JP2602166B2 - Heat-resistant nonwoven fabric and method for producing the same - Google Patents

Heat-resistant nonwoven fabric and method for producing the same

Info

Publication number
JP2602166B2
JP2602166B2 JP5195135A JP19513593A JP2602166B2 JP 2602166 B2 JP2602166 B2 JP 2602166B2 JP 5195135 A JP5195135 A JP 5195135A JP 19513593 A JP19513593 A JP 19513593A JP 2602166 B2 JP2602166 B2 JP 2602166B2
Authority
JP
Japan
Prior art keywords
heat
nonwoven fabric
resistant
producing
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5195135A
Other languages
Japanese (ja)
Other versions
JPH0790762A (en
Inventor
内藤  治
Original Assignee
近藤 弘康
内藤 治
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 近藤 弘康, 内藤 治 filed Critical 近藤 弘康
Priority to JP5195135A priority Critical patent/JP2602166B2/en
Publication of JPH0790762A publication Critical patent/JPH0790762A/en
Application granted granted Critical
Publication of JP2602166B2 publication Critical patent/JP2602166B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、全芳香族ポリアミド繊
維を主構成とし、ポリエステル及び/またはポリフェニ
レンサルファイドからなる繊維を溶融成分とする耐
織布及びその製造方法に関し、本発明により得られた不
織布は耐絶縁ワニス含浸性に優れた、プリント配線用
基材、耐熱性電気絶縁シート、耐熱性の必要なフィルタ
ー、更には耐熱性・難燃性の必要な断熱材や保温材など
広い用途に使用される。
The present invention relates to a wholly aromatic polyamide fibers as the main structure, relates polyester and / or polyphenylene Heat resistance not <br/> woven and manufacturing method thereof The fiber and molten component comprising sulfide, nonwoven fabric obtained by the present invention has excellent resistance to thermal insulating varnish impregnation, printed wiring substrate, heat-resistant electrically insulating sheet, heat resistance of the required filter, even necessary insulation heat resistance and flame retardancy It is used for a wide range of applications such as heat insulation materials.

【0002】[0002]

【従来の技術及び解決しようとする課題】耐熱性を有す
る不織布としては、耐熱性繊維である全芳香族ポリアミ
ド繊維を同種のパルプ状粒子と共に混抄した湿式による
紙状不織布が広く知られ、また特公昭59−1818号
公報には未延伸の全芳香族ポリアミド繊維を接着成分と
する熱圧着による耐熱性不織布の製造方法が示されてい
る。
2. Description of the Related Art As heat-resistant nonwoven fabrics, wet paper-type nonwoven fabrics obtained by mixing heat-resistant fibers of wholly aromatic polyamide fibers with pulp-like particles of the same kind are widely known. JP-B-59-1818 discloses a method for producing a heat-resistant nonwoven fabric by thermocompression bonding using undrawn wholly aromatic polyamide fibers as an adhesive component.

【0003】上記の全芳香族ポリアミド繊維とパルプと
からなる不織布は密度が高く、空隙が少ないために、通
気性が低く柔軟性が乏しいので、フィルターとして用い
た場合、液体や気体の通過抵抗が著しく高い。従って耐
熱絶縁ワニスの含浸性も低く、ワニス含浸絶縁紙やフィ
ルターの用途には不適当である。更に、この湿式法によ
るものは、厚手の不織布の作製が困難なため、厚手のも
のは複数の薄手シートを積層して作成するため、加熱に
よりそれらの層間が剥離して、バブリング現象が多発し
実用に耐えないという欠点があった。
[0003] The non-woven fabric comprising the wholly aromatic polyamide fiber and pulp has a high density and a small number of voids, and therefore has low air permeability and poor flexibility. Remarkably high. Therefore, the impregnating property of the heat-resistant insulating varnish is low, and it is not suitable for use as a varnish-impregnated insulating paper or filter. Furthermore, since the wet method is difficult to produce a thick nonwoven fabric, the thick one is made by laminating a plurality of thin sheets, so that the layers are separated by heating and the bubbling phenomenon frequently occurs. There was a disadvantage that it could not withstand practical use.

【0004】次に、芳香族ポリアミド繊維及びポリエス
テル繊維より成る不織布は耐熱性が良好で、かつ機械的
物性が優れることから従来より種々の用途に用いられて
いる。例えば特公昭52−27189号公報には芳香族
ポリアミド繊維と低配向ポリエステル繊維を含む不織布
に樹脂を含浸したシートが開示されている。
[0004] Next, nonwoven fabrics composed of aromatic polyamide fibers and polyester fibers have been used in various applications since they have good heat resistance and excellent mechanical properties. For example, Japanese Patent Publication No. 52-27189 discloses a sheet in which a nonwoven fabric containing an aromatic polyamide fiber and a low-oriented polyester fiber is impregnated with a resin.

【0005】また特開昭60−126400号公報には
芳香族ポリアミド繊維と低配向ポリエステル繊維を混合
したスラリーを湿式抄紙した後、熱圧加工した紙状物が
開示されており、樹脂を含浸することにより、フレキシ
ブルプリント基板に応用できることが開示されている。
Japanese Patent Application Laid-Open No. Sho 60-126400 discloses a paper-like material obtained by wet-making a slurry in which an aromatic polyamide fiber and a low-oriented polyester fiber are mixed and then hot-pressing the resin. Accordingly, it is disclosed that it can be applied to a flexible printed circuit board.

【0006】また特開昭64−40649号公報には芳
香族ポリアミド繊維と低配向ポリエステル繊維(該ポリ
エステル中に2〜30重量%のポリアミドを均一分散し
ている)との混合が50/50〜80/20であること
を特徴とする耐熱性不織布が開示されている。
Japanese Patent Application Laid-Open No. 64-40649 discloses that mixing of an aromatic polyamide fiber and a low-oriented polyester fiber (2 to 30% by weight of a polyamide is uniformly dispersed in the polyester) is 50/50 to 50/50. A heat-resistant nonwoven fabric characterized by 80/20 is disclosed.

【0007】然し、これらの不織布は何れも低配向ポリ
エステル繊維が15%以上の高配合であるため融点以上
の温度で熱処理されたときポリエステル繊維が溶融する
ため不織布の寸法安定性を保持できないという欠点があ
った。即ち、耐熱性が優れるといっても、ポリエステル
繊維の有する熱溶融温度以上の耐熱性は保持し得ないも
のであった。例えば不織布にエポキシ樹脂を含浸し更に
片面に銅箔を貼り合せて260〜270℃を越えるハン
ダ浴上に浮かべるとポリエステル繊維が溶融してエポキ
シ樹脂の表面に析出してくるため、フレキシブルプリン
ト基板として使用に耐えないものとなる。
However, these nonwoven fabrics have a disadvantage that the dimensional stability of the nonwoven fabric cannot be maintained because the polyester fibers are melted when heat-treated at a temperature higher than the melting point due to the high blending ratio of the low-oriented polyester fiber of 15% or more. was there. That is, even though the heat resistance is excellent, the heat resistance above the heat melting temperature of the polyester fiber cannot be maintained. For example, if a nonwoven fabric is impregnated with an epoxy resin, and a copper foil is pasted on one side and floated on a solder bath exceeding 260 to 270 ° C, the polyester fibers will melt and precipitate on the surface of the epoxy resin. It becomes unusable.

【0008】一方、ポリフェニレンサルファイド樹脂
は、特公昭52−80609号公報や特開昭58−31
112号公報などに示される繊維化技術が知られ、ポリ
フェニレンサルファイド繊維を用いた耐熱性のニードル
パンチング法による短繊維フェルトや、特開昭57−1
6954号公報のスパンボンド法による長繊維不織布な
どが知られているが、何れも機械的絡合により形成され
るものであり、熱融着による結合がないために、高温で
長時間負がかかる場合などの形態保持性が充分でな
い。熱融着結合点を付与するために不織布を熱圧着する
と全体がフィルム化し、通気性や柔軟性が大きく低下す
る。
On the other hand, polyphenylene sulfide resins are disclosed in JP-B-52-80609 and JP-A-58-31.
No. 112, for example, is known. A short fiber felt obtained by a heat-resistant needle punching method using polyphenylene sulfide fiber,
Such as long-fiber nonwoven fabric by spun bond method 6954 JP are known, both are those formed by mechanical entanglement, because there is no binding by thermal fusion, a long time load at high temperature In such a case, shape retention is not sufficient. When a nonwoven fabric is thermocompression-bonded to provide a heat fusion bonding point, the whole becomes a film, and the air permeability and flexibility are greatly reduced.

【0009】また8〜80%の高混率の未延伸ポリフェ
ニレンサルファイド繊維を融着成分として低温(183
〜257℃)かつ高線圧(30〜270kg/cm)で
プレスする方法が特開昭61−289162号公報に示
されている。この場合は非常に大きな圧力を必要とする
ので機械的制約があり、得られた不織布の通気性や柔軟
性が大きく低下して耐熱絶縁ワニスの含浸性が低下して
しまう。またフィルターの用途に用いた場合は液体や気
体の通性が悪くなる。
Also, undrawn polyphenylene sulfide fiber having a high mixing ratio of 8 to 80% is used as a fusion component at a low temperature (183 ° C.).
Japanese Patent Application Laid-Open No. 61-289162 discloses a method of pressing at a high linear pressure (30 to 270 kg / cm). In this case, since a very large pressure is required, there are mechanical restrictions, and the air permeability and flexibility of the obtained nonwoven fabric are greatly reduced, and the impregnation property of the heat-resistant insulating varnish is reduced. In the case of using the application of the filter becomes poor passing over sexual liquid or gas.

【0010】また特開平3−137259号公報及び特
開平3−137260号公報による耐熱性不織布の製造
方法として、97〜92重量%の耐熱性繊維(全芳香族
ポリアミド繊維)と3〜8重量%の延伸ポリフェニレン
サルファイド繊維または未延伸ポリフェニレンサルファ
イド繊維とを混綿してウェブを形成し、245〜345
℃で加圧熱処理(2本の対金属ロールで線圧5〜100
kg/cm)でプレスする方法が開示されている。
As a method for producing a heat-resistant nonwoven fabric disclosed in JP-A-3-137259 and JP-A-3-137260, 97 to 92% by weight of heat-resistant fiber (wholly aromatic polyamide fiber) and 3 to 8% by weight And a drawn polyphenylene sulfide fiber or undrawn polyphenylene sulfide fiber to form a web.
C. heat treatment under pressure (linear pressure 5 to 100 with two metal rolls)
(kg / cm).

【0011】ところで、厚手の不織布を製造する場合、
通気性や柔軟性を保持するために2本の対金属ロールで
低圧力でプレスしても不織布の内部にまで均等に加熱温
度が伝わり難い、即ち、不織布の表面温度と内部温度と
の隔差が発生して均一に熱融着しないため機械的物性が
充分でない。従って実用性のある厚手の不織布を製造す
る場合、厚さ(目付)に限界を生ずることになる。
By the way, when producing a thick nonwoven fabric,
Even if pressed with two metal rolls at low pressure to maintain air permeability and flexibility, the heating temperature is difficult to be transmitted evenly to the inside of the nonwoven fabric, that is, the difference between the surface temperature and the internal temperature of the nonwoven fabric is reduced. Since it occurs and is not thermally fused uniformly, the mechanical properties are not sufficient. Therefore, when producing a practically thick nonwoven fabric, there is a limit to the thickness (basis weight).

【0012】[0012]

【発明の目的】本発明はかかる問題点を解決するために
なされたものであり、極めて低い混率のポリエステル
維及び/またはポリフェニレンサルファイド繊維を用
い、しかも低圧力でプレスすることで通気性や柔軟性を
保有する耐熱性不織布が得られることを見出したもので
ある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is intended to use a polyester fiber and / or a polyphenylene sulfide fiber having a very low mixing ratio and press at a low pressure. It has been found that a heat-resistant nonwoven fabric having air permeability and flexibility can be obtained.

【0013】[0013]

【問題を解決するための手段】上記課題を解決する本発
明は、 不織布構成繊維の交点を点接着させることにより耐熱
絶縁ワニス含浸性に優れた耐熱性不織布を得る製造方法
であって、前記不織布構成繊維は全芳香族ポリアミド繊
維を主構成とし、ポリエステル及び/またはポリフェニ
レンサルファイドの繊維であり、且つ前記点接着は、ポ
リエステル及び/またはポリフェニレンサルファイドの
繊維を1重量%以上3重量%未満で混綿してウェブを形
成し、軽い加圧と遠赤外線照射による加熱処理の後、加
圧して熱接着を行うことで形成する耐熱性不織布の製造
方法において、前記不織布の熱接着は軽い加圧を行うロ
ーラ搬送手段による搬送中に遠赤外線照射により徐々に
加熱し、前記ウェブの温度が熱可塑性樹脂の熱溶融温度
にまで上昇した後、線圧1〜100kg/cmで加圧す
ることを特徴とする耐熱性不織布の製造方法、 前記軽い加圧が、線圧0.2〜0.8kg/cmであ
ることを特徴とする前記記載の耐熱性不織布の製造方
法、 である。
Means for Solving the Problems The present invention for solving the above-mentioned problems is a method for producing a heat-resistant nonwoven fabric excellent in impregnation with a heat-resistant insulating varnish by spot-bonding the intersections of the constituent fibers of the nonwoven fabric. The constituent fiber is a wholly aromatic polyamide fiber as a main component, is a polyester and / or polyphenylene sulfide fiber, and the point bonding is to mix polyester and / or polyphenylene sulfide fiber at 1% by weight or more and less than 3% by weight. In the method for producing a heat-resistant nonwoven fabric, which is formed by forming a web, performing heat treatment by applying light pressure and far-infrared irradiation, and then performing heat bonding by applying pressure, the heat bonding of the nonwoven fabric is performed by applying a light pressure to the roller. During the transport by the transport means, gradually heated by far-infrared irradiation, the temperature of the web rises to the thermal melting temperature of the thermoplastic resin And then applying a linear pressure of 1 to 100 kg / cm, wherein the light pressure is a linear pressure of 0.2 to 0.8 kg / cm. The method for producing a heat-resistant nonwoven fabric according to the above.

【0014】[0014]

【0015】[0015]

【0016】本発明に利用される全芳香族ポリアミド繊
維としては、ポリ−m−フェニレンイソフタルアミド繊
及びその変成品と、ポリ−p−フェニレンテレフタル
アミド繊維及びその変成品などである。また前記ローラ
搬送手段による搬送中に複数個が配置された加熱手段に
より徐々に加熱される。加熱手段の加熱方法としては遠
赤外線照射による加熱によりウェブは内外層とも均一に
加熱されるため表面が焦げることなくムラのない加熱が
できる。従来の加熱方法では表面から順に熱が伝わって
ゆくのに対して遠赤外線は空気層等の媒体に熱が吸収さ
れることなく被加熱物に直接到達し発熱する。即ち、雰
囲気温度を高めずにウェブをスポット加熱することがで
き、加熱装置を密閉する必要がない。従って加熱効率が
高いと共に温度制御が極めて容易である。
The wholly aromatic polyamide fibers used in the present invention include poly-m-phenylene isophthalamide fibers and modified products thereof, and poly-p-phenylene terephthalamide fibers and modified products thereof. Further, during the transportation by the roller transportation means, the heating is gradually performed by a plurality of heating means. As the heating method of the heating means, the inner and outer layers of the web are uniformly heated by the irradiation with far-infrared radiation, so that the surface can be uniformly heated without burning. In the conventional heating method, heat is transmitted sequentially from the surface, whereas far infrared rays directly reach the object to be heated without being absorbed by a medium such as an air layer and generate heat. That is, the web can be spot-heated without increasing the ambient temperature, and there is no need to seal the heating device. Therefore, the heating efficiency is high and the temperature control is very easy.

【0017】遠赤外線照射により徐々に加熱されたウェ
ブは、その温度が接着成分として用いられた熱可塑性樹
脂の熱溶融温度、例えばポリエステルでは265℃、ポ
リフェニレンサルファイドでは290℃にまで上昇した
後、熱カレンダーローラによって加圧される。熱カレン
ダーローラによる加圧は、線圧1〜100kg/cmの
範囲で、不織布の目付が100g/m未満の場合の線
圧は1〜10kg/cm、また100〜200g/m
以下の場合の線圧は20〜50kg/cm、200g/
を越える場合の線圧は60〜100kg/cmで行
われる。該カレンダーローラの表面温度は、熱損失等を
考慮して前記熱溶融温度より僅かに高めに設定されるこ
とが好ましい。
The temperature of the web gradually heated by irradiation with far-infrared rays rises to the thermal melting temperature of the thermoplastic resin used as the adhesive component, for example, 265 ° C. for polyester and 290 ° C. for polyphenylene sulfide. Pressed by a calender roller. The pressure by the hot calender roller is in the range of a linear pressure of 1 to 100 kg / cm. When the basis weight of the nonwoven fabric is less than 100 g / m 2 , the linear pressure is 1 to 10 kg / cm, and 100 to 200 g / m 2.
In the following cases, the linear pressure is 20 to 50 kg / cm, 200 g /
linear pressure when exceeding m 2 is carried out in 60~100kg / cm. It is preferable that the surface temperature of the calender roller is set slightly higher than the heat melting temperature in consideration of heat loss and the like.

【0018】[0018]

【発明の効果】本発明の耐熱性不織布の製造方法によれ
ば、不織布構成繊維の交点を点接着させることにより、
通気性や柔軟性に優れ、しかも耐熱絶縁ワニス含浸性が
良好で、かつ機械的物性が優れているので、プリント配
線用基材、耐熱性電気絶縁シート、耐熱性の必要なフィ
ルター、更には耐熱性及び難燃性の必要な断熱材や保温
材など広い用途に使用できる。
According to the method for producing a heat-resistant nonwoven fabric of the present invention, the points of intersection of the fibers constituting the nonwoven fabric are point-adhered,
Excellent permeability and flexibility, good impregnation with heat-resistant insulating varnish, and excellent mechanical properties, so it can be used as a substrate for printed wiring, heat-resistant electric insulating sheet, heat-resistant filter, and heat-resistant. It can be used for a wide range of applications such as heat insulating materials and heat insulating materials that require heat resistance and flame retardancy.

【0019】[0019]

【実施例】以下、実施例により本発明を具体的に説明す
る。 実施例1 繊度2デニール、繊維長51mmの全芳香族ポリアミド
繊維(デュポン社製、商品名「ノーメックス(登録商
標)」)97.5重量%と繊度1.3デニール、繊維長
38mmの延伸ポリエステル繊維2.5重量%とをそれ
ぞれオープナーで充分開繊した後に混綿装置で均一に混
綿し、ローラーカードで配向したウェブを形成する。一
方、別系列のローラーカードにてウェブ化し、クロスレ
イヤーにてウェブを積層し、続いてウェブドラフターに
よってドラフト倍率を1.5〜2.5倍行ってウェブの
目付を調整した上で、上記の配向したウェブに重ね合わ
せて目付100g/m2 のウェブを形成した。次に、遠
赤外線セラミックヒーター方式の加熱装置によってポリ
エステルの溶融温度265℃まで上昇したウェブを熱カ
レンダーローラの表面温度270℃、線圧50kg/c
mで熱圧着して所期の耐熱性不織布を得た。この不織布
の物性を表1に示す。表1から、この不織布は強度が高
く、通気性があり柔軟で耐熱絶縁ワニスの含浸性もよ
く、熱収縮率及び重量減率が低く、耐熱性電気絶縁基材
や耐熱性フィルター、断熱材、保温材として優れている
ことが判る。
The present invention will be described below in detail with reference to examples. Example 1 97.5% by weight of a wholly aromatic polyamide fiber having a fineness of 2 denier and a fiber length of 51 mm (trade name "Nomex (registered trademark)" manufactured by DuPont) and a drawn polyester fiber having a fineness of 1.3 denier and a fiber length of 38 mm After 2.5% by weight of each fiber is sufficiently opened with an opener, the fibers are uniformly mixed with a cotton mixing device to form a web oriented with a roller card. On the other hand, the web was formed into a web with another series of roller cards, the web was laminated with a cross layer, and then the draft ratio was adjusted to 1.5 to 2.5 times by a web drafter to adjust the basis weight of the web. A web having a basis weight of 100 g / m 2 was formed by superimposing the web on the oriented web. Next, the web heated to a polyester melting temperature of 265 ° C. by a heating device of a far-infrared ceramic heater system is heated to a surface temperature of a heat calender roller of 270 ° C. and a linear pressure of 50 kg / c.
m to obtain the desired heat-resistant nonwoven fabric. Table 1 shows the physical properties of this nonwoven fabric. From Table 1, it can be seen that this nonwoven fabric has high strength, is breathable and flexible, has good impregnation of heat-resistant insulating varnish, has low heat shrinkage and low weight loss, and has heat-resistant electric insulating base material, heat-resistant filter, heat insulating material, It turns out that it is excellent as a heat insulating material.

【0020】比較例1 実施例1と同様の配合及び方法によりウェブを形成し、
前記遠赤外線セラミックヒーター方式の加熱装置を使用
せずに、熱カレンダーローラの表面温度280℃、線圧
300kg/cmで熱圧着したところ、圧着条件が高温
且つ高圧であることから、全体がフィルム化し、通気
性、ワニス含浸性が低く、また柔軟性も乏しく取扱性が
不良であった。
Comparative Example 1 A web was formed by the same composition and method as in Example 1,
Without using the heating device of the far-infrared ceramic heater system, the thermocalender roller was thermocompressed at a surface temperature of 280 ° C. and a linear pressure of 300 kg / cm. In addition, the air permeability and varnish impregnation were low, the flexibility was poor, and the handling was poor.

【0021】比較例2 湿式法によって全芳香族ポリアミド不織布を得た。表1
に示す通りワニス含浸性が著しく劣っている。
Comparative Example 2 A wholly aromatic polyamide nonwoven fabric was obtained by a wet method. Table 1
As shown in the figure, the varnish impregnating property is remarkably inferior.

【0022】実施例2 繊度1.5デニール、繊維長47mmの全芳香族ポリア
ミド繊維(デュポン社製、商品名「ケブラー(登録商
標)」)98重量%と繊度2デニール、繊維長51mm
の延伸ポリフェニレンサルファイド繊維(東洋紡績社
製、商品名「プロコン(登録商標)」2重量%とを実施
例1と同様の方法で目付74g/m2 のウェブを形成
し、加熱装置で溶融温度290℃まで上昇させたウェブ
を熱カレンダーローラの表面温度300℃、線圧8kg
/cmで熱圧着して耐熱性不織布を得た。
Example 2 98% by weight of a wholly aromatic polyamide fiber having a fineness of 1.5 denier and a fiber length of 47 mm (trade name "Kevlar (registered trademark)" manufactured by DuPont), a fineness of 2 denier and a fiber length of 51 mm
Of 2% by weight (procon (registered trademark) manufactured by Toyobo Co., Ltd.) to form a web having a basis weight of 74 g / m 2 in the same manner as in Example 1. The temperature of the web was raised to 300 ° C, the surface temperature of the heat calender roller was 300 ° C, and the linear pressure was 8 kg
/ Cm to obtain a heat-resistant nonwoven fabric.

【0023】実施例3 繊度1.5デニール、繊維長47mmの全芳香族ポリア
ミド繊維(デュポン社製、商品名「ケブラー(登録商
標)」)99重量%と繊度1.3デニール、繊維長38
mmの延伸ポリエステル繊維1重量%とを実施例1と同
様の方法で目付77g/m2 のウェブを形成し、加熱装
置で溶融温度265℃まで上昇させたウェブを熱カレン
ダーローラの表面温度270℃、線圧10kg/cmで
熱圧着して耐熱性不織布を得た。
Example 3 99% by weight of a wholly aromatic polyamide fiber (manufactured by DuPont, trade name "Kevlar (registered trademark)") having a denier of 1.5 denier and a fiber length of 47 mm, a denier of 1.3 denier and a fiber length of 38
1% by weight of a drawn polyester fiber having a thickness of 77 mm / m 2 was formed in the same manner as in Example 1, and the web heated to a melting temperature of 265 ° C. by a heating device was heated to a surface temperature of a hot calender roller of 270 ° C. Then, thermocompression bonding was performed at a linear pressure of 10 kg / cm to obtain a heat-resistant nonwoven fabric.

【0024】実施例2及び3の耐熱性不織布は表1に示
す如く、耐熱絶縁ワニスの含浸性に優れ、破壊電圧も高
く、またアレニウス式による耐熱引張強度劣化試験にお
いて、国際電気技術委員会の定めるH種に適合するもの
と思われる。従って、耐熱性電気絶縁シートとして好適
である。また、誘電率、誘電正接、絶縁抵抗等の電気特
性に優れた機能を有し、プリント配線用基材として特に
有用である。
As shown in Table 1, the heat-resistant nonwoven fabrics of Examples 2 and 3 are excellent in impregnation of a heat-resistant insulating varnish, have a high breakdown voltage, and are subjected to a heat-resistant tensile strength deterioration test by the Arrhenius method.
And conforms to Class H specified by the International Electrotechnical Commission
I think that the. Therefore, it is suitable as a heat-resistant electric insulating sheet. Further, it has a function excellent in electrical properties such as dielectric constant, dielectric loss tangent, and insulation resistance, and is particularly useful as a substrate for printed wiring.

【0025】比較例3 湿式法によって全芳香族ポリアミド繊維の紙状不織布を
得た。表1に示す通り電気特性は優れているが、ワニス
含浸性が著しく劣っている。
Comparative Example 3 A paper-like nonwoven fabric of wholly aromatic polyamide fibers was obtained by a wet method. As shown in Table 1, the electrical properties are excellent, but the varnish impregnation property is extremely poor.

【0026】[0026]

【表1】 (注) 1.物性値はいずれも縦方向と横方向の平均値である。 2.厚み及び密度はJIS−8118に基づいて測定す
る。 3.強伸度試験はJIS−P−8113に基づいて測定
する。 4.熱収縮率及び重量減率は300℃の乾熱で30分間
暴露し、常温に戻した時の値である。 5.通気度はフラジール型通気度試験機を用いてJIS
−L−1096(1990A法)に従って行った。 6.ヒマシ油含浸性の測定方法は試料を18×18mm
に各4枚ずつ裁断し、ヒマシ油の温度を30±0.5℃
にする。試験片の表面又は裏面を上にして、ヒマシ油の
液面と平行に落下させる。液面に落下した時から液が完
全に浸透して沈下するまでの時間をストップウォッチで
測定し、1/10秒単位で読み取る(表面裏面各2枚の
計4枚の平均値の秒数)。 7.シリコンオイル含浸性の測定方法は試料を12.5
×200mmに裁断し、シリコンの粘度(100cs、
1,000cs、10,000cs)に試片6mm浸け
て、1時間後の吸い上げ高さ(mm)を読み取る。 8.絶縁破壊電圧、誘電率、誘電正接の試験はJIS−
C−2111に基づいて測定する。 9.絶縁抵抗(体積抵抗率)はJIS−C−6521に
基づいて測定する。
[Table 1] (Note) 1. All physical property values are average values in the vertical and horizontal directions. 2. The thickness and density are measured based on JIS-8118. 3. The strength and elongation test is measured based on JIS-P-8113. 4. The heat shrinkage and the weight loss are values when exposed to dry heat of 300 ° C. for 30 minutes and returned to normal temperature. 5. The air permeability is measured according to JIS using a Frazier-type air permeability tester.
-L-1096 (1990A method). 6. The method for measuring castor oil impregnation is to measure the sample 18 x 18 mm.
4 pieces each, and the temperature of castor oil is 30 ± 0.5 ℃
To The test piece is dropped parallel to the liquid level of castor oil with the front or back face up. Measure the time from when the liquid drops on the liquid surface until the liquid completely penetrates and settles with a stopwatch, and read in 1/10 second units (the number of seconds of the average value of a total of four sheets of each of the front and back sides) . 7. The method for measuring the silicon oil impregnating property is as follows.
× 200mm, silicon viscosity (100cs,
The sample is immersed in 6 mm in 1,000 cs and 10,000 cs), and the suction height (mm) after one hour is read. 8. The tests for dielectric breakdown voltage, dielectric constant and dielectric loss tangent are based on JIS-
Measured based on C-2111. 9. The insulation resistance (volume resistivity) is measured based on JIS-C-6521.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】不織布構成繊維の交点を点接着させること
により耐熱絶縁ワニス含浸性に優れた耐熱性不織布を得
る製造方法であって、前記不織布構成繊維は全芳香族ポ
リアミド繊維を主構成とし、ポリエステル及び/または
ポリフェニレンサルファイドの繊維であり、且つ前記点
接着は、ポリエステル及び/またはポリフェニレンサル
ファイドの繊維を1重量%以上3重量%未満で混綿して
ウェブを形成し、軽い加圧と遠赤外線照射による加熱処
理の後、加圧して熱接着を行うことで形成する耐熱性不
織布の製造方法において、前記不織布の熱接着は軽い加
圧を行うローラ搬送手段による搬送中に遠赤外線照射に
より徐々に加熱し、前記ウェブの温度が熱可塑性樹脂の
熱溶融温度にまで上昇した後、線圧1〜100kg/c
mで加圧することを特徴とする耐熱性不織布の製造方
法。
1. A method for producing a heat-resistant nonwoven fabric excellent in impregnation with a heat-resistant insulating varnish by point-bonding intersections of nonwoven fabric constituent fibers, wherein the nonwoven fabric constituent fibers mainly consist of wholly aromatic polyamide fibers, Polyester and / or polyphenylene sulfide fiber, and the point bonding is to form a web by mixing polyester and / or polyphenylene sulfide fiber at 1% by weight or more and less than 3% by weight, form a web, apply light pressure and irradiate far infrared rays. In the method for producing a heat-resistant nonwoven fabric formed by performing heat bonding by applying pressure after performing heat treatment, the thermal bonding of the nonwoven fabric is gradually heated by irradiation with far-infrared rays while being conveyed by a roller conveying unit that applies light pressure. Then, after the temperature of the web is raised to the heat melting temperature of the thermoplastic resin, the linear pressure is 1 to 100 kg / c.
A method for producing a heat-resistant nonwoven fabric, which comprises applying pressure at m.
【請求項2】前記軽い加圧が、線圧0.2〜0.8kg
/cmであることを特徴とする請求項1記載の耐熱性不
織布の製造方法。
2. The method according to claim 1, wherein the light pressure is a linear pressure of 0.2 to 0.8 kg.
The method for producing a heat-resistant nonwoven fabric according to claim 1, wherein
JP5195135A 1993-07-12 1993-07-12 Heat-resistant nonwoven fabric and method for producing the same Expired - Lifetime JP2602166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5195135A JP2602166B2 (en) 1993-07-12 1993-07-12 Heat-resistant nonwoven fabric and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5195135A JP2602166B2 (en) 1993-07-12 1993-07-12 Heat-resistant nonwoven fabric and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0790762A JPH0790762A (en) 1995-04-04
JP2602166B2 true JP2602166B2 (en) 1997-04-23

Family

ID=16336053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5195135A Expired - Lifetime JP2602166B2 (en) 1993-07-12 1993-07-12 Heat-resistant nonwoven fabric and method for producing the same

Country Status (1)

Country Link
JP (1) JP2602166B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0128405D0 (en) 2001-11-27 2002-01-16 Btg Int Ltd Process for fabricating polyolefin sheet
FR2853903B1 (en) * 2003-04-16 2005-05-27 Saint Gobain Isover MINERAL FIBER SIZING COMPOSITION COMPRISING A CARBOXYLIC POLYACIDE AND A POLYAMINE, PROCESS FOR PREPARATION, AND RESULTING PRODUCTS
HUE049943T2 (en) 2003-05-22 2020-11-30 Canco Hungary Invest Ltd Polymeric articles
CN103668778A (en) * 2013-12-10 2014-03-26 吴江市品信纺织科技有限公司 Anti-radiation non-woven fabric

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2849752B2 (en) * 1989-08-04 1999-01-27 呉羽テック株式会社 Surface treatment method for non-woven fabric for filter cloth

Also Published As

Publication number Publication date
JPH0790762A (en) 1995-04-04

Similar Documents

Publication Publication Date Title
KR900005893B1 (en) Dielectric materials having low dielectric constants and methods for their manufacture
CN1942629B (en) Aramid paper blend
US6040252A (en) Laminate base material, a method of producing the same, a prepreg and a laminate
CA2699966C (en) Surface heating system
CN100421925C (en) Solid sheet material especially useful for circuit boards
CA1044088A (en) Nonwoven electrical base insulating fabrics
JP3631385B2 (en) Laminate substrate and method for producing the same
JP2602166B2 (en) Heat-resistant nonwoven fabric and method for producing the same
JPH0732549A (en) Aramid layered product
TW456163B (en) An electrically insulating non-woven fabric, a prepreg and a laminate
TWI247067B (en) Non-woven fabric for electrical insulation, prepreg and laminate
JPH0849153A (en) Nonwoven fabric producing apparatus
US6773793B2 (en) Glass flake paper
JPH11170467A (en) Polyester composite material and its manufacture
JPH11100767A (en) Base material for laminate board and its production, and prepreg and laminate board
JPH10193488A (en) Film composite material, its manufacture, electric insulating material and card
JPH086276B2 (en) Insulation press board
JPH0821270B2 (en) Gas insulation transformer spacer manufacturing method
JPH07101569B2 (en) Method for manufacturing spacer for gas insulated transformer
JPH0679722A (en) Glass cloth, resin-impregnated medium and wiring substrate
JP2001295191A (en) Aromatic polyamide fiber paper
JP3399551B2 (en) Bent press board
JPH0557859A (en) Manufacture of laminate
JPH1119929A (en) Base material for laminated sheet, prepreg, and laminated sheet
JPH07246629A (en) Manufacture of heat resistant insulating board