JP2603396B2 - Self-hardening binder for mold and method for producing mold - Google Patents

Self-hardening binder for mold and method for producing mold

Info

Publication number
JP2603396B2
JP2603396B2 JP4062613A JP6261392A JP2603396B2 JP 2603396 B2 JP2603396 B2 JP 2603396B2 JP 4062613 A JP4062613 A JP 4062613A JP 6261392 A JP6261392 A JP 6261392A JP 2603396 B2 JP2603396 B2 JP 2603396B2
Authority
JP
Japan
Prior art keywords
weight
mold
water
content
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4062613A
Other languages
Japanese (ja)
Other versions
JPH0576984A (en
Inventor
龍朗 佐々木
俊之 立川
Original Assignee
住友デュレズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26403660&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2603396(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 住友デュレズ株式会社 filed Critical 住友デュレズ株式会社
Priority to JP4062613A priority Critical patent/JP2603396B2/en
Publication of JPH0576984A publication Critical patent/JPH0576984A/en
Application granted granted Critical
Publication of JP2603396B2 publication Critical patent/JP2603396B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、常温硬化型鋳型造型に
用いられる高強度、好作業性、鋳型特性特に耐熱性と鋳
湯後の鋳型の崩壊性等が共に優れた鋳型用結合剤及びこ
れを用いた鋳型の製造方法に関するものである。さらに
詳細には3核体以上の高分子領域化合物を特定の範囲に
おさえ、更に鋳型強度に寄与しない1核体化合物成分の
含有量を少量に押えることにより分子量分布を狭くし、
高強度で速硬化かつ低粘性の有機酸エステル硬化型結合
剤を特徴とするものである。
BACKGROUND OF THE INVENTION The present invention relates to a binder for molds which is excellent in both high strength, good workability, mold properties, especially heat resistance and mold disintegration after casting, and the like. The present invention relates to a method for producing a mold using the same. More specifically, the molecular weight distribution is narrowed by keeping the content of the mononuclear compound component that does not contribute to the strength of the template to a specific range while keeping the high molecular domain compound having three or more nuclei in a specific range,
It is characterized by a high-strength, fast-curing and low-viscosity organic acid ester-curable binder.

【0002】[0002]

【従来の技術】常温硬化型鋳型造型方法には、有機系、
及び無機系の各種粘結剤を用いる方法がある。水ガラス
やセメントを用いる無機系粘結剤は鋳湯時に有害ガスの
発生が少ない反面鋳湯後の鋳型の崩壊性が悪く、有機系
バインダーに比べ仕上工数がかかること、さらに砂の回
収・再生が困難である欠点が上げられる。一方、有機系
粘結剤を用いる造型法としては、フラン樹脂、尿素変性
フラン樹脂又はレゾール型フェノール樹脂等があり、こ
れらの硬化触媒には有機スルホン酸や硫酸が用いられ
る。このため、鋳湯後の鋳型崩壊性は良好であるが含ま
れる硫黄が鉄への浸硫現象やダクタイル鋳鉄への炭素の
球状化阻害等の悪影響を及ぼすなど、冶金学上多くの問
題点が指摘されている。更に、発生するSOx、NOxガ
スによる作業環境の悪化、大気汚染による酸性雨の一原
因との指摘もされ始め社会問題となっている。
2. Description of the Related Art Room-temperature curing mold molding methods include organic,
And methods using various inorganic binders. Inorganic binders that use water glass or cement generate less harmful gas during casting, but have poor mold disintegration after casting, require more finishing work than organic binders, and collect and reclaim sand. The disadvantage is that it is difficult. On the other hand, as a molding method using an organic binder, there are a furan resin, a urea-modified furan resin, a resol-type phenol resin and the like, and an organic sulfonic acid or sulfuric acid is used as a curing catalyst for these. For this reason, the mold disintegration after casting is good, but there are many problems in metallurgy, such as sulfur contained in the metal, which has a bad effect such as a sulfur phenomena to iron and spheroidization inhibition of carbon in ductile cast iron. It is pointed out. Further, it has been pointed out that deterioration of the working environment due to the generated SOx and NOx gases and acid rain due to air pollution have been pointed out as social problems.

【0003】このような欠点を解決する目的で、粘結剤
に冶金学的に優れた塩基性の物質が望まれていた。従来
このような粘結剤としては、レゾール型ナトリウムフェ
ノラート樹脂水溶液と有機酸エステルを用いる特開昭5
0−130627号公報やカリウムアルカリフェノール
−ホルムアルデヒド樹脂を適用することが特公昭61−
43132号公報に示されている。しかし上記粘結剤で
は他の有機バインダーに比べ使用量を多くしないと鋳型
としての充分な強度発現がなく、また多くすると造型作
業時の充填不良やベタツキの発生による造型作業の悪
化、鋳湯におけるガス欠陥の増加、鋳型崩壊性や砂回収
性の悪化などにつながることがわかつており実用的でな
い。現実問題として、高強度性能と混練等の作業性の改
良はバインダーの製造面からは相反するものである、こ
のため従来両者のバランスの上に立って性能の設計がな
されている。
[0003] For the purpose of overcoming these drawbacks, there has been a demand for a metallurgically excellent basic substance as a binder. Conventionally, as such a binder, an aqueous solution of a resole-type sodium phenolate resin and an organic acid ester are used.
No. 0-130627 and potassium alkali phenol-formaldehyde resin can be applied.
No. 43132. However, in the above binder, the strength is not sufficiently developed as a mold unless the amount used is larger than other organic binders, and when the amount is increased, the molding operation is deteriorated due to poor filling or stickiness during molding operation, It is known that this may lead to an increase in gas defects, deterioration of mold disintegration and sand recovery, and is not practical. As a practical problem, improvement in high strength performance and workability such as kneading are contradictory from the viewpoint of the production of the binder. For this reason, the performance has been conventionally designed based on a balance between the two.

【0004】まず高強度とする手段としては、フェノ
ールに対するアルデヒドのモル比を高目とし反応させる
方法、反応を充分進め高分子とする方法、樹脂分を
高目とする方法などが考えられるが、これらは何れも以
下の理由で不十分である。の方法では、フェノールと
ホルムアルデヒドのモル比を高くすると高強度となる反
面ホルマリン臭が強くなり混練・造型作業性が悪くなる
欠点がある。及びの方法は樹脂のみに限って見れば
絶対的なものであるが、結合剤としての応用面を考慮す
るならいずれも高粘性となるため鋳物砂に対する濡れ性
が悪く混練・造型作業性も悪い上に強度も低いという欠
点がある。
[0004] First, as a means for increasing the strength, a method in which the molar ratio of aldehyde to phenol is increased, the reaction is carried out sufficiently, a method in which the reaction is sufficiently advanced to produce a polymer, and a method in which the resin content is increased, are considered. All of these are insufficient for the following reasons. In the method (1), when the molar ratio of phenol and formaldehyde is increased, the strength becomes high, but the formalin odor becomes strong, and the workability of kneading and molding deteriorates. Although the methods of and are absolute only when viewed only with resin, if considering the application aspect as a binder, all become highly viscous and have poor wettability to molding sand and poor kneading and molding workability. On top of that, it has the disadvantage of low strength.

【0005】[0005]

【発明が解決しようとする課題】本発明者の目的とする
ところは、冶金学的に優れ、且つ高強度で混練・造型作
業性また鋳湯後の砂崩壊性や有害ガスの発生が共に優れ
た粘結剤組成物を提供するにある。
The object of the present invention is to be excellent in metallurgy, high in strength, workability in kneading and molding, excellent in sand disintegration after casting and generation of harmful gas. To provide a binder composition.

【0006】[0006]

【課題を解決する為の手段】本発明者等は高強度で混練
・造型時の作業性がしやすくなる粘結剤の低粘性との両
立という課題を解決するために鋭意研究した結果、高モ
ル比のフェノールとホルムアルデヒドとの反応により生
成する3核体以上の高分子領域の化合物の含有率が40
〜60重量%に達した時点で、硬化時強度発現に殆ど寄
与せず増粘化を促進している1核体組成物を除去減少す
ることにより高強度で低粘性の結合剤組成物が得られる
ことを見出し、本発明を完成するに至った。すなわち、
本発明はフェノールとホルムアルデヒドとを1:1.6
〜3.0なるモル比で、反応触媒としてアルカリ金属お
よび/又はアルカリ金属土類を用いて反応せしめ、3核
体以上の高分子領域の化合物の含有率が40〜60重量
%に達した時点で有機酸又は無機酸で中和せしめた後、
水洗することにより1核体組成物を7重量%以下に除去
し、再びアルカリ金属水溶液を加え水溶性となし、少な
くともPH9にすることにより得られる不揮発分40〜
70重量%なる範囲にある有機エステル硬化型の水溶性
鋳型用自硬性結合剤、及び該結合剤を用いた鋳型の製造
方法を提供するものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the problem of compatibility between the binder and the low viscosity of the binder, which makes it easy to work during kneading and molding with high strength. When the content of the compound in the high molecular domain of three or more nuclei formed by the reaction of phenol and formaldehyde in a molar ratio is 40
When the amount reaches about 60% by weight, the mononuclear composition which hardly contributes to the development of strength during curing and promotes thickening is removed and reduced, whereby a high-strength, low-viscosity binder composition is obtained. And found that the present invention was completed. That is,
In the present invention, phenol and formaldehyde are mixed in a ratio of 1: 1.6.
When the reaction is carried out using an alkali metal and / or an alkali metal earth as a reaction catalyst at a molar ratio of up to 3.0, and the content of the compound in the high molecular domain of three or more nuclei reaches 40 to 60% by weight. After neutralizing with an organic or inorganic acid in
The mononuclear body composition is removed to 7% by weight or less by washing with water, and an aqueous alkali metal solution is again added to make it water-soluble, and the non-volatile content obtained by adjusting the pH to at least 9 is 40 to 40%.
An object of the present invention is to provide a self-hardening binder for an organic ester-curable water-soluble mold in a range of 70% by weight, and a method for producing a mold using the binder.

【0007】以下に本発明の詳細を説明する。まず、フ
ェノールに対するホルムアルデヒドのモル比は1.6〜
3.0で好ましくは1.8〜2.6が適当である。当該モ
ル比は低くても高くても、強度及び混練・造型作業性に
好結果を与えないので、上記範囲が好ましい。ここにお
いて、上記フェノールは例えばクレゾール、キシレノー
ル、ビスフェノールA、ビスフェノールF、レゾルシノ
ールの如き他のフェノール類で大部分又は部分的に変性
することもできる。アルデヒドとしてはアセトアルデヒ
ド、ベンズアルデヒド、グリオキザール等も使用できる
がホルムアルデヒドが安価であり性能もよい。次に上記
反応触媒としては、ナトリウムもしくはカリウムなどの
如きアルカリ金属の酸化物又は水酸化物、バリウム、カ
ルシウムもしくはマグネシウムの如きアルカリ土類金属
の酸化物、水酸化物ないしは弱酸塩が挙げられる。これ
らのアルカリ金属とアルカリ土類金属化合物の何れか一
方あるいは両方の併用でもよいが、反応生成物を中和し
た後、最終的に除去されるために安価なものが好まし
い。そしてかかる反応触媒の使用量はフェノ−ルに対し
て多いほど好ましいけれども、除去されるという点から
すれば、あまり多すぎるのは不経済であるからフェノー
ルに対して 0.05モル以上好ましくは 0.08〜0.20モルが
適当である。また中和用の酸類については、これらと反
応触媒であるアルカリ触媒であるアルカリ類との塩が水
溶性になるように組合せを選択すべきであるという制約
以外に何の制限もない。PHを4.5〜7.0に中和して
水和塩の形で実質的にその全量を除去できるものがよ
く、炭酸、酢酸、蓚酸などの如き有機酸、塩酸、燐酸な
どの無機酸も一般的である。
The details of the present invention will be described below. First, the molar ratio of formaldehyde to phenol is from 1.6 to
3.0 is preferable, and 1.8 to 2.6 is suitable. If the molar ratio is low or high, the above range is preferable because good results are not given to the strength and the kneading / molding workability. Here, the phenol can be largely or partially modified with other phenols such as cresol, xylenol, bisphenol A, bisphenol F and resorcinol. Acetaldehyde, benzaldehyde, glyoxal and the like can be used as the aldehyde, but formaldehyde is inexpensive and has good performance. Next, examples of the reaction catalyst include oxides or hydroxides of alkali metals such as sodium or potassium, and oxides, hydroxides or weak acid salts of alkaline earth metals such as barium, calcium or magnesium. Either one or both of these alkali metal and alkaline earth metal compounds may be used, but inexpensive ones are preferred because they are finally removed after neutralizing the reaction product. Although the use amount of such a reaction catalyst is preferably as large as possible with respect to phenol, it is uneconomical to use too much from the viewpoint of removal, so that it is more than 0.05 mol, preferably 0.08 to 0.20, based on phenol. Molar is appropriate. Further, there is no limitation on the neutralizing acids other than the restriction that a combination of these and a salt of the alkali with the alkali catalyst as a reaction catalyst should be water-soluble. It is preferable to be able to neutralize the pH to 4.5 to 7.0 and to remove substantially the whole amount in the form of a hydrated salt. Organic acids such as carbonic acid, acetic acid and oxalic acid, and inorganic acids such as hydrochloric acid and phosphoric acid are preferred. Is also common.

【0008】本発明での組成物を得るにあたって、フェ
ノールとホルムアルデヒドとの反応程度は特に重要であ
る。できるだけ速やかに反応させ2〜4核体のものが多
くできるように制御しなければならない。これらは鋳型
強度性能を向上させるので、できるだけ多い方がよい。
しかし更に高分子の化合物は結合剤の粘性を上げすぎ混
練性に悪影響を及ぼすので好ましくない。また、1核体
化合物であるフェノール、モノメチロールフェノール、
ジメチロールフェノール、トリメチロールフェノール等
は結合剤の粘性を上げるが鋳型強度性能には殆ど寄与し
ないことが本発明の検討の結果判明した。このようなこ
とから、工業的管理面からすれば反応温度自体におのず
と制約を生じ70〜100℃、より好ましくは75〜9
5℃の範囲が適当であり、反応温度が高いと反応制御が
難しくなり危険である。逆に低すぎると1核体化合物が
多くなり除去により歩留りが悪くなる。また、反応の終
点はなんらかの形で分子量分布の測定ができるような装
置により管理される必要がある。本発明の組成物を得る
に際してのフェノールとホルムアルデヒドとの反応終点
は、「高速液体クロマトグラフ HLC-8020」(東洋曹逹工
業製 以下「HLC」と称す)を用いて管理することが望
ましい。しかしながら、この方法は多少時間を要するの
で、簡便法として水倍率又は反応生成物の粘度とHLC
との相関関係を予め取っておけば代替管理でき一般的で
ある。
In obtaining the composition of the present invention, the degree of reaction between phenol and formaldehyde is particularly important. The reaction must be performed as quickly as possible, and control must be performed so that a large number of 2- to 4-nuclear compounds can be produced. Since these improve the mold strength performance, it is better to increase as much as possible.
However, a high molecular compound is not preferable because it increases the viscosity of the binder too much and adversely affects the kneading properties. In addition, mononuclear compounds phenol, monomethylol phenol,
Examination of the present invention has revealed that dimethylolphenol, trimethylolphenol and the like increase the viscosity of the binder but hardly contribute to the mold strength performance. From such a point of view, from the viewpoint of industrial control, the reaction temperature itself naturally imposes a restriction, and the reaction temperature is preferably 70 to 100 ° C, more preferably 75 to 9 ° C.
The range of 5 ° C. is appropriate, and if the reaction temperature is high, reaction control becomes difficult, which is dangerous. Conversely, if it is too low, the amount of mononuclear compound increases, and the yield is reduced by removal. Further, the end point of the reaction needs to be controlled by an apparatus capable of measuring the molecular weight distribution in some form. The end point of the reaction between phenol and formaldehyde in obtaining the composition of the present invention is desirably controlled using “High Performance Liquid Chromatograph HLC-8020” (hereinafter “HLC” manufactured by Toyo Soda Kogyo Co., Ltd.). However, this method requires a certain amount of time, so that the water ratio or the viscosity of the reaction product and the HLC
It is common to substitute management by preliminarily correlating with.

【0009】かかる方法により反応生成物中における3
核体以上の高分子化合物の含有率が40〜60重量%に
達した時点で反応を中止する。鋳型強度性能上からは、
1核体化合物は不要であることは前述したとおりであ
る。反応をさらに進めることによって2核体以上の化合
物の含有率は上がるが、より高分子化も進み粘性が急激
に増大してしまう。一方、反応を中止した時点で中和を
することにより2核体以上の高分子量のものは水溶性を
失い沈殿するが、1核体化合物であるフェノール、モノ
メチロールフェノール、ジメチロールフェノール、トリ
メチロールフェノール等は水溶性を残しており両者は分
離できる。分離する方法としては、減圧水蒸気蒸留法、
水洗法が考えられるが簡便かつ常温で実施できる水洗に
よる除去法が望ましい。水洗回数を調節することにより
1核体化合物の残量のコントロ−ルは可能であるが、鋳
型強度特性と経済性のバランスの点から7重量%以下、
鋳型性能上望ましくは5重量%以下である。次に、1核
体化合物を除去したものに再度アルカリ金属化合物を添
加混合することにより2核体以上の高分子化合物は再度
水溶性となる。アルカリ金属化合物は少なくともPH9
になるように加え、望ましくはPH11〜13がよい。アル
カリ金属化合物としては水酸化ナトリウム、水酸化カリ
ウムなる群より選ばれる一種又は二種以上であっても差
支えない。また、更に鋳型性能を向上させる目的でシラ
ンカップリング剤を加えても差支えない。好ましいシラ
ンカップリング剤としては、γ−アミノプロピルトリエ
トキシシランやγ−(2−アミノエチル)アミノプロピル
トリメトキシシラン等が挙げられる。
According to such a method, 3
The reaction is stopped when the content of the high molecular compound higher than the core reaches 40 to 60% by weight. In terms of mold strength performance,
As described above, the mononuclear compound is unnecessary. As the reaction proceeds further, the content of the compound having two or more nuclei increases, but the polymer becomes more polymerized and the viscosity sharply increases. On the other hand, by neutralization at the time of stopping the reaction, those having a high molecular weight of two or more nuclei lose water solubility and precipitate, but mononuclear compounds such as phenol, monomethylol phenol, dimethylol phenol, and trimethylol Phenol and the like remain water-soluble and can be separated from each other. Separation methods include reduced pressure steam distillation,
Although a water washing method is conceivable, a removal method by water washing that can be easily carried out at room temperature is desirable. The remaining amount of the mononuclear compound can be controlled by adjusting the number of times of water washing.
It is desirably 5% by weight or less for mold performance. Next, the high molecular compound having two or more nuclei becomes water-soluble again by adding and mixing the alkali metal compound again with the one from which the mononuclear compound has been removed. The alkali metal compound is at least PH9
In addition, PH11 to 13 are preferable. The alkali metal compound may be one or more selected from the group consisting of sodium hydroxide and potassium hydroxide. Further, a silane coupling agent may be added for the purpose of further improving the mold performance. Preferred silane coupling agents include γ-aminopropyltriethoxysilane and γ- (2-aminoethyl) aminopropyltrimethoxysilane.

【0010】本発明において、硬化剤として使用される
有機エステルは、γ−ブチロラクトン、γ−プロピオラ
クトン、エチレンカーボネート、プロピレンカーボネー
ト、グリセリンカーボネートなどの環状エステル、トリ
アセチン、エチレングリコールジアセテートなどのグリ
コールエステル類、ギ酸メチル、ギ酸エチル、ギ酸プロ
ピル、酢酸メチル、酢酸エチル、フタル酸ジエステル
類、マロン酸ジエステル類、マレイン酸ジエステル類な
どがある。これら有機エステルは単独又は2種以上混合
して用いることができる。本発明において、自硬性鋳型
造型の際の珪砂などの骨材との混合方法は、骨材、フェ
ノール樹脂、有機エステルの3成分が均一に混合されれ
ば配合の順序は問わない。しかし、硬化性の高い有機エ
ステルを用いる場合は、骨材に有機エステルを均一に混
合した後フェノール樹脂を混合する方法が好ましい。有
機エステルのフェノール樹脂に対する配合割合は10〜
70重量%が適当である。10重量%未満では硬化が不
十分となり、70重量%を越えて用いた場合有機エステ
ルが樹脂の溶剤として作用し鋳型の強度が低下するよう
になる。
In the present invention, the organic ester used as a curing agent includes cyclic esters such as γ-butyrolactone, γ-propiolactone, ethylene carbonate, propylene carbonate and glycerol carbonate, and glycol esters such as triacetin and ethylene glycol diacetate. , Methyl formate, ethyl formate, propyl formate, methyl acetate, ethyl acetate, phthalic diesters, malonic diesters, maleic diesters and the like. These organic esters can be used alone or in combination of two or more. In the present invention, the order of mixing with the aggregate such as silica sand at the time of self-hardening mold molding is not limited as long as the three components of the aggregate, the phenol resin and the organic ester are uniformly mixed. However, when an organic ester having high curability is used, it is preferable to uniformly mix the organic ester with the aggregate and then mix the phenol resin. The mixing ratio of the organic ester to the phenol resin is 10
70% by weight is suitable. If it is less than 10% by weight, the curing will be insufficient, and if it exceeds 70% by weight, the organic ester will act as a solvent for the resin and the strength of the mold will be reduced.

【0011】[0011]

【実施例】以下本発明を実施例により説明する。しかし
本発明は実施例によって限定されるものではない。また
実施例、比較例で示される「部」及び「%」はすべて
「重量部」及び「重量%」である。 (実施例1)冷却器と攪拌器付きの反応容器にフェノ−
ル470部(5.00モル)、37%ホルマリン730部(9.0
0モル)、50%水酸化ナトリウム40部(0.50モル)を仕
込み徐々に昇温し、85℃で還流させた。還流開始から2
時間この温度に保持し、水倍率480%まで反応させ
た。直ちに冷却を開始すると同時に50%酢酸(温度5
0℃)を加えて PH5.5に中和した。中和後水洗用
の水500部を加え40℃以下になるように撹拌しなが
ら冷却し、充分撹拌後30分静置した。この間2核体以
上の高分子化合物は沈殿した。1核体を含有する分離水
を除去し再び水を加え、この水洗工程を3回繰返し行っ
た。次に、冷却しながら50%水酸化ナトリウム200
部を添加し、PH12、粘度80CPs/25℃になるよう
に調節し、アミノシランカップリング剤0.5%加えて
目的の樹脂縮合物を得た。このものは、粘度 80CPs/
25℃、不揮発分50%、遊離フェノ−ル分1.2%、遊
離フェノ−ルを含む1核体化合物の含有率7.0%、3
核体以上の高分子化合物の含有率64.2%で残りの2
8.8%が2核体化合物である樹脂初期縮合物であっ
た。図1はこの樹脂初期縮合物のHLCチャートであ
り、1核体、2核体及び3核体以上の含有量は、それぞ
れチャ−トの各領域面積を切取りその重量から求められ
る。
The present invention will be described below with reference to examples. However, the present invention is not limited by the examples. Further, “parts” and “%” shown in Examples and Comparative Examples are all “parts by weight” and “% by weight”. (Example 1) Phenol was added to a reaction vessel equipped with a condenser and a stirrer.
470 parts (5.00 mol), 730 parts 37% formalin (9.0 parts)
(0 mol) and 40 parts (0.50 mol) of 50% sodium hydroxide, and the mixture was gradually heated and refluxed at 85 ° C. 2 from the start of reflux
This temperature was maintained for a period of time, and the reaction was performed up to a water magnification of 480%. Immediately after starting cooling, 50% acetic acid (temperature 5
(0 ° C.) to neutralize to pH 5.5. After neutralization, 500 parts of water for washing was added, and the mixture was cooled while being stirred at 40 ° C. or lower, and after sufficiently stirring, was allowed to stand for 30 minutes. During this time, high molecular compounds having two or more nuclei precipitated. The separated water containing the mononuclear body was removed, water was added again, and this washing step was repeated three times. Next, while cooling, 50% sodium hydroxide 200
Was added to adjust the pH and the viscosity to 80 CPs / 25 ° C., and 0.5% of an aminosilane coupling agent was added to obtain a desired resin condensate. It has a viscosity of 80 CPs /
25 ° C., nonvolatile content 50%, free phenol content 1.2%, mononuclear compound content containing free phenol 7.0%, 3%
When the content of the high molecular compound higher than the core is 64.2%, the remaining 2
8.8% was a resin precondensate which is a binuclear compound. FIG. 1 is an HLC chart of the resin precondensate. The content of mononuclear, dinuclear, and trinuclear is obtained by cutting out the area of each region of the chart and calculating from the weight.

【0012】(実施例2)冷却器と攪拌器付きの反応容
器にフェノール470部(5.00モル)、37%ホルマリン
811部(10.00モル)、50%水酸化ナトリウム40部
(0.50モル)を仕込み徐々に昇温し、80℃で還流させ
た。還流開始から2時間この温度に保持し、水倍率40
0%まで反応させた。その後、直ちに冷却を開始すると
同時に50%酢酸(温度50℃)を加えて PH5.5に中
和した。中和後水洗用の水500部を加えながら40℃
以下になるように撹拌し冷却する。充分撹拌後30分静
置した。この間2核体以上の高分子化合物は沈殿した。
1核体を含有する分離水を除去し再び水を加え、この水
洗工程を5回繰返し行った。次に、50%水酸化ナトリ
ウム200部を冷却しながら添加し、PH12、粘度7
0CPs/25℃になるように調節し、アミノシランカップ
リング剤0.5%加えて目的の樹脂縮合物を得た。この
ものは粘度 70CPs/25℃、不揮発分52%、遊離フェ
ノール類0.9%、遊離フェノ−ルを含む1核体化合物
の含有率4.8%、3核体以上の高分子化合物の含有率
67.2%で、残りの28.0%が2核体化合物であると
いう樹脂初期縮合物であった。
Example 2 In a reaction vessel equipped with a condenser and a stirrer, 470 parts (5.00 mol) of phenol, 811 parts (10.00 mol) of 37% formalin, 40 parts of 50% sodium hydroxide
(0.50 mol), the temperature was gradually raised, and the mixture was refluxed at 80 ° C. This temperature is maintained for 2 hours from the start of reflux, and the water ratio is 40
Reacted to 0%. Thereafter, cooling was started immediately and at the same time, 50% acetic acid (temperature: 50 ° C.) was added to neutralize to pH 5.5. After neutralization, add 40 parts of water for washing to 40 ° C.
Stir and cool to below. After sufficient stirring, the mixture was allowed to stand for 30 minutes. During this time, high molecular compounds having two or more nuclei precipitated.
The separated water containing the mononuclear body was removed, water was added again, and this washing step was repeated five times. Next, 200 parts of 50% sodium hydroxide was added while cooling, and the pH and the viscosity were adjusted to 12 and 7, respectively.
The temperature was adjusted to 0 CPs / 25 ° C., and 0.5% of an aminosilane coupling agent was added to obtain a desired resin condensate. It has a viscosity of 70 CPs / 25 ° C, a non-volatile content of 52%, free phenols of 0.9%, a mononuclear compound content of 4.8% containing free phenol and a trinuclear or higher polymer compound. At a rate of 67.2%, the remaining 28.0% was a resin precondensate which was a binuclear compound.

【0013】(比較例1)冷却器と攪拌器付きの反応容
器にフェノ−ル470部(5.00モル)、37%ホルマリン
730部(9.00モル)、50%水酸化ナトリウム40部
(0.50モル)を仕込み徐々に昇温し、85℃で還流させ
た。還流開始から2時間この温度に保持し、水倍率49
0%まで反応させた。次に、50%水酸化ナトリウム2
10部を冷却しながら添加し、PH12、粘度 180C
Ps/25℃になるように調節してからアミノシランカップ
リング剤 0.5%加えて目的の樹脂縮合物を得た。この
ものは粘度180CPs/25℃、不揮発分53%、遊離フェ
ノール分 1.9%、遊離フェノールを含む1核体化合物
の含有率 18.5%、3核体以上の高分子化合物の含有
率56.2%で、残りの25.3%が2核体化合物である
という樹脂初期縮合物であった。
Comparative Example 1 In a reaction vessel equipped with a cooler and a stirrer, 470 parts (5.00 mol) of phenol, 730 parts (9.00 mol) of 37% formalin, and 40 parts of 50% sodium hydroxide
(0.50 mol), the temperature was gradually raised, and the mixture was refluxed at 85 ° C. This temperature is maintained for 2 hours from the start of reflux, and the water ratio is 49
Reacted to 0%. Next, 50% sodium hydroxide 2
Add 10 parts while cooling, PH12, viscosity 180C
After adjusting to Ps / 25 ° C., 0.5% of an aminosilane coupling agent was added to obtain a desired resin condensate. It has a viscosity of 180 CPs / 25 ° C., a nonvolatile content of 53%, a free phenol content of 1.9%, a mononuclear compound content of 18.5% containing free phenol, a trinuclear or higher polymer content of 56%. .2%, and the remaining 25.3% was a resin precondensate which was a binuclear compound.

【0014】実施例1,2及び比較例1で得られた各種
樹脂初期縮合組成物の鋳型性能評価は,次のように行
い、得られた結果を表1に示す。 (鋳型評価法)品川式卓上混合器にフリーマントル珪砂
3000部及び有機エステルとしてγ−ブチロラクトン18
部を配合して30秒間混合した後、上記実施例1,2及
び比較例1で得た各種樹脂初期縮合組成物45部を添加
して更に60秒間混合して配合砂を得た。混合直後の砂
を50φ×50mmの鋳型造形部を有する木型に入れプラ
スチックハンマーで3回叩いた後、余分な配合砂を除去
し上面を平滑にした。配合砂が木型内で常温硬化した
後、木型より鋳型を取り出し経時毎の圧縮強度を測定し
た。また混練後10分経過した配合砂を用いて造型を行
ない24時間放置後のもって可使強度とした。また、砂
の流動性は作業性の良否を左右するこれを計る尺度とし
て充填密度を採用した。これは硬化した50φ×50mm
の鋳型の重量を断面積で除したものである。また造型後
24時間経過した鋳型を用いて注湯試験を行なった。更
に、28φ×50mmの鋳型造形部を有する木型を用いて
上記と同じ方法で鋳型を作り熱間圧縮強度試験を実施し
た。
The evaluation of the mold performance of the various resin initial condensation compositions obtained in Examples 1 and 2 and Comparative Example 1 was carried out as follows, and the results obtained are shown in Table 1. (Mold evaluation method) Fremantle silica sand for Shinagawa tabletop mixer
3000 parts and γ-butyrolactone 18 as an organic ester
After mixing and mixing for 30 seconds, 45 parts of the various resin initial condensation compositions obtained in Examples 1 and 2 and Comparative Example 1 were added and mixed for another 60 seconds to obtain a compounded sand. The sand immediately after mixing was put into a wooden mold having a mold forming part of 50 mm x 50 mm, and was hit three times with a plastic hammer. Then, excess compounded sand was removed to smooth the upper surface. After the compounded sand was hardened at room temperature in the wooden mold, the mold was taken out of the wooden mold and the compressive strength was measured over time. Molding was performed using the mixed sand 10 minutes after the kneading, and the potable strength was determined after standing for 24 hours. The packing density was adopted as a measure for determining the workability of the sand fluidity. This is a hardened 50φ × 50mm
Is the weight of the mold divided by the cross-sectional area. A pouring test was performed using a mold 24 hours after the molding. Further, a mold was prepared in the same manner as described above using a wooden mold having a 28 mm × 50 mm molded part, and a hot compressive strength test was performed.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【発明の効果】以上の結果からも明らかなように、本発
明の結合剤は初期及び最終強度共に優れ、また、配合砂
の造型作業性のパラメーターである流動性を現す充填密
度もよく、更に臭気の原因となる低沸点分である1核体
成分が少ないことから造型・注湯時の作業性にも優れ環
境改善に役立つ効果が見られた。一方、崩壊性について
も従来品の水準にあることが判った。熱間強度は硬化に
不要な1核体成分が除去された分向上が見られるメリッ
トがあった。
As is evident from the above results, the binder of the present invention is excellent in both initial and final strengths, and has a good packing density which indicates fluidity which is a parameter of molding workability of the compounded sand. Since there is little mononuclear component which is a low boiling point component that causes odor, the workability at the time of molding and pouring is excellent, and the effect of improving the environment is seen. On the other hand, it was found that the disintegration property was also at the level of conventional products. There was an advantage that the hot strength was improved by the removal of the mononuclear component unnecessary for curing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の樹脂初期縮合物についてのHLCチ
ャ−ト。
FIG. 1 is an HLC chart of a resin precondensate of Example 1.

【符号の説明】[Explanation of symbols]

A 3核体以上の高分子化合物の領域 B 2核体の混合物の領域 C 1核体化合物で、それぞれ、2−メチロールフェノ
ール、4−メチロールフェノール、2,4−ジメチロー
ルフェノール、2,4,6−トリメチロルフェノール及
び遊離フェノールの領域
A A region of a high molecular compound having three or more nuclei B A region of a mixture of two nuclei C In a mononuclear compound, 2-methylolphenol, 4-methylolphenol, 2,4-dimethylolphenol, 2,4,4 6-Trimethylolphenol and free phenol domains

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 フェノールとホルムアルデヒドとを1:
1.6〜3.0なるモル比で、反応触媒としてアルカリ金
属及び/またはアルカリ土類金属系化合物を用いて反応
させ、3核体以上の高分子化合物の含有率が40〜60
重量%に達した時点で、有機酸または無機酸で中和した
のち、水溶性成分である1核体化合物の含有率が7重量
%以下になるように水洗して得られた樹脂に、アルカリ
金属水溶液を加え、系を少なくともPH9にすることに
より得られる、不揮発分40〜70重量%なる範囲にあ
る有機エステル硬化型の水溶性フェノール樹脂鋳型用自
硬性結合剤。
1. A phenol and formaldehyde:
The reaction is carried out at a molar ratio of 1.6 to 3.0 using an alkali metal and / or alkaline earth metal compound as a reaction catalyst, and the content of the trinuclear or higher polymer compound is 40 to 60.
When the weight of the resin reaches the weight%, the resin is neutralized with an organic acid or an inorganic acid, and then washed with water so that the content of the mononuclear compound as a water-soluble component becomes 7% by weight or less. A self-hardening binder for an organic ester-curable water-soluble phenolic resin mold having a nonvolatile content of 40 to 70% by weight, which is obtained by adding a metal aqueous solution to make the system at least PH9.
【請求項2】 フェノールとホルムアルデヒドとを1:
1.6〜3.0なるモル比で、反応触媒としてアルカリ金
属及び/またはアルカリ土類金属系化合物を用いて反応
させ、3核体以上の高分子化合物の含有率が40〜60
重量%に達した時点で、有機酸または無機酸で中和した
のち、水溶性成分である1核体化合物の含有率が7重量
%以下になるように水洗して得られた樹脂に、アルカリ
金属水溶液を加え、系を少なくともPH9にすることに
より得られる、不揮発分40〜70重量%なる範囲にあ
る水溶性フェノール樹脂結合剤を得、該結合剤と有機エ
ステルとを配合した混練砂を鋳型枠内で成型することを
特徴とする鋳型の製造方法。
2. The method of claim 1, wherein the phenol and formaldehyde are:
The reaction is carried out at a molar ratio of 1.6 to 3.0 using an alkali metal and / or alkaline earth metal compound as a reaction catalyst, and the content of the trinuclear or higher polymer compound is 40 to 60.
When the weight of the resin reaches the weight%, the resin is neutralized with an organic acid or an inorganic acid, and then washed with water so that the content of the mononuclear compound as a water-soluble component becomes 7% by weight or less. A water-soluble phenolic resin binder having a non-volatile content of 40 to 70% by weight obtained by adding an aqueous metal solution to make the system at least PH9 is obtained. A method for producing a mold, comprising molding in a frame.
JP4062613A 1991-03-19 1992-03-18 Self-hardening binder for mold and method for producing mold Expired - Lifetime JP2603396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4062613A JP2603396B2 (en) 1991-03-19 1992-03-18 Self-hardening binder for mold and method for producing mold

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-130716 1991-03-19
JP13071691 1991-03-19
JP4062613A JP2603396B2 (en) 1991-03-19 1992-03-18 Self-hardening binder for mold and method for producing mold

Publications (2)

Publication Number Publication Date
JPH0576984A JPH0576984A (en) 1993-03-30
JP2603396B2 true JP2603396B2 (en) 1997-04-23

Family

ID=26403660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4062613A Expired - Lifetime JP2603396B2 (en) 1991-03-19 1992-03-18 Self-hardening binder for mold and method for producing mold

Country Status (1)

Country Link
JP (1) JP2603396B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105312484B (en) * 2014-06-16 2017-09-29 彰武县联信铸造硅砂有限公司 A kind of silica sand surface pre-treating process and its application
CN104190856B (en) * 2014-08-13 2016-08-24 宁夏共享装备有限公司 A kind of production method casting use alkali phenolic curing agent

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL93632A (en) * 1989-03-13 1993-06-10 Borden Uk Ltd Phenolic resin compositions

Also Published As

Publication number Publication date
JPH0576984A (en) 1993-03-30

Similar Documents

Publication Publication Date Title
US5032642A (en) Phenolic resin compositions
US20140187667A1 (en) Phenolic resin composition for shell molding, resin coated sand for shell molding, and shell mold formed of the same
JP2603396B2 (en) Self-hardening binder for mold and method for producing mold
JPS62282743A (en) Phenol formaldehyde resin binder
JPS5978745A (en) Resin coated sand for casting
JP2521869B2 (en) Method for producing water-soluble phenol resin
JP2002102999A (en) Resin coated sand for shell mold
JP2610363B2 (en) Novolak type phenolic resin composition for shell mold
JPH0796142B2 (en) Mold manufacturing method
JP2804419B2 (en) Binder composition for mold
JPH01315411A (en) Production of quick-curable, ammonia-free solid resol resin
JP4221632B2 (en) Binder for shell mold
JP4122545B2 (en) Binder composition for foundry sand
EP0908254A1 (en) Caking additive composition for forming self-hardening mold
JPH06100645A (en) Phenolic resin composition
JP2006095574A (en) Phenol resin composition for shell molding and resin-coated sand for shell molding
JP3324718B2 (en) Binder-curing agent kit for mold production
JPS61108445A (en) Production of resin coated sand grain for shell mold
JPH0780591A (en) Phenolic resin composition for carbon dioxide curing casting mold
JP3221803B2 (en) Binder composition for mold, mold composition and method for producing mold
JP2020142299A (en) Binder composition for molding
JP2003062639A (en) Resin-coated sand for shell mold
JPH07308731A (en) Phenolic resin composition for gas curing casting mold
JP2020082185A (en) Additive for mold
JP2003112231A (en) Novolak type phenolic resin for shell mold