JP2601909B2 - Pressure swing type gas separation method - Google Patents

Pressure swing type gas separation method

Info

Publication number
JP2601909B2
JP2601909B2 JP1152146A JP15214689A JP2601909B2 JP 2601909 B2 JP2601909 B2 JP 2601909B2 JP 1152146 A JP1152146 A JP 1152146A JP 15214689 A JP15214689 A JP 15214689A JP 2601909 B2 JP2601909 B2 JP 2601909B2
Authority
JP
Japan
Prior art keywords
adsorption tower
adsorption
pressure
tower
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1152146A
Other languages
Japanese (ja)
Other versions
JPH0321315A (en
Inventor
順 泉
一晃 大嶋
清一 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1152146A priority Critical patent/JP2601909B2/en
Publication of JPH0321315A publication Critical patent/JPH0321315A/en
Application granted granted Critical
Publication of JP2601909B2 publication Critical patent/JP2601909B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、吸着剤を利用して、例えば空気から窒素を
分離するために用いられる圧力スイング式ガス分離方法
に関する。
Description: TECHNICAL FIELD The present invention relates to a pressure swing type gas separation method used for separating nitrogen from air, for example, using an adsorbent.

〔従来の技術〕[Conventional technology]

例えば空気から窒素を分離する圧力スイング式ガス分
離方法では、原料空気に吸着圧力を与えて吸着塔へ送り
込むブロワと吸着剤に吸着したガスを減圧して再生回収
する真空ポンプが必要であるが、ブロワはその吐出管路
を閉じるとサージング現象による激しい振動を生じた
り、動力が急上昇するなどの不都合があり、真空ポンプ
もその吸入管路を閉じることは負荷の増大や振動発生な
ど機械として甚だ好ましくない運転状態となる。したが
って、従来はこれらブロワや真空ポンプの連続稼動を目
的として、第1表に示す操作順序を実行するために、第
4図に示すような空気から窒素を分離する4塔型圧力ス
イング式ガス分離装置が使用されている。
For example, in a pressure swing type gas separation method of separating nitrogen from air, a blower that applies an adsorption pressure to the raw air and sends it to an adsorption tower and a vacuum pump that decompresses and regenerates and recovers the gas adsorbed by the adsorbent are required. When the blower closes its discharge line, there are inconveniences such as violent vibration caused by the surging phenomenon and the power suddenly rising. Closing the suction line of the vacuum pump is extremely preferable as a machine such as an increase in load and generation of vibration. No operating state. Therefore, in order to continuously operate the blowers and vacuum pumps in order to carry out the operation sequence shown in Table 1, conventionally, a four-column pressure swing gas separation system for separating nitrogen from air as shown in FIG. The device is being used.

第4図において、N2吸着剤を入れたNo1吸着塔011から
No2吸着塔012,No3吸着塔013及びNo4吸着塔014までの4
本の吸着塔の底部につながる各給排気管021〜024は、そ
れぞれが給気ブロワ02の給気ライン020と給気弁0411,04
21,0431,0441を介して接続され、また吸気エアフィルタ
03の吸気ライン030と吸気弁0412,0422,0432,0442を介
し、また真空ポンプ04の吸出しライン04と吸出し弁041
3,0423,0433,0443を介し、更にサージタンク05のパージ
ライン050とパージ弁0414,0424,0434,0444を介してそれ
ぞれ接続されている。また、各吸着塔011〜014の頂部か
ら出た排気ライン071〜074は各吸着塔011〜014の中の熱
交部061〜064を通り排気弁031〜034を介して排出ライン
080と接続され、No1吸着塔011の排気ライン071とNo2吸
着塔012の排気ライン072は均圧弁075を介して連通して
おり、No3吸着塔013の排気ライン073とNo4吸着塔014の
排気ライン074は均圧弁076を介して連通している。冷凍
機01からの冷却ライン090は各吸着塔011〜014の中に装
備した冷却器051〜054と接続している。
In FIG. 4, from the No. 1 adsorption tower 011 containing N 2 adsorbent,
4 up to No2 adsorption tower 012, No3 adsorption tower 013 and No4 adsorption tower 014
Each of the supply / exhaust pipes 021 to 024 connected to the bottom of the adsorption tower has a supply line 020 and a supply valve 0411, 04 of the supply blower 02, respectively.
Connected via 21,0431,0441 and also intake air filter
03 via the intake line 030 and the intake valves 0412, 0422, 0432, 0442, and the suction line 04 and the suction valve 041 of the vacuum pump 04.
The purge line is connected to the purge line 050 of the surge tank 05 via the purge valves 0414, 0424, 0434, and 0444, respectively. In addition, an exhaust line 071-074 that exits from the top of each of the adsorption towers 011-014 passes through a heat exchange section 061-064 in each of the adsorption towers 011-014, and is discharged through an exhaust valve 031-034.
080, the exhaust line 071 of the No1 adsorption tower 011 and the exhaust line 072 of the No2 adsorption tower 012 communicate with each other via a pressure equalizing valve 075, and the exhaust line 073 of the No3 adsorption tower 013 and the exhaust line of the No4 adsorption tower 014. 074 communicates via a pressure equalizing valve 076. A cooling line 090 from the refrigerator 01 is connected to coolers 051 to 054 provided in each of the adsorption towers 011 to 014.

この4塔型圧力スイング式ガス分離装置の作動工程を
第1表と対比させて説明する。第1表は、1サイクルを
8ステップに分割して各吸着塔の作動状態を示してお
り、各ステップ毎の所要時間はその1例を示したもので
ある。
The operation steps of this four-column pressure swing type gas separation device will be described in comparison with Table 1. Table 1 shows the operation state of each adsorption tower by dividing one cycle into eight steps, and the required time for each step shows one example.

ステップ1の前工程のステップ8においては、No1吸
着塔011は再生工程(減圧して吸着したN2を放出してい
る)にあり、No2吸着塔012は吸着工程(加圧して空気中
のN2を吸着している)にあり、これらの工程を終了して
ステップ1へ移行してNo1吸着塔011とNo2吸着塔012は両
者の間の均圧弁075を開いて均圧工程(加圧されたNo2吸
着塔012から減圧されたNo1吸着塔011へガス(この場合
は酸素富化空気)が流れる)となって、両吸着塔間の圧
力がバランスする。
In step 8 of the previous step of step 1, the No1 adsorption tower 011 is in the regeneration step (which emits N 2 adsorbed by vacuum), the No2 adsorption tower 012 N in air pressure adsorption step (under 2 ), the process ends, and the process proceeds to step 1. The No. 1 adsorption tower 011 and the No. 2 adsorption tower 012 open the pressure equalizing valve 075 between the two, and the pressure equalizing step (pressurized) is performed. The gas (in this case, oxygen-enriched air) flows from the reduced No2 adsorption tower 012 to the reduced-pressure No1 adsorption tower 011), and the pressure between the two adsorption towers is balanced.

No3吸着塔013は、ステップ8がパージ工程(吸着が完
了した塔からN2ガスを用いて同吸着塔013内にある酸素
富化空気を追い出す)であるから、ステップ1では吸着
したN2を取り出す再生工程へ移行し、No4吸着塔014は前
工程の自然吸気から吸着工程へ移行している。
No3 adsorption tower 013, because the step 8 is purge step (expelling oxygen-enriched air in the adsorption tower 013 by using N 2 gas from the tower adsorption has been completed), the N 2 adsorbed in Step 1 The process shifts to the regenerating step of taking out, and the No4 adsorption tower 014 shifts from the natural suction of the previous step to the adsorption step.

第5図は次段階のステップ2における各吸着塔の作動
状態を示し、接続した各作動ラインを太線で示してい
る。
FIG. 5 shows an operation state of each adsorption tower in the next step 2 and each connected operation line is indicated by a thick line.

No1吸着塔011では、エアフィルタ03を通った空気を吸
気ライン030から塔内を吸い込んでおり、No2吸着塔012
ではN2を吸着した残りの酸素富化空気をサージタンク05
に貯蔵していたN2を用いて追い出しており、前工程で製
造したN2の一部はここで消費される。
In the No1 adsorption tower 011, the air passing through the air filter 03 is sucked into the tower from the intake line 030, and the No2 adsorption tower 012
Then, the remaining oxygen-enriched air that has absorbed N 2 is
Is expelled using the N 2 stored in the previous step, and a part of the N 2 produced in the previous process is consumed here.

No3吸着塔013は前工程(ステップ8)でN2を用いて不
純ガスをパージしており、真空ポンプ04で減圧して吸着
剤に吸着されたN2を再生してサージタンク05を送り込ん
でいる。No4吸着塔014はブロワ02から加圧した空気を送
り込まれて吸着剤にN2を吸着中であり、残った酸素富化
空気を排出ライン080へ排出している。
The No. 3 adsorption tower 013 purges the impurity gas using N 2 in the previous step (step 8), and the pressure is reduced by the vacuum pump 04 to regenerate the N 2 adsorbed by the adsorbent, and the surge tank 05 is sent. I have. The No. 4 adsorption tower 014 is fed with pressurized air from the blower 02 to adsorb N 2 on the adsorbent, and discharges the remaining oxygen-enriched air to the discharge line 080.

以下各吸着塔は第1表に示すようにステップが進行す
るにつれてその作動を変えて行き、8ステップを1サイ
クルとして繰返す。
Hereinafter, as shown in Table 1, the operation of each adsorption tower is changed as the steps progress, and eight steps are repeated as one cycle.

本4塔式圧力スイング式ガス分離装置では、上記8ス
テップのいづれにおいても、いづれかの吸着塔は吸着工
程及び再生工程にあるために、ブロワ及び真空ポンプは
連続運転を行なっている。
In the four-column pressure swing type gas separation apparatus, in any one of the above-mentioned eight steps, the blower and the vacuum pump are continuously operated because one of the adsorption towers is in the adsorption step and the regeneration step.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ブロワ及び真空ポンプを連続的に作動させることは、
N2を連続的に吸着し連続的に製造することであり、第4
図の4塔型圧力スイング式ガス分離装置はその要求を満
足させるに十分な装置である。
Operating the blower and vacuum pump continuously is
The N 2 is to continuously adsorbed continuously producing, 4th
The four-column pressure swing type gas separation device shown in the figure is a device sufficient to satisfy the demand.

しかし第4図に観られるように多数のバルブの切換え
操作が必要であり、その制御が複雑である。また4塔は
その作動に位相のズレはあっても等価な性能が要求され
るものであり、吸着剤の性能を含めてその維持は容易な
ものではない。
However, as shown in FIG. 4, many valves need to be switched, and the control is complicated. In addition, the four towers are required to have equivalent performance even if the operation is out of phase, and it is not easy to maintain the performance including the performance of the adsorbent.

従って、これら塔数が多いことによるコスト高は改善
が望まれるところである。
Therefore, the cost increase due to the large number of towers is expected to be improved.

本発明は、以上の従来の圧力スイング式ガス分離装置
の問題点を解決しようとするものである。
The present invention is intended to solve the problems of the conventional pressure swing type gas separation device described above.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、特定のガスを選択的に吸着する選択型吸着
剤を充填した吸着塔によって、気体中の上記特定のガス
成分を比較的高圧下で吸着剤に吸着する吸着工程と、吸
着剤に吸着した上記ガス成分を比較的低圧下で吸着剤か
ら脱着して放出する再生工程を行なう圧力スイング式ガ
ス分離方法において、上記吸着工程と再生工程とを交互
に行なう2塔の吸着塔と同2塔の吸着塔と並列に配置さ
れたダミータンクを設け、吸着工程を終了した相対的に
高圧の吸着塔とダミータンクを連結して同吸着塔に残存
する気体をダミータンクにパージすると共に同吸着塔内
の圧力を下げ、また上記再生工程を終了した相対的に低
圧の吸着塔とダミータンクを連絡してダミータンク内の
気体を同吸着塔に移すと共に同吸着塔内の圧力を上げる
ことを特徴とする。
The present invention relates to an adsorption step of adsorbing the above specific gas component in a gas to an adsorbent under a relatively high pressure by an adsorption tower filled with a selective adsorbent for selectively adsorbing a specific gas, In a pressure swing type gas separation method in which a regeneration step of desorbing and releasing the adsorbed gas component from an adsorbent under a relatively low pressure is performed, the same two adsorption towers that alternately perform the adsorption step and the regeneration step are used. A dummy tank arranged in parallel with the adsorption tower of the tower is installed, the relatively high-pressure adsorption tower that has completed the adsorption process is connected to the dummy tank, and the gas remaining in the adsorption tower is purged to the dummy tank and the adsorption is performed. Reduce the pressure in the tower, and connect the relatively low-pressure adsorption tower with the dummy tank after the regeneration step to transfer the gas in the dummy tank to the adsorption tower and raise the pressure in the adsorption tower. Features.

〔作用〕[Action]

従来の4塔型ガス分離装置では、上記第1表に見られ
るように吸着工程と再生工程を終了した吸着塔は互に圧
力バランスを図る均圧工程に入ることは上述の通りであ
るが、本発明におけるように、2塔型吸着装置を用いた
場合においても、この両工程の後は両吸着塔を均圧工程
にする必要がある。
As described above, in the conventional four-column gas separation apparatus, as shown in Table 1 above, the adsorption tower that has completed the adsorption step and the regeneration step enters the pressure equalization step for balancing the pressures as described above. Even in the case of using a two-column adsorption apparatus as in the present invention, it is necessary to perform both pressure equalization steps after both steps.

本発明においては、上記のように、圧力スイング式ガ
ス分離方法において2塔の吸着塔を用い、吸着又は再生
工程が終了した吸着塔とダミータンクが連絡されて吸着
塔の均圧が図られる。
In the present invention, as described above, in the pressure swing type gas separation method, the two adsorption towers are used, and the adsorption tower having completed the adsorption or regeneration step and the dummy tank are connected to equalize the pressure of the adsorption tower.

即ち、吸着工程を終了した相対的に高圧の吸着塔とダ
ミータンクとを連絡して同吸着塔に残存する気体をダミ
ータンクに移して(パージして)同吸着塔内の圧力が下
げられる。また再生工程が終了した相対的に低圧の吸着
塔をダミータンクと連絡して、同吸着塔にダミータンク
内の気体を移し同吸着塔内の圧力が上げられる。このよ
うにして、各吸着塔では、自然吸気,加圧下の吸着,ダ
ミータンクによる均圧,パージ,減圧下の再生,ダミー
タンクによる均圧の工程よりなるサイクルが交互に行な
われる。
That is, the relatively high-pressure adsorption tower that has completed the adsorption step is connected to the dummy tank to transfer the gas remaining in the adsorption tower to the dummy tank (by purging), thereby reducing the pressure in the adsorption tower. Also, the relatively low-pressure adsorption tower after the regeneration step is connected to the dummy tank, and the gas in the dummy tank is transferred to the adsorption tower to increase the pressure in the adsorption tower. In this manner, in each adsorption tower, a cycle consisting of natural suction, adsorption under pressure, pressure equalization by a dummy tank, purging, regeneration under reduced pressure, and pressure equalization by a dummy tank is alternately performed.

従って、本発明によれば、2塔の吸着塔によって、4
塔式と同様のサイクルを行なうことができ、かつ吸着塔
は2塔とその数が減少し、またこれに伴って所要のバル
ブ数も減少する。
Therefore, according to the present invention, 4 adsorption towers
A cycle similar to the column type can be performed, and the number of adsorption columns is reduced to two, and the number of valves required is reduced accordingly.

〔実施例〕〔Example〕

本発明の一実施例を第1図ないし第3図によって説明
する。
One embodiment of the present invention will be described with reference to FIGS.

それぞれゼオライト等のN2吸着剤を充填したNo1吸着
塔11とNo2吸着塔12は、その底部につながる各給排気管2
1,22が給気ブロワ2の給気ライン20に給気弁26及び通気
弁23,24を介して接続され、吸気エアフィルタ3を取付
けた吸気ライン30は吸気弁27を介して、給気ライン20に
合流する。一方真空ポンプ4の吸出しライン40は吸出し
弁41,42を介して上記給排気管21,22に接続され、真空ポ
ンプ4の出口はドレンセパレータ43を介してサージタン
ク5に接続されている。このサージタンク5から出るパ
ージライン50はパージ弁51を介して上記給気ライン20に
合流する。またサージタンク5と吸出しライン40をつな
ぐ循環ライン44には循環弁45が設けられている。No1吸
着塔11とNo2吸着塔12の頂部には、それぞれに排気弁31,
32を設けた排気ライン71,72が設けられ、また、両吸着
塔11,12の頂部は均圧弁75,76を介してダミータンク10と
連通する均圧ライン15に連絡されている。これらNo吸着
塔11,No2吸着塔,ダミータンク10,排気ライン71,72及び
均圧ライン15は、第1図中2点鎖線で示した低温槽9の
中に設置されている。
No1 adsorption tower 11 respectively filled with N 2 adsorbent such as zeolite No2 adsorption tower 12, the supply and exhaust pipe 2 connected at its bottom
1, 22 are connected to an air supply line 20 of the air supply blower 2 via an air supply valve 26 and ventilation valves 23, 24, and an intake line 30 to which an intake air filter 3 is attached is supplied via an intake valve 27. Merge onto line 20. On the other hand, the suction line 40 of the vacuum pump 4 is connected to the supply / exhaust pipes 21 and 22 via suction valves 41 and 42, and the outlet of the vacuum pump 4 is connected to the surge tank 5 via a drain separator 43. A purge line 50 exiting from the surge tank 5 joins the air supply line 20 via a purge valve 51. A circulation valve 45 is provided in a circulation line 44 connecting the surge tank 5 and the suction line 40. At the top of the No. 1 adsorption tower 11 and the No. 2 adsorption tower 12, exhaust valves 31,
Exhaust lines 71 and 72 provided with 32 are provided, and the tops of both adsorption towers 11 and 12 are connected to equalizing lines 15 communicating with the dummy tank 10 via equalizing valves 75 and 76. The No adsorption tower 11, the No2 adsorption tower, the dummy tank 10, the exhaust lines 71 and 72, and the pressure equalizing line 15 are installed in a low-temperature tank 9 shown by a two-dot chain line in FIG.

本実施例における作動順序について、本実施例の各吸
着塔のサイクルの作動状態を示す第2表を参照して説明
する。各工程の内容は、従来例と同様に、自然吸気,吸
着,均圧,パージ,減圧下の再生,均圧のサイクルが繰
り返されるものであるから説明は省略することとし、第
2図に第2表のステップ2,即ちNo1吸着塔11が加圧下の
吸着工程にあり,No2吸着塔12が減圧下の再生工程にある
ときの作動中のラインを太線で示した。
The operation sequence in this embodiment will be described with reference to Table 2 showing the operation state of the cycle of each adsorption tower in this embodiment. As in the conventional example, the cycle of natural aspiration, adsorption, equalizing, purging, regeneration under reduced pressure, and equalizing is repeated, so that the description thereof will be omitted. Step 2 in Table 2, that is, the operating line when the No1 adsorption tower 11 is in the adsorption step under pressure and the No2 adsorption tower 12 is in the regeneration step under reduced pressure is indicated by a thick line.

No1吸着塔11の吸着工程が終了すると、第2表のステ
ップ3,に示すように、同吸着塔11は均圧工程となる(こ
のときNo2吸着塔12では再生工程が続行されている)。N
o1吸着塔11はダミータンク10に接続され、相対的に高圧
の同吸着塔11から相対的に低圧のダミータンク10へ酸素
富化空気が移動し同塔内の圧力が低下する。次のステッ
プ4においては、No1吸着塔1はパージ工程となり(No2
吸着塔12では再生工程が続行されている)、吸着工程後
に同塔内に残った酸素富化空気をサージタンク5内のN2
ガスで追出す。
When the adsorption step of the No. 1 adsorption tower 11 is completed, as shown in step 3 of Table 2, the adsorption tower 11 becomes a pressure equalizing step (at this time, the regeneration step is continued in the No. 2 adsorption tower 12). N
The o1 adsorption tower 11 is connected to the dummy tank 10, and the oxygen-enriched air moves from the relatively high-pressure adsorption tower 11 to the relatively low-pressure dummy tank 10 to lower the pressure in the same tower. In the next step 4, the No. 1 adsorption tower 1 becomes a purging step (No. 2).
The regeneration step is continued in the adsorption tower 12), and the oxygen-enriched air remaining in the tower after the adsorption step is removed by the N 2 gas in the surge tank 5.
Expel with gas.

第3図はステップ5における作動状態であり、No1吸
着塔11はパージ工程であり、ステップ4と同様に吸着工
程後に塔内に残った酸素富化空気をサージタンク5内の
N2ガスで追い出しており、No2吸着塔12は、減圧後にダ
ミータンク10と均圧中であり、相対的に高圧のダミータ
ンク10から相対的に低圧のNo2吸着塔12へ酸素富化空気
が移動している。
FIG. 3 shows the operation state in step 5, wherein the No1 adsorption tower 11 is a purging step, and the oxygen-enriched air remaining in the tower after the adsorption step is removed from the surge tank 5 in the same manner as in step 4.
And chased with N 2 gas, is No2 adsorption tower 12, a dummy tank 10 and equalization during pressurization after decompression, the relatively high-pressure dummy tank 10 to a relatively low pressure No2 adsorption tower 12 is oxygen-enriched air I'm moving.

このようにして、本実施例では、吸着工程が終了した
加圧下のNo1吸着塔11がダミータンク5に接続して切圧
した上、同塔内の酸素富化空気をパージし、一方再生工
程が終了した減圧下のNo2吸着塔12はダミータンク5に
連絡されて同吸着塔10の圧力がバランスされる。このよ
うにして、No1吸着塔11は次の再生工程を、またNo2吸着
塔12は次の自然吸気工程に備えることとなる。
As described above, in this embodiment, the pressurized No1 adsorption tower 11 after the adsorption step was connected to the dummy tank 5 to cut off the pressure, and the oxygen-enriched air in the tower was purged. The No. 2 adsorption tower 12 under reduced pressure after the completion of the above is communicated to the dummy tank 5, and the pressure of the adsorption tower 10 is balanced. In this way, the No1 adsorption tower 11 prepares for the next regeneration step, and the No2 adsorption tower 12 prepares for the next natural aspiration step.

上記のように、本実施例では、2塔の吸着塔11,12に
よって、第2表に示すサイクルが繰り返えされる。
As described above, in the present embodiment, the cycle shown in Table 2 is repeated by the two adsorption towers 11 and 12.

ここで問題は第2表に示すようにブロワ2と真空ポン
プ4ともに休止期間になることであり、先に述べたよう
にこの両者の回路を閉じたり頻繁に発停を繰り返すこと
は好ましくないため、第2表において休止となるステッ
プでは給気ブロワ2はブロー弁25を開いて大気圧運転を
行ない、真空ポンプ4は循環ライン44の循環弁45を開い
てサージタンク5中のN2ガスを循環させるようにしてい
る。
Here, the problem is that both the blower 2 and the vacuum pump 4 are in the idle period as shown in Table 2, and as described above, it is not preferable to close these two circuits or to repeatedly start and stop them. In the pause step in Table 2, the air supply blower 2 performs the atmospheric pressure operation by opening the blow valve 25, and the vacuum pump 4 opens the circulation valve 45 of the circulation line 44 to remove the N 2 gas in the surge tank 5. I try to circulate.

以上説明したように、第4図及び第5図に示す従来の
4塔型の方式では、吸着塔間を接続して均圧を行なって
いるために、均圧時には吸着工程を終った吸着塔のパー
ジを行なうことができなかったが、本実施例では吸着塔
はダミータンクとの間で均圧を行なっているために、吸
着工程を終った一方の吸着塔は、他方の吸着塔が均圧を
行なっている場合においてもパージ工程を実施すること
が可能となった(第2表ステップ5,10参照)。
As described above, in the conventional four-column system shown in FIGS. 4 and 5, since the pressure equalization is performed by connecting the adsorption towers, the adsorption tower which has completed the adsorption step at the time of pressure equalization is used. However, in this embodiment, since the pressure in the adsorption tower is equalized with that of the dummy tank, one of the adsorption towers that has completed the adsorption step has the other adsorption tower equalized. The purge step can be performed even when pressure is applied (see steps 5 and 10 in Table 2).

時間当りのN2の生産量を等しくするガス分離設備にお
いて、従来の4塔型と本実施例の2塔型を比較すると下
表のようになる。
In gas separation equipment to equalize the production of N 2 per hour, so that the table below a comparison of 2 tower conventional four tower and this embodiment.

なお、吸着剤の費用は設備費の15%程度であり、本実
施例では、吸着剤の量の増加はあるが、全体的には大幅
なコスト低減になる。
The cost of the adsorbent is about 15% of the equipment cost. In this embodiment, although the amount of the adsorbent is increased, the cost is greatly reduced as a whole.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明は、ダミータンクと吸着
塔との間に均圧を行なうことによって、2塔の吸着塔に
よって、従来4塔の吸着塔で行なっていたと同様なガス
分離サイクルを繰り返し連続的に行なうことができる。
また、これに伴って、吸着塔の数及びバルブの数等を著
しく減少させることができ、設備費を低減することがで
きると共に、バルブの切換え操作及びその制御を簡単に
することができる。
As described above, according to the present invention, by equalizing the pressure between the dummy tank and the adsorption tower, the same gas separation cycle as that performed by the conventional four adsorption towers is repeated by the two adsorption towers. It can be performed continuously.
Accordingly, the number of adsorption towers, the number of valves, and the like can be significantly reduced, and equipment costs can be reduced, and valve switching operation and control thereof can be simplified.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例におけるガス分離装置の配管
系統図,第2図は本発明のステップ2における作動中の
配管系統図,第3図は本発明のステップ5における作動
中の配管系統図,第4図は従来の4塔型圧力スイング式
ガス分離装置の配管系統図,第5図はそのステップ2に
おける作動中の配管系統図。 2…給気ブロワ,3…吸気エヤフィルタ,4…真空ポンプ,5
…サージタンク,9…低温槽,10…ダミータンク,11…No1
吸着塔,12…No2吸着塔,15…均圧ライン,20…給気ライ
ン,30…吸気ライン,40…吸出しライン,44…循環ライン,
50…パージライン,75,76…均圧弁。
FIG. 1 is a diagram of a piping system of a gas separation device according to an embodiment of the present invention, FIG. 2 is a diagram of a piping system during operation in step 2 of the present invention, and FIG. 3 is a diagram of piping during operation in step 5 of the present invention. FIG. 4 is a piping diagram of a conventional four-tower pressure swing type gas separation device, and FIG. 5 is a piping diagram of the operation in step 2 of FIG. 2 ... Air supply blower, 3 ... Intake air filter, 4 ... Vacuum pump, 5
... Surge tank, 9 ... Low temperature tank, 10 ... Dummy tank, 11 ... No1
Adsorption tower, 12… No2 adsorption tower, 15… Equalization line, 20… Air supply line, 30… Intake line, 40… Suction line, 44… Circulation line,
50… Purge line, 75,76… Equalizing valve.

フロントページの続き (56)参考文献 特開 昭62−247818(JP,A) 特開 昭58−80485(JP,A) 特開 昭64−15116(JP,A)Continuation of the front page (56) References JP-A-62-247818 (JP, A) JP-A-58-80485 (JP, A) JP-A-64-15116 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】特定のガスを選択的に吸着する選択型吸着
剤を充填した吸着塔によって、気体中の上記特定のガス
成分を比較的高圧下で吸着剤に吸着する吸着工程と、吸
着剤に吸着した上記ガス成分を比較的低圧下で吸着剤か
ら脱着して放出する再生工程を行なう圧力スイング式ガ
ス分離方法において、上記吸着工程と再生工程とを交互
に行なう2塔の吸着塔と同2塔の吸着塔と並列に配置さ
れたダミータンクを設け、吸着工程を終了した相対的に
高圧の吸着塔とダミータンクを連絡して同吸着塔に残存
する気体をダミータンクにパージすると共に同吸着塔内
の圧力を下げ、また上記再生工程を終了した相対的に低
圧の吸着塔とダミータンクを連絡してダミータンク内の
気体を同吸着塔に移すと共に同吸着塔内の圧力を上げる
ことを特徴とする圧力スイング式ガス分離方法。
1. An adsorption step of adsorbing said specific gas component in a gas to an adsorbent under a relatively high pressure by an adsorption tower filled with a selective adsorbent for selectively adsorbing a specific gas; A pressure swing type gas separation method in which a regeneration step of desorbing and releasing the gas component adsorbed on the adsorbent from the adsorbent under a relatively low pressure is the same as a two-column adsorption tower in which the adsorption step and the regeneration step are alternately performed. A dummy tank arranged in parallel with the two adsorption towers is provided, and the relatively high-pressure adsorption tower, which has completed the adsorption step, is connected to the dummy tank to purge gas remaining in the adsorption tower into the dummy tank. Reduce the pressure in the adsorption tower, and connect the relatively low-pressure adsorption tower with the dummy tank after the regeneration step to transfer the gas in the dummy tank to the adsorption tower and increase the pressure in the adsorption tower. Characterized by Power swing gas separation process.
JP1152146A 1989-06-16 1989-06-16 Pressure swing type gas separation method Expired - Fee Related JP2601909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1152146A JP2601909B2 (en) 1989-06-16 1989-06-16 Pressure swing type gas separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1152146A JP2601909B2 (en) 1989-06-16 1989-06-16 Pressure swing type gas separation method

Publications (2)

Publication Number Publication Date
JPH0321315A JPH0321315A (en) 1991-01-30
JP2601909B2 true JP2601909B2 (en) 1997-04-23

Family

ID=15534042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1152146A Expired - Fee Related JP2601909B2 (en) 1989-06-16 1989-06-16 Pressure swing type gas separation method

Country Status (1)

Country Link
JP (1) JP2601909B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6503299B2 (en) * 1999-11-03 2003-01-07 Praxair Technology, Inc. Pressure swing adsorption process for the production of hydrogen
JP5518503B2 (en) * 2010-01-25 2014-06-11 大陽日酸株式会社 High pressure and high purity nitrogen gas supply device and supply method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5375092U (en) * 1976-11-25 1978-06-22
JPS60172825U (en) * 1984-04-24 1985-11-15 ズイホ−産業株式会社 road display board
JPS6244915U (en) * 1985-09-05 1987-03-18
JPS631015U (en) * 1986-06-18 1988-01-06

Also Published As

Publication number Publication date
JPH0321315A (en) 1991-01-30

Similar Documents

Publication Publication Date Title
JP2634022B2 (en) Separation method of gas components by vacuum swing adsorption method
EP0791388B1 (en) VSA adsorption process with energy recovery
US5411578A (en) Vacuum swing adsorption process with mixed repressurization and provide product depressurization
EP0042159B1 (en) Air fractionation by pressure swing adsorption
JP2562326B2 (en) How to get high concentration oxygen from air
KR100254295B1 (en) Pressure swing adsorption process with a single adsorbent bed
US6527831B2 (en) Argon purification process
CN108348839B (en) Method for regenerating adsorbent in combined pressure swing and temperature swing adsorption
JP5577044B2 (en) Air purification method
KR100838166B1 (en) Method And System for Separating Gas
KR970062630A (en) Large capacity vacuum pressure circulation adsorption method and system
JP2002143630A (en) Adsorption system whose air gap volume is small and its application
JPH10310413A (en) Pressure switching-type device for obtaining oxygen from air and operation of the device
JPH10309426A (en) Apparatus for alternating pressure for obtaining oxygen from air and operation method therefor
WO2021207914A1 (en) Method for producing oxygen using pressure swing adsorption technology
JP2601909B2 (en) Pressure swing type gas separation method
KR20090041215A (en) Equipment for producing oxygen and method for controlling the same
JP4895467B2 (en) Oxygen concentration method and oxygen concentration apparatus
JPH10272332A (en) Gas separation device and its operation method
JP2000237522A (en) Gas separation and device therefor
JPH06254333A (en) Pressure swing air separation device and its operation method
JP3727461B2 (en) Gas separation method and apparatus
JP3895037B2 (en) Low pressure oxygen enrichment method
US11638896B2 (en) Method to separate a gas mixture on a large scale using reversible blowers
JPH08294613A (en) Separation method for oxygen gas

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees