JP2623611B2 - Metal substrate coated with hard carbon film - Google Patents

Metal substrate coated with hard carbon film

Info

Publication number
JP2623611B2
JP2623611B2 JP62290416A JP29041687A JP2623611B2 JP 2623611 B2 JP2623611 B2 JP 2623611B2 JP 62290416 A JP62290416 A JP 62290416A JP 29041687 A JP29041687 A JP 29041687A JP 2623611 B2 JP2623611 B2 JP 2623611B2
Authority
JP
Japan
Prior art keywords
hard carbon
carbon film
metal substrate
thin film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62290416A
Other languages
Japanese (ja)
Other versions
JPH01132779A (en
Inventor
博之 杉村
誠 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP62290416A priority Critical patent/JP2623611B2/en
Publication of JPH01132779A publication Critical patent/JPH01132779A/en
Application granted granted Critical
Publication of JP2623611B2 publication Critical patent/JP2623611B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属基体の耐摩耗性・耐腐食性の向上に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to improvement of wear resistance and corrosion resistance of a metal substrate.

〔従来の技術〕 ダイヤモンド状炭素膜、アイ・カーボン膜、アモルフ
ァス・カーボン膜等と呼ばれる硬質炭素膜は、優れた耐
摩耗性、化学的安定性を持つために、金属基板を覆うこ
とにより、金属基板の耐摩耗性や耐腐食性を向上させる
という効果が得られる。
[Prior art] A hard carbon film called a diamond-like carbon film, an eye carbon film, an amorphous carbon film, etc. has excellent wear resistance and chemical stability. The effect of improving the wear resistance and corrosion resistance of the substrate is obtained.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、硬質炭素膜はシリコンやゲルマニウムの
ような半導体材料には強く密着するが、他の材料たとえ
ばアルミニウムからなる金属基板に対しては密着性が悪
く、金属基板に被覆してもすぐはがれてしまうために、
金属基板を保護するこができないという欠点があった。
However, the hard carbon film adheres strongly to a semiconductor material such as silicon or germanium, but has poor adhesion to a metal substrate made of another material, for example, aluminum. for,
There is a disadvantage that the metal substrate cannot be protected.

そこで、本発明は上記欠点を解決し、半導体材料以外
の材料からなる金属基板と、硬質炭素膜との密着性を向
上させることを目的とする。
Therefore, an object of the present invention is to solve the above-mentioned drawbacks and improve the adhesion between a metal substrate made of a material other than a semiconductor material and a hard carbon film.

〔問題点を解決するための手段〕[Means for solving the problem]

前記目的を達成する技術的要件は、本発明の第1実施
例に対応する第1図を用いて説明すると、硬質炭素膜被
覆を施した金属基体(1)が、金属からなる基体(1)
と、該基体(1)を被覆する硬質炭素膜(3)と、前記
基体(1)と硬質炭素膜(3)との間に形成された薄膜
(2)とを備え、該薄膜(2)がシリコン、炭素および
酸素を含む化合物からなることにある。
The technical requirements for achieving the above object will be described with reference to FIG. 1 corresponding to the first embodiment of the present invention. A metal substrate (1) coated with a hard carbon film is composed of a metal substrate (1).
A hard carbon film (3) covering the substrate (1), and a thin film (2) formed between the substrate (1) and the hard carbon film (3). Consists of a compound containing silicon, carbon and oxygen.

尚、前記薄膜(2)は真空蒸着、スパッタリング、化
学的気相成長法(以下、CVDと略す)、プラズマCVD、イ
オンビーム等のドライプロセス、もしくは塗布等のウエ
ット・プロセスによって設けることができる。
The thin film (2) can be provided by vacuum evaporation, sputtering, chemical vapor deposition (hereinafter abbreviated as CVD), plasma CVD, a dry process such as ion beam, or a wet process such as coating.

〔作用〕[Action]

以上によれば、金属基板(1)と硬質炭素膜(3)と
の間に前記薄膜(2)を形成したために、前記薄膜
(2)により前記金属基板(1)と硬質炭素膜(3)と
の密着性を強化し、金属基板(1)を硬質炭素膜(3)
によって被覆することができる。その結果、金属基板
(1)を低摩擦化し、その耐摩耗性・耐腐食性などを向
上させることができる。硬質炭素膜(3)の性質を変え
ることにより、硬質炭素膜(3)の表面を半導電性から
絶縁性にしたり、その表面を黒色化することも可能であ
る。
According to the above, since the thin film (2) is formed between the metal substrate (1) and the hard carbon film (3), the metal substrate (1) and the hard carbon film (3) are formed by the thin film (2). Metal substrate (1) with hard carbon film (3)
Can be coated. As a result, the friction of the metal substrate (1) can be reduced, and its wear resistance and corrosion resistance can be improved. By changing the properties of the hard carbon film (3), the surface of the hard carbon film (3) can be made semiconductive to insulative, or its surface can be blackened.

上記薄膜(2)は通常一層で十分であるが、場合によ
っては多層構造にすることにより、より一層の効果を得
ることができる。その際、前記薄膜(2)と金属基板
(1)との接続面付近の酸素濃度が、前記薄膜(2)と
硬質炭素膜(3)との接続面付近の酸素濃度よりも大き
いと、効果がさらに高くなることが分り、また多層構造
にした場合、硬質炭素膜(3)に接続する一層は酸素を
含まなくても密着性が向上する。
Usually, one layer of the thin film (2) is sufficient. However, in some cases, a multi-layered structure can obtain a further effect. At this time, if the oxygen concentration near the connection surface between the thin film (2) and the metal substrate (1) is higher than the oxygen concentration near the connection surface between the thin film (2) and the hard carbon film (3), the effect is obtained. Is higher, and in the case of a multilayer structure, the adhesion to the hard carbon film (3) is improved even without containing oxygen.

前述の多層構造において、はっきりとした境界をもた
ず、組成が連続的に変化し、金属基板(1)との接続面
から硬質炭素膜(3)との接続面に向かって酸素濃度が
連続的に減少する薄膜でも同様な効果が得られる。この
場合にも硬質炭素膜(3)と薄膜との接続面が酸素を含
まなくても密着性が向上することが確認できた。
In the above-mentioned multilayer structure, the composition continuously changes without a clear boundary, and the oxygen concentration is continuously increased from the connection surface with the metal substrate (1) to the connection surface with the hard carbon film (3). The same effect can be obtained even with a thin film that is gradually reduced. Also in this case, it was confirmed that the adhesion was improved even when the connection surface between the hard carbon film (3) and the thin film did not contain oxygen.

〔実施例〕〔Example〕

第1図は本発明の第1実施例であって、金属基板1は
SUS304研磨品または、その研磨後、無電解でNi−Pメッ
キしたものを用い、金属基板1の上面に低酸素濃度の薄
膜2を厚さ0.5μmで形成し、さらに薄膜2の上に厚さ
2.0μmの硬質炭素膜3を形成した。
FIG. 1 shows a first embodiment of the present invention.
Using a SUS304 polished product or one polished and electrolessly Ni-P plated, a low-oxygen-concentration thin film 2 having a thickness of 0.5 μm is formed on the upper surface of the metal substrate 1, and a thin film 2 is further formed on the thin film 2.
A 2.0 μm hard carbon film 3 was formed.

第2図は本発明の第2実施例であって、第1実施例と
同様に用いた金属基板1の上面に、高酸素濃度の薄膜4
を厚さ0.5μmで形成し、その上に低酸素濃度の薄膜2
を厚さ0.5μmで形成し、さらにその上に厚さ2.0μmの
硬質炭素膜3を順次形成した。
FIG. 2 shows a second embodiment of the present invention, in which a high oxygen concentration thin film 4 is formed on the upper surface of a metal substrate 1 used in the same manner as in the first embodiment.
Is formed in a thickness of 0.5 μm, and a thin film 2 having a low oxygen concentration is formed thereon.
Was formed in a thickness of 0.5 μm, and a hard carbon film 3 having a thickness of 2.0 μm was further formed thereon.

第3図は本発明の第3実施例であって、第1実施例と
同様に用いた金属基板1の上面に、高酸素濃度の薄膜4
を厚さ0.5μmで形成し、その上に酸素を含まない無酸
素濃度の薄膜5を厚さ0.5μmで形成し、さらにその上
に厚さ2.0μmの硬質炭素膜3を順次形成した。
FIG. 3 shows a third embodiment of the present invention, in which a thin film 4 having a high oxygen concentration is formed on the upper surface of a metal substrate 1 used in the same manner as in the first embodiment.
Was formed with a thickness of 0.5 μm, an oxygen-free thin film 5 containing no oxygen was formed thereon with a thickness of 0.5 μm, and a hard carbon film 3 with a thickness of 2.0 μm was further formed thereon.

第4図は本発明の第4実施例であって、第1実施例と
同様に用いた金属基板1の上面に、酸素濃度が連続的に
変化する薄膜6を厚さ1.0μmで形成し、その上に厚さ
2.0μmの硬質炭素膜3を形成した。前記薄膜6は金属
基板1との接続面での酸素濃度が高く、硬質炭素膜3と
の接続面に向かって酸素濃度は連続的に減少し、硬質炭
素膜との接続面では酸素濃度はほぼ零になるようにし
た。
FIG. 4 shows a fourth embodiment of the present invention, in which a thin film 6 having a continuously changing oxygen concentration is formed with a thickness of 1.0 μm on the upper surface of a metal substrate 1 used in the same manner as the first embodiment. Thickness on it
A 2.0 μm hard carbon film 3 was formed. The thin film 6 has a high oxygen concentration at the connection surface with the metal substrate 1, the oxygen concentration continuously decreases toward the connection surface with the hard carbon film 3, and the oxygen concentration at the connection surface with the hard carbon film becomes almost zero. It was set to zero.

第5図は、前記実施例と比較するための第1比較例
で、第1実施例と同様に用いた金属基板1の上面に、厚
さ2.0μmの硬質炭素膜3を形成した。
FIG. 5 shows a first comparative example for comparison with the above-described embodiment. A hard carbon film 3 having a thickness of 2.0 μm was formed on the upper surface of a metal substrate 1 used in the same manner as in the first embodiment.

第6図は、前記実施例と比較するための第2比較例
で、第1実施例と同様に用いた金属基板1の上面に、酸
素を含まない無酸素薄膜5を厚さ0.5μmで形成し、そ
の上に厚さ2.0μmの硬質炭素膜3を形成した。
FIG. 6 shows a second comparative example for comparison with the above-described embodiment, in which an oxygen-free oxygen-free thin film 5 having a thickness of 0.5 μm is formed on the upper surface of a metal substrate 1 used in the same manner as in the first embodiment. Then, a hard carbon film 3 having a thickness of 2.0 μm was formed thereon.

第7図は、前記実施例と比較するための第3比較例
で、第1実施例と同様に用いた金属基板1の上面に、厚
さ0.5μmの酸化シリコン層7を形成し、その上に厚さ
2.0μmの硬質炭素膜3を形成した。
FIG. 7 shows a third comparative example for comparison with the above-mentioned embodiment, in which a 0.5 μm-thick silicon oxide layer 7 is formed on the upper surface of a metal substrate 1 used in the same manner as in the first embodiment. To thickness
A 2.0 μm hard carbon film 3 was formed.

各実施例および各比較例の薄膜2、4〜6、硬質炭素
膜3は、高周波プラズマCVD法によって形成された。薄
膜の形成には、原料に有機シリコン化合物蒸気を用い、
硬質炭素膜の形成には有機炭素化合物蒸気を用いる。表
1は各薄膜の形成条件と、その組成を示す。
The thin films 2, 4 to 6 and the hard carbon film 3 of each example and each comparative example were formed by a high-frequency plasma CVD method. To form a thin film, an organic silicon compound vapor is used as a raw material,
Organic carbon compound vapor is used for forming the hard carbon film. Table 1 shows the conditions for forming each thin film and the composition thereof.

組成はSiCとOとの比をX線光電子法により、 CとHとの比は膜の酸素/ヘリウム混合ガス中での燃焼
ガスをガスクロマトグラフィーにより分析して得た。
The composition was obtained by analyzing the ratio of SiC to O by the X-ray photoelectron method, and the ratio of C to H was obtained by analyzing the combustion gas in the oxygen / helium mixed gas of the film by gas chromatography.

第4実施例(第4図参照)において、酸素濃度が連続
的に変化する薄膜6は、最初TMSと酸素との流量をそれ
ぞれ20sccm、50sccmでスタートし、酸素の濃度を徐々に
減らしていった。X線光電子分光により、深さ方向の組
成変化を調べたところ、酸素濃度が金属基板1に近いほ
ど高くなっていた。
In the fourth embodiment (see FIG. 4), in the thin film 6 in which the oxygen concentration changes continuously, the flow rates of TMS and oxygen were initially started at 20 sccm and 50 sccm, respectively, and the oxygen concentration was gradually reduced. . When the composition change in the depth direction was examined by X-ray photoelectron spectroscopy, it was found that the oxygen concentration was higher as the oxygen concentration was closer to the metal substrate 1.

本実施例では、原料にテトラメチルシランを用いた
が、ヘキサメチルジシロキサンのようなシロキサン化合
物、ヘキサメチルジシラザンのようなシラザン化合物、
テトラエトキシシランのようなアルコキシシランを用い
てもよい。
In this example, tetramethylsilane was used as a raw material, but a siloxane compound such as hexamethyldisiloxane, a silazane compound such as hexamethyldisilazane,
Alkoxysilanes such as tetraethoxysilane may be used.

また硬質炭素膜3の製造には、メタン/水素の混合ガ
スを圧力0.1Torr、高周波数電力300Wにて作製した。
For the production of the hard carbon film 3, a mixed gas of methane / hydrogen was produced at a pressure of 0.1 Torr and a high frequency power of 300 W.

第3比較例(第7図参照)の酸化シリコン膜7はスパ
ッタ法により作製した。
The silicon oxide film 7 of the third comparative example (see FIG. 7) was formed by a sputtering method.

各実施例および各比較例の密着性試験を、純水中で
の超音波洗浄試験、16時間中のCASS試験による2つの
方法で行い、その試験結果を、表2に示す。
The adhesion test of each example and each comparative example was performed by two methods, an ultrasonic cleaning test in pure water and a CASS test in 16 hours, and the test results are shown in Table 2.

表2により、○印は剥離なしを、△印は硬質炭素膜だ
けの剥離を、×印は全ての剥離を示す。従って、シリコ
ン、炭素および酸素を主成物とする薄膜は、金属基板1
と硬質炭素膜3との密着性を高める中間層として有用で
あることが確認できた。
According to Table 2, the mark ○ indicates no peeling, the mark 剥離 indicates peeling of the hard carbon film only, and the mark 全 て indicates all peeling. Therefore, the thin film mainly composed of silicon, carbon and oxygen is formed on the metal substrate 1.
It was confirmed that it was useful as an intermediate layer for improving the adhesion between the carbon layer and the hard carbon film 3.

以上の実施例によれば、前記薄膜を介して硬質炭素膜
3に被覆された金属基板1は、硬質炭素膜3のために、
耐擦傷性や耐摩耗性などが向上でき、それによって軸受
け、ステージ、カバーなどの耐久性部品や、海水中、酸
・アルカリ等の薬品にも使用することができる。
According to the above embodiment, the metal substrate 1 covered with the hard carbon film 3 via the thin film is
Scratch resistance and abrasion resistance can be improved, so that it can be used for durable parts such as bearings, stages, covers, and chemicals such as seawater, acids and alkalis.

また、硬質炭素膜3の表面は化学的に不活性であるた
めに、本発明による金属基板を合成樹脂やガラス等の成
形金型に用いれば、成形材料と金型が反応して成形品や
金型を変質することが防げる。
In addition, since the surface of the hard carbon film 3 is chemically inert, if the metal substrate according to the present invention is used for a molding die such as a synthetic resin or glass, the molding material reacts with the die to form a molded product or the like. Deterioration of the mold can be prevented.

同様に、化学的不活性のために吸着物質が少なく、真
空中でのガス放出が極めて少ない。従って真空装置用部
品としても有用である。特に、硬質炭素膜として黒色な
膜を使用すれば、真空中で使用でき、かつ光の反射を防
ぐための部品として、例えば真空分光器等の真空光学装
置用部品として有用である。
Similarly, there is little adsorbed material due to chemical inertness and very little outgassing in vacuum. Therefore, it is also useful as a component for vacuum equipment. In particular, if a black film is used as the hard carbon film, it can be used in a vacuum and is useful as a component for preventing light reflection, for example, as a component for a vacuum optical device such as a vacuum spectroscope.

〔発明の効果〕〔The invention's effect〕

以上の本発明によれば、金属基板と硬質炭素膜との間
にシリコン、炭素および酸素を主成分とする薄膜を形成
したために、半導体材料以外の材料からなる金属基板と
硬質炭素膜との密着性を向上させることができる。
According to the present invention, since a thin film containing silicon, carbon and oxygen as main components is formed between the metal substrate and the hard carbon film, the adhesion between the metal substrate made of a material other than the semiconductor material and the hard carbon film is improved. Performance can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1実施例で、金属基板1上に、低酸
素濃度の薄膜2および硬質炭素膜3を順次形成した状態
を示す断面図である。 第2図は本発明の第2実施例で、金属基板1上に、高酸
素濃度の薄膜4、低酸素濃度の薄膜2および硬質炭素膜
3を順次形成した状態を示す断面図である。 第3図は本発明の第3実施例で、金属基板1上に、高酸
素濃度薄膜4、無酸素濃度の薄膜5および硬質炭素膜3
を順次形成した状態を示す断面図である。 第4図は本発明の第4実施例で、金属基板1上に、酸素
濃度が連続的に変化する薄膜6および硬質炭素膜3を順
次形成した状態を示す断面図である。 第5図は本発明の第1比較例で、金属基板上に、硬質炭
素膜3を形成した状態を示す断面図である。 第6図は本発明の第2比較例で、金属基板1上に、無酸
素薄膜5および硬質炭素膜3を順次形成した状態を示す
断面図である。 第7図は本発明の第3比較例で、金属基板1上に、酸化
シリコン膜7をおよび硬質炭素膜3を順次形成した状態
を示す断面図である。 〔主要部分の符号を説明〕 1……金属基体、2、4〜6……薄膜 3……硬質炭素膜
FIG. 1 is a sectional view showing a state in which a thin film 2 having a low oxygen concentration and a hard carbon film 3 are sequentially formed on a metal substrate 1 in the first embodiment of the present invention. FIG. 2 is a sectional view showing a second embodiment of the present invention, in which a thin film 4 having a high oxygen concentration, a thin film 2 having a low oxygen concentration, and a hard carbon film 3 are sequentially formed on a metal substrate 1. FIG. 3 shows a third embodiment of the present invention, wherein a high oxygen concentration thin film 4, an oxygen-free concentration thin film 5, and a hard carbon film 3 are formed on a metal substrate 1.
FIG. 4 is a cross-sectional view showing a state in which are sequentially formed. FIG. 4 is a sectional view showing a fourth embodiment of the present invention, in which a thin film 6 having a continuously changing oxygen concentration and a hard carbon film 3 are sequentially formed on a metal substrate 1. FIG. 5 is a cross-sectional view showing a first comparative example of the present invention, in which a hard carbon film 3 is formed on a metal substrate. FIG. 6 is a sectional view showing a second comparative example of the present invention, in which an oxygen-free thin film 5 and a hard carbon film 3 are sequentially formed on a metal substrate 1. FIG. 7 is a cross-sectional view showing a third comparative example of the present invention, in which a silicon oxide film 7 and a hard carbon film 3 are sequentially formed on a metal substrate 1. [Explanation of Signs of Main Parts] 1... Metal substrate, 2, 4 to 6... Thin film 3... Hard carbon film

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−106494(JP,A) 特開 昭61−106478(JP,A) 特開 昭58−42472(JP,A) 特開 昭62−116776(JP,A) 特開 昭62−247076(JP,A) 特開 昭59−182300(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-106494 (JP, A) JP-A-61-106478 (JP, A) JP-A-58-42472 (JP, A) JP-A-62 116776 (JP, A) JP-A-62-247076 (JP, A) JP-A-59-182300 (JP, A)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属からなる基体と、該基体を被覆する硬
質炭素膜と、前記基体と硬質炭素膜との間に形成された
薄膜とを備え、該薄膜がシリコン、炭素および酸素を含
む化合物からなることを特徴とする硬質炭素膜被覆を施
した金属基体。
1. A substrate comprising a metal, a hard carbon film covering the substrate, and a thin film formed between the substrate and the hard carbon film, wherein the thin film contains silicon, carbon and oxygen. A metal substrate coated with a hard carbon film, comprising:
【請求項2】前記薄膜における、前記基体と接触する側
の面の酸素含有量が、前記硬質炭素膜と接触する側の面
の酸素含有量よりも多いことを特徴とする特許請求の範
囲第1項記載の硬質炭素膜被覆を施した金属基体。
2. The thin film according to claim 1, wherein the oxygen content of the surface in contact with the base is greater than the oxygen content of the surface in contact with the hard carbon film. A metal substrate coated with the hard carbon film according to claim 1.
【請求項3】前記薄膜において、前記硬質炭素膜と接触
する側の面の酸素含有量が実質的に零であることを特徴
とする特許請求の範囲第3項記載の硬質炭素膜被覆を施
した金属基体。
3. The hard carbon film coating according to claim 3, wherein the oxygen content of the surface of the thin film on the side in contact with the hard carbon film is substantially zero. Metal substrate.
【請求項4】前記薄膜は、水素を含んでいることを特徴
とする特許請求の範囲第1項記載の硬質炭素膜被覆を施
した金属基体。
4. A metal substrate coated with a hard carbon film according to claim 1, wherein said thin film contains hydrogen.
【請求項5】前記薄膜が、テトラメチルシランを原料と
する化学的気相成長法により成膜されたことを特徴とす
る特許請求の範囲第1項記載の硬質炭素膜被覆を施した
金属基体。
5. A metal substrate coated with a hard carbon film according to claim 1, wherein said thin film is formed by a chemical vapor deposition method using tetramethylsilane as a raw material. .
【請求項6】前記金属基体は、鉄系合金、ニッケル系合
金、超硬合金、チタン合金、アルミニウム合金のいずれ
かであることを特徴とする特許請求の範囲第1項記載の
硬質炭素膜被覆を施した金属基体。
6. The hard carbon film coating according to claim 1, wherein said metal substrate is any one of an iron alloy, a nickel alloy, a cemented carbide, a titanium alloy and an aluminum alloy. Metal substrate subjected to.
JP62290416A 1987-11-17 1987-11-17 Metal substrate coated with hard carbon film Expired - Lifetime JP2623611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62290416A JP2623611B2 (en) 1987-11-17 1987-11-17 Metal substrate coated with hard carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62290416A JP2623611B2 (en) 1987-11-17 1987-11-17 Metal substrate coated with hard carbon film

Publications (2)

Publication Number Publication Date
JPH01132779A JPH01132779A (en) 1989-05-25
JP2623611B2 true JP2623611B2 (en) 1997-06-25

Family

ID=17755743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62290416A Expired - Lifetime JP2623611B2 (en) 1987-11-17 1987-11-17 Metal substrate coated with hard carbon film

Country Status (1)

Country Link
JP (1) JP2623611B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03199376A (en) * 1989-12-27 1991-08-30 Shimadzu Corp Formation of hard carbon film
US5511587A (en) * 1990-09-28 1996-04-30 Citizen Watch Co., Ltd. Wear-resistant reed for a high-speed loom
DE69118705T2 (en) * 1990-09-28 1996-10-02 Citizen Watch Co Ltd WEB SHEET FOR HIGH-SPEED WEAVING MACHINES
JP2777543B2 (en) * 1994-05-31 1998-07-16 三洋電機株式会社 Hard carbon coated substrate and method of forming the same
US5618619A (en) * 1994-03-03 1997-04-08 Monsanto Company Highly abrasion-resistant, flexible coatings for soft substrates
US5712000A (en) * 1995-10-12 1998-01-27 Hughes Aircraft Company Large-scale, low pressure plasma-ion deposition of diamondlike carbon films
WO2000015869A1 (en) * 1998-09-11 2000-03-23 Commissariat A L'energie Atomique Part based on aluminium coated with amorphous hard carbon
JP5055535B2 (en) * 2003-08-28 2012-10-24 独立行政法人産業技術総合研究所 Method for producing carbon-based bilayer film with excellent underwater peel resistance
JP5570883B2 (en) * 2010-06-17 2014-08-13 トーノファインプレーティング株式会社 Ultrasonic horn
JP6318430B2 (en) * 2014-06-02 2018-05-09 地方独立行政法人山口県産業技術センター Composite hard film member and method for producing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842472A (en) * 1981-09-07 1983-03-11 Semiconductor Energy Lab Co Ltd Thermal head
JPS59182300A (en) * 1983-03-30 1984-10-17 Mitsubishi Metal Corp Vapor-phase synthesis method of diamond
JPS61106469A (en) * 1984-10-25 1986-05-24 株式会社 伊藤喜工作所 Refractory heat-insulative wall
JPS61106494A (en) * 1984-10-29 1986-05-24 Kyocera Corp Member coated with diamond and its production
JPS61106478A (en) * 1984-10-29 1986-05-24 東芝タンガロイ株式会社 Diamond coated part
JPS62116776A (en) * 1985-11-14 1987-05-28 Mitsubishi Chem Ind Ltd Production of thin film
JPS62247076A (en) * 1986-04-18 1987-10-28 Hitachi Ltd Method for coating plastic pipe

Also Published As

Publication number Publication date
JPH01132779A (en) 1989-05-25

Similar Documents

Publication Publication Date Title
US5227196A (en) Method of forming a carbon film on a substrate made of an oxide material
US7816011B2 (en) Structural material of diamond like carbon composite layers
JP2623611B2 (en) Metal substrate coated with hard carbon film
US4601950A (en) Magnetic recording medium and manufacturing method thereof
JPH04311569A (en) Hard multilayered film assembled body and its manufacture
JPH01294867A (en) Formation of coating film of carbon or consisting essentially of carbon
WO1999001277A1 (en) Diamond-like carbon over-coats for optical recording media devices and method thereof
JP3189347B2 (en) Resin mold, resin mold manufacturing method, and resin molding method
EP0579983A1 (en) Impurity-containing hard carbon film
JPH06116430A (en) Water-and oil-repellent film and production thereof
CN110777335A (en) Temperature resistant carbon coating
JP2001269938A (en) Die for rubber: method for manufacturing die for rubber and method molding rubber
KR20170133191A (en) HIGH HARDNESS TaC COATED CARBON MATERIAL AND MANUFACTURING METHOD FOR SAME
US8518534B2 (en) Coating, article coated with coating, and method for manufacturing article
US20210016417A1 (en) Cmp pad conditioner and method for manufacturing the same
CN114959575B (en) Insulating wear-resistant protective coating for film sensor, preparation method and application thereof
KR20060026042A (en) Coating for a mechanical part, comprising at least one hydrogenated amorphous carbon, and method of depositing one such coating
US4309460A (en) Process for producing gold films
TW201947053A (en) Method for enhancing adhesion of anti-fouling film
JP2002348668A (en) Amorphous hard carbon film and manufacturing method therefor
JPH06306591A (en) Production of water-repellent hard-coated coating film
JPS6252028B2 (en)
JPH04196489A (en) Thin-film semiconductor device
JPH01234566A (en) Colored article
JP3236848B2 (en) Electrical component