび繊維成長の補助として水素ガスを導入
する。これらのガスはバルブによって、任意に切変えら
れるものとした。一方、他端のゴム栓には内径6φのア
ルミナ質パイプを設けて、ゴムチューブを介して排出ガ
スを排出できるようにした。
An alumina furnace core tube having an inner diameter of 60φ was set in a horizontal type in a tubular furnace having a Kanthal wire heater, and both ends were sealed with rubber stoppers. An alumina pipe with an inner diameter of 6φ through which the raw material liquid was introduced was passed through one stopper, and one end of the pipe was set at a position of 510 ° C. of the furnace temperature measured in advance so that the outlet came to the center of the furnace tube. . The other end of the pipe was taken out of the furnace and connected to a metering pump with a rubber tube. In the metering pump, the raw material liquid was pressurized with an inert gas and sent to the metering pump. Further, a pipe of the same diameter is further penetrated into the rubber stopper on the raw material introduction side, and an inert gas for replacement in the furnace and hydrogen gas are introduced through the rubber tube as an aid for fiber growth. These gases were arbitrarily switched by valves. On the other hand, the rubber stopper at the other end was provided with an alumina pipe having an inner diameter of 6φ so that the exhaust gas could be discharged through the rubber tube.

先ず炉内を不活性ガスで置換した後、水素ガスに切換
えて炉中心の温度が1200℃になるよう昇温した。このと
きパイプ出口の温度は500℃であった。水素ガス1000cc/
minの流量で供給しつつ、原料液を1cc/minの量で約15分
間供給した。その結果600〜1200℃の帯域に7.1gの(平
均粒径約4μmφの)炭素繊維が得られた。この炭素繊
維を内容積約500cm3のSUS製ポット、及びSUS製ボールを
用いて1時間回転式ボールミル粉砕し、0.1μm〜50μ
mの範囲に粒度分布の92容量%を有する粉粒体を得た。
該粉粒体のBET表面積、真密度、X線回折により得られ
た結晶厚みLc(002)はそれぞれ14m2/g、2.03g/cm3、38Å
であった。該粒体1重量部をニトリルゴム(比誘電率1
7.3)のメチルエチルケトン溶液(2wt%濃度)2.5重量
部と混合し塗工液とし、10μmの銅箔1cm×5cmの表面に
75μmの厚みに製膜した。この製膜体をSUSネットには
さみ、第1図に示す電池の負極とした。
First, after the inside of the furnace was replaced with an inert gas, the temperature was switched to hydrogen gas and the temperature at the center of the furnace was increased to 1200 ° C. At this time, the temperature at the pipe outlet was 500 ° C. Hydrogen gas 1000cc /
The raw material liquid was supplied at a flow rate of 1 cc / min for about 15 minutes while supplying at a flow rate of min. As a result, 7.1 g of carbon fibers (having an average particle size of about 4 μmφ) were obtained in the band of 600 to 1200 ° C. This carbon fiber is pulverized for 1 hour with a rotary ball mill using a SUS pot with an internal volume of about 500 cm 3 and a SUS ball.
A powder having a particle size distribution of 92% by volume in the range of m was obtained.
The BET surface area, true density, and crystal thickness Lc (002) of the powder obtained by X-ray diffraction were 14 m 2 / g, 2.03 g / cm 3 , and 38 ° C., respectively.
Met. 1 part by weight of the granules is treated with nitrile rubber (dielectric constant 1
7.3) with 2.5 parts by weight of methyl ethyl ketone solution (2 wt% concentration) to make a coating solution, and apply it to the surface of 10 μm copper foil 1 cm x 5 cm
A film was formed to a thickness of 75 μm. This film was sandwiched between SUS nets to form a negative electrode of the battery shown in FIG.

尚、この負極の初回の電流効率は67%であった。 The initial current efficiency of this negative electrode was 67%.

一方、1cm×5cm×0.1cmのシート状に成形したLiCoO2
をSUSネットではさんだものを正極とし、LiClO4の0.6M
プロピレンカーボネート溶液を電解液として電池評価を
行った。
On the other hand, LiCoO 2 formed into a 1 cm × 5 cm × 0.1 cm sheet
With SUS net as the positive electrode, 0.6M of LiClO 4
Battery evaluation was performed using a propylene carbonate solution as an electrolyte.

尚、セパレータとしてポリプロピレン不織布を用い
た。
In addition, a polypropylene nonwoven fabric was used as a separator.

定電流2mAで充電を50分行ったところ、開放端子電圧
3.9Vを示した。この充電により炭素1原子当り取り込ま
れたLi イオンの場合、即ち利用率は0.15であった。以
後定電流2mAの充放電サイクル(充電終止電圧3.95V、放
電終止電圧2.70V)を行った。5サイクル目でのエネル
ギー密度(負極活物質当り)は1139Whr/kgであった。
又、20サイクル目での電流効率及び利用率はそれぞれ9
7.5%、0.14であった。又、この電池の720時間放置での
自己放電率は7%であった。
 After charging at a constant current of 2 mA for 50 minutes, the open terminal voltage
It showed 3.9V. This charge captures per carbon atom
Li In the case of ions, that is, the utilization was 0.15. Less than
Charge / discharge cycle with constant current of 2 mA (charge end voltage 3.95 V, discharge
(End voltage of 2.70V). Energy in the fifth cycle
Energy density (per negative electrode active material) was 1139 Whr / kg.
The current efficiency and utilization rate at the 20th cycle are 9
7.5%, 0.14. Also, leave this battery for 720 hours.
The self-discharge rate was 7%.

実施例2,3,比較例1 実施例1における粉砕時間を第1表に示す時間にかえ
た以外、実施例1と全く同じ操作を行い、電池評価を行
った。このテストにおいて、20サイクル目の電流効率、
炭素1原子当り可逆的に取り込まれるLi イオンの割
合、即ち利用率は第1表に示す通りであった。
Examples 2, 3 and Comparative Example 1 The grinding time in Example 1 was changed to the time shown in Table 1.
Battery operation was performed in exactly the same manner as in Example 1 except that
Was. In this test, the current efficiency at the 20th cycle,
Li reversibly incorporated per carbon atom Aeon percent
In other words, the utilization was as shown in Table 1.

併せて、0.1μm〜50μmの範囲を有する粒度分布、
初回の電流効率、BET表面積、真密度、X線回折より得
られた結晶子厚みLcの値を第1表に示す。
In addition, a particle size distribution having a range of 0.1 μm to 50 μm,
Table 1 shows initial current efficiency, BET surface area, true density, and crystallite thickness Lc obtained from X-ray diffraction.

比較例2 アスファルトピッチをAr雰囲気下で、室温より10℃/
分で昇温し、530℃で1時間保持した後、1400℃で1時
間焼成炭化した。この炭素材料をSUS製ポット、SUS製ボ
ールを用いて遊星ボールミルで10分間粉砕し、50μ以上
の粒度分布19容量%、0.1μm〜50μmの範囲の粒度分
布80容量%を有する粉砕物を得た。この粉砕物のBET表
面積、真密度、X線回折から得られるLcの値は、それぞ
れ5.9m2/g、2.11g/cm3,44Åであった。実施例1と全く
同じ操作で製膜したところ、厚みが108μmと嵩高い製
膜体となった。又、この負極製膜体と実施例1の正極と
を、厚さ35μmのポリエチレン製微多孔膜を介して貼り
合せ、両側からガラス板を当て、クリップで押え、短絡
テストを実施した結果、内部短絡した。
Comparative Example 2 Asphalt pitch was 10 ° C /
Then, the temperature was raised at 530 ° C. for 1 hour, and then calcined at 1400 ° C. for 1 hour. This carbon material was pulverized for 10 minutes by a planetary ball mill using a SUS pot and a SUS ball to obtain a pulverized product having a particle size distribution of 50 μ or more, 19% by volume, and a particle size distribution of 80% by volume in the range of 0.1 μm to 50 μm. . The BET surface area, true density, and Lc value obtained from X-ray diffraction of this ground product were 5.9 m 2 / g, 2.11 g / cm 3 , and 44 °, respectively. When a film was formed by the same operation as in Example 1, the film was 108 μm thick and a bulky film. Also, the negative electrode film body and the positive electrode of Example 1 were bonded together via a 35 μm-thick polyethylene microporous film, and a glass plate was pressed from both sides, pressed with clips, and a short-circuit test was performed. Short-circuited.

実施例4〜5,比較例3 比較例2における粉砕時間を第2表に示す時間にかえ
た以外、実施例1と全く同じ操作を行い、電池評価を行
った。このテストにおいて、20サイクル目の電流効率、
炭素1原子当り可逆的に取り込まれるLi イオンの割合
を第2表に示す。
Examples 4 to 5, Comparative Example 3 The grinding time in Comparative Example 2 was changed to the time shown in Table 2.
Battery operation was performed in exactly the same manner as in Example 1 except that
Was. In this test, the current efficiency at the 20th cycle,
Li reversibly incorporated per carbon atom Ion ratio
Are shown in Table 2.

併せて、0.1μm〜50μmの範囲を有する粒度分布、
初回の電流効率、BET表面積、真密度、X線回折より得
られた結晶子厚みLcの値を第2表に示す。
In addition, a particle size distribution having a range of 0.1 μm to 50 μm,
Table 2 shows the initial current efficiency, the BET surface area, the true density, and the crystallite thickness Lc obtained from X-ray diffraction.

実施例6 原油分解ピッチをAr雰囲気下で、室温より10℃/分で
昇温し、550℃で1時間保持した後、1150℃で1時間炭
化した。この炭素質材料をSUS製ポット、SUS製ボールを
用いて、遊星ボールミルで30分間粉砕し、0.1μm〜50
μmの範囲の粒度分布95容量%を有する粉砕物を得た。
この粉砕物を用いて、実施例1と全く同じ操作を行い、
電池評価を行った。結果を第3表に示す。
Example 6 A crude cracking pitch was heated at a rate of 10 ° C./min from room temperature under an Ar atmosphere, kept at 550 ° C. for 1 hour, and then carbonized at 1150 ° C. for 1 hour. Using a SUS pot and a SUS ball, pulverize this carbonaceous material with a planetary ball mill for 30 minutes.
A ground product having a particle size distribution of 95% by volume in the range of μm was obtained.
Using this crushed material, the same operation as in Example 1 was performed,
Battery evaluation was performed. The results are shown in Table 3.

比較例4 実施例6における焼成炭化物をさらに第3表に示す条
件で熱処理して得られた炭素質材料を用い実施例1と全
く同じ操作を行い、電池評価を行った。結果を第3表に
示す。尚、5サイクル目でのエネルギー密度(負極活物
質当り)は68Whr/kgであった。又、この電池の720時間,
25℃放置での自己放電率は85%であった。
Comparative Example 4 The same operation as in Example 1 was performed using the carbonaceous material obtained by heat-treating the calcined carbide in Example 6 under the conditions shown in Table 3 to evaluate the battery. The results are shown in Table 3. The energy density (per negative electrode active material) at the fifth cycle was 68 Whr / kg. Also, for 720 hours of this battery,
The self-discharge rate at 25 ° C. was 85%.

実施例7 石油系、生コークスをAr雰囲気下で、室温より10℃/
分で昇温し、1400℃で0.5時間焼成炭化した。この炭素
質材料をSUSポット、SUSボールを用いて遊星ボールミル
で30分間粉砕した。得られた粉粒体の粒度分布、BET表
面積、真密度、X線回折より得られたLc(002)を第3表
に示す。この粉粒体1重量部をフッ素ゴム(比誘電率1
3.8)のメチルエチルケトン溶液(2wt%濃度)2.5重量
部と混合し塗工液とし、10μmの銅箔1cm×5cmの表面に
75μmの厚みに製膜した。
Example 7 A petroleum-based raw coke was heated from room temperature to 10 ° C.
Temperature, and calcined and carbonized at 1400 ° C. for 0.5 hour. This carbonaceous material was ground using a SUS pot and a SUS ball in a planetary ball mill for 30 minutes. Table 3 shows the particle size distribution, BET surface area, true density, and Lc (002) obtained by X-ray diffraction of the obtained powder. 1 part by weight of this powder and granular material is treated with fluororubber (dielectric constant 1
3.8) with 2.5 parts by weight of methyl ethyl ketone solution (2 wt% concentration) to make a coating solution, and apply it to the surface of 10 μm copper foil 1 cm x 5 cm
A film was formed to a thickness of 75 μm.

これのSUSネットにはさみ、第1図に示す電池の負極
とした。
This was sandwiched between SUS nets to form a negative electrode of the battery shown in FIG.

一方、炭酸リチウム1.05モル、酸化コバルト1.90モ
ル、酸化第2スズ0.084モルを混合し、650℃で5時間仮
焼した後、空気中で850℃,12時間焼成したところ、Li
1.03Co0.95Sn0.042O2の組成を有する複合酸化物を得
た。この複合酸化物をボールミルで平均3μmに粉砕し
た後、複合酸化物1重量部に対し、アセチレンブラック
0.1重量部、ポリアクリロニトリル(比誘電率5.59)の
ジメチルホルムアミド溶液(濃度2wt%)1重量部と混
合した後、15μmアルミ箔1cm×5cmの片面に100μmの
膜厚に塗布した。
On the other hand, 1.05 mol of lithium carbonate, 1.90 mol of cobalt oxide, and 0.084 mol of stannic oxide were mixed, calcined at 650 ° C. for 5 hours, and then calcined in air at 850 ° C. for 12 hours.
A composite oxide having a composition of 1.03 Co 0.95 Sn 0.042 O 2 was obtained. This composite oxide was pulverized to an average of 3 μm with a ball mill, and acetylene black was added to 1 part by weight of the composite oxide.
After 0.1 part by weight and 1 part by weight of a dimethylformamide solution (concentration: 2 wt%) of polyacrylonitrile (dielectric constant: 5.59), the mixture was applied to one side of 15 μm aluminum foil 1 cm × 5 cm to a thickness of 100 μm.

これをSUSネットではさんだものを正極とし、0.6モル
濃度のLiClO4プロピレンカーボネート溶液を電解液とし
て電池評価を行った。
The battery was evaluated using a SUS net sandwiched between them as a positive electrode, and a 0.6M LiClO 4 propylene carbonate solution as an electrolyte.

セパレーターとして、ポリエチレン数多孔膜35μmを
用いた。
As a separator, a polyethylene porous film of 35 μm was used.

定電流2mAで充電を50分行ったところ、開放端子電圧
3.9Vを示した。この充電により、炭素1原子当り取り込
まれたLi イオンの割合、即ち、利用率は0.12であっ
た。この後、同じく定電流2mAで2.7Vまで放電を行っ
た。以後、定電流2mAの充放電サイクル(充電終止電圧
3.95V、放電終止電圧2.7V)を行った。5サイクル目で
の電流効率、エネルギー密度(負極活物質当り)はそれ
ぞれ100%、911Whr/kgであった。又、500サイクル目の
電流効率、エネルギー密度(負極活物質当り)はそれぞ
れ99%、760Whr/kgであった。
 After charging at a constant current of 2 mA for 50 minutes, the open terminal voltage
It showed 3.9V. With this charge, the carbon atoms are captured
Li The ratio of ions, that is, the utilization rate, was 0.12.
Was. After that, discharge to 2.7V at the same constant current of 2mA.
Was. After that, a constant current 2mA charge / discharge cycle (charge end voltage
3.95 V, discharge end voltage 2.7 V). In the fifth cycle
Current efficiency and energy density (per negative electrode active material)
Each was 100%, 911 Whr / kg. Also, at the 500th cycle
Current efficiency and energy density (per negative electrode active material)
It was 99%, 760 Whr / kg.

又、この電池の720時間,25℃放置での自己放電率は15
%であった。
In addition, the self-discharge rate of this battery left at 25 ° C for 720 hours is 15
%Met.

実施例8,比較例5,6 第3表に示す生コークスを同じく第3表に示す処理条
件で焼成炭化、もしくは熱処理及び粉砕して得られた炭
素質材料を用い、実施例7と同様の電池評価を行った。
その結果を第3表に示す。併せて粒度分布、BET表面
積、真密度、X線回折より得られる面間隔d002,Lc(002)
を示す。
Example 8, Comparative Examples 5 and 6 The same as Example 7 except that the raw coke shown in Table 3 was calcined and carbonized under the processing conditions shown in Table 3 or a carbonaceous material obtained by heat treatment and pulverization. Battery evaluation was performed.
Table 3 shows the results. In addition, particle size distribution, BET surface area, true density, plane spacing d 002 , Lc (002) obtained from X-ray diffraction
Is shown.

実施例9 市販の石油系ニードルコークス(興亜石油社製、KOA
−SJ Coke)をアルミナ製ポット、アルミナ製ボールを
用いて振動ボールミルで2hr粉砕した。得られた粉粒体
の0.1μm〜50μmの範囲の粒度分布、BET表面積、真密
度、X線回折によるLcの値を第4表に示す。この粉砕物
を実施例7の粉粒体のかわりに用いる以外、全く同様の
電池評価を行った。その結果を同じく第4表に示す。
Example 9 A commercially available petroleum needle coke (KOA, KOA
-SJ Coke) was pulverized for 2 hours by a vibration ball mill using an alumina pot and alumina balls. Table 4 shows the particle size distribution in the range of 0.1 μm to 50 μm, the BET surface area, the true density, and the value of Lc by X-ray diffraction of the obtained powder. Except that this ground material was used in place of the powder of Example 7, the same battery evaluation was performed. The results are also shown in Table 4.

実施例10〜13,比較例7,8 第4表に示すコークスを同じく第4表に示す条件で粉
砕して得られた粉粒体を実施例7の粉粒体のかわりに用
いる以外、全く同様の電池評価を行った。その結果を第
4表に示す。
Examples 10 to 13 and Comparative Examples 7 and 8 Except that the powder obtained by grinding the coke shown in Table 4 under the same conditions shown in Table 4 was used instead of the powder obtained in Example 7, The same battery evaluation was performed. Table 4 shows the results.

尚、比較例8の粉粒体を用いた負極は、比較例2と同
様の短絡テストで内部短絡した。
The negative electrode using the powder of Comparative Example 8 was internally short-circuited in the same short-circuit test as in Comparative Example 2.

比較例9〜14 実施例1において、気相成長炭素繊維の粉粒体のかわ
りに第5表に示す炭素質材料を用いた以外、全く同様の
電池評価を行った。その結果及び粒度分布、初回の電流
効率、及びBET表面積、真密度、X線回折より得られるL
c(002)の値を第5表に示す。
Comparative Examples 9 to 14 The same battery evaluation was performed as in Example 1 except that the carbonaceous materials shown in Table 5 were used instead of the powdery particles of the vapor-grown carbon fibers. Results and particle size distribution, initial current efficiency, BET surface area, true density, L obtained from X-ray diffraction
Table 5 shows the values of c (002) .

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の二次電池の構成例の断面図である。第
1図において、1は正極、2は負極、3,3′は集電棒、
4,4′はSUSネット、5,5′は外部電極端子、6は電池ケ
ース、7はセパレーター、8は電解液又は固体電解質で
ある。
FIG. 1 is a sectional view of a configuration example of a secondary battery of the present invention. In FIG. 1, 1 is a positive electrode, 2 is a negative electrode, 3, 3 ′ are current collector rods,
4, 4 'are SUS nets, 5, 5' are external electrode terminals, 6 is a battery case, 7 is a separator, and 8 is an electrolyte or solid electrolyte.

フロントページの続き (56)参考文献 特開 昭59−154763(JP,A) 特開 昭58−93176(JP,A) 特開 昭62−122066(JP,A) 特開 昭60−235372(JP,A) 大谷杉郎、「炭素繊維」(昭58−7− 1)近代編集社 P.72−81Continuation of front page (56) References JP-A-59-154763 (JP, A) JP-A-58-93176 (JP, A) JP-A-62-122066 (JP, A) JP-A-60-235372 (JP) , A) Otani Suguro, "Carbon Fiber" (1983-7-1), Modern Editors P.K. 72-81

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】粉粒状炭素質材料のn−ドープ体を負極活
物質とする非水系二次電池であって、該炭素質材料のBE
T法比表面積A(m2/g)が0.1<A<100の範囲で、かつ
X線回折における結晶厚みLc(Å)と真密度ρ(g/c
m3)の値が下記条件1.70<ρ<2.18かつ10<Lc<120ρ
−189を満たし、かつ、該炭素質材料が、0.1μm〜50μ
mの範囲に体積換算で90%以上の粒度分布を有し、かつ
該活物質の初回の電流効率が50%以上であり、正極活物
質が充電により該炭素質材料にリチウムイオンを取り込
ませる活物質であることを特徴とする非水系二次電池。
1. A non-aqueous secondary battery using an n-doped body of a granular carbonaceous material as a negative electrode active material, wherein the carbonaceous material is a BE.
The T method specific surface area A (m 2 / g) is in the range of 0.1 <A <100, and the crystal thickness Lc (Å) and the true density ρ (g / c) in X-ray diffraction are obtained.
m 3 ) is less than 1.70 <ρ <2.18 and 10 <Lc <120ρ
−189, and the carbonaceous material is 0.1 μm to 50 μm.
The active material has a particle size distribution of 90% or more in terms of volume in the range of m, the initial current efficiency of the active material is 50% or more, and the positive electrode active material allows lithium ions to be taken into the carbonaceous material by charging. A non-aqueous secondary battery, which is a substance.
JP61265841A 1986-11-08 1986-11-08 Non-aqueous secondary battery Expired - Lifetime JP2630939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61265841A JP2630939B2 (en) 1986-11-08 1986-11-08 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61265841A JP2630939B2 (en) 1986-11-08 1986-11-08 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPS63121248A JPS63121248A (en) 1988-05-25
JP2630939B2 true JP2630939B2 (en) 1997-07-16

Family

ID=17422809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61265841A Expired - Lifetime JP2630939B2 (en) 1986-11-08 1986-11-08 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2630939B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63193463A (en) * 1987-02-04 1988-08-10 Toshiba Battery Co Ltd Nonaqueous solvent secondary battery
JPS63193462A (en) * 1987-02-04 1988-08-10 Toshiba Battery Co Ltd Nonaqueous solvent secondary battery
JPS63304572A (en) * 1987-06-03 1988-12-12 Toshiba Battery Co Ltd Nonaqueous solvent secondary cell
US5028500A (en) * 1989-05-11 1991-07-02 Moli Energy Limited Carbonaceous electrodes for lithium cells
US5219680A (en) * 1991-07-29 1993-06-15 Ultracell Incorporated Lithium rocking-chair rechargeable battery and electrode therefor
EP0634805B1 (en) * 1992-12-04 1998-07-15 Sony Corporation Secondary cell of nonaqueous electrolyte
US5639575A (en) * 1992-12-04 1997-06-17 Sony Corporation Non-aqueous liquid electrolyte secondary battery
WO2019009332A1 (en) * 2017-07-06 2019-01-10 株式会社クラレ Carbon material for negative electrode active material for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery, and carbon material production method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102166A (en) * 1986-10-20 1988-05-07 Mitsubishi Gas Chem Co Inc Secondary battery
JPH0815071B2 (en) * 1986-06-20 1996-02-14 三洋化成工業株式会社 Secondary battery
JPS6369155A (en) * 1986-09-11 1988-03-29 Toshiba Battery Co Ltd Nonaqueous electrolyte secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
大谷杉郎、「炭素繊維」(昭58−7−1)近代編集社 P.72−81

Also Published As

Publication number Publication date
JPS63121248A (en) 1988-05-25

Similar Documents

Publication Publication Date Title
USRE34991E (en) Secondary battery
JP4392169B2 (en) Nonaqueous electrolyte secondary battery and method for producing positive electrode material thereof
US10892482B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JPH0424831B2 (en)
JP4760379B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP3844495B2 (en) Non-aqueous electrolyte secondary battery
US5792577A (en) Negative electrode material for use in lithium-ion secondary battery and process for producing the same
JP2001102049A (en) Non-aqueous electrolyte secondary battery
JP4516845B2 (en) Nonaqueous electrolyte secondary battery and method for producing positive electrode used in this nonaqueous electrolyte secondary battery
JPWO2016121711A1 (en) Method for producing graphite powder for negative electrode material of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JPH0770328B2 (en) Secondary battery
JP2630939B2 (en) Non-aqueous secondary battery
JP2004134658A (en) Chargeable and dischargeable electrochemical element
US20020160266A1 (en) Graphite material for negative electrode of lithium ion secondary battery and process for producing the same
WO2021166359A1 (en) Negative electrode carbon material for lithium ion secondary battery, production method therefor, and negative electrode and lithium ion secondary battery using same
JP3402656B2 (en) Non-aqueous electrolyte battery
JPH10255799A (en) Graphite material for high-capacity nonaqueous secondary battery negative electrode and its manufacture
JPS63121259A (en) Secondary battery
JP2704841B2 (en) Rechargeable battery
JPH0770327B2 (en) Secondary battery
JP2727301B2 (en) Manufacturing method of secondary battery electrode
JPH0574452A (en) New secondary battery
JP6924917B1 (en) Carbon material for negative electrode of lithium ion secondary battery and its manufacturing method, and negative electrode and lithium ion secondary battery using it
JPS63121261A (en) Organic electrolyte secondary battery
JPS63121257A (en) Coke secondary battery

Legal Events

Date Code Title Description
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term