JP2599950B2 - Photoconductor structure - Google Patents

Photoconductor structure

Info

Publication number
JP2599950B2
JP2599950B2 JP2774888A JP2774888A JP2599950B2 JP 2599950 B2 JP2599950 B2 JP 2599950B2 JP 2774888 A JP2774888 A JP 2774888A JP 2774888 A JP2774888 A JP 2774888A JP 2599950 B2 JP2599950 B2 JP 2599950B2
Authority
JP
Japan
Prior art keywords
layer
photoreceptor
tio
phthalocyanine
arsenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2774888A
Other languages
Japanese (ja)
Other versions
JPH01204053A (en
Inventor
晋一 野村
洋一 福田
文行 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2774888A priority Critical patent/JP2599950B2/en
Publication of JPH01204053A publication Critical patent/JPH01204053A/en
Application granted granted Critical
Publication of JP2599950B2 publication Critical patent/JP2599950B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0433Photoconductive layers characterised by having two or more layers or characterised by their composite structure all layers being inorganic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は感光体に関し,特に電子写真機(レーザ,LED
等の光プリンタ機等)に用いるのに適した感光体構造物
に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoreceptor, and particularly to an electrophotographic device (laser, LED, etc.).
And a photoreceptor structure suitable for use in an optical printer machine.

[従来の技術] 電子写真機においてレーザダイオードや発光ダイオー
ドからの信号光を受け,電子的潜像に変換するため感光
体が用いられる。発光ダイオード(LED)としては,た
とえばGaAlAsやGaAlPで発光波長660nmのものが用いら
れ,短波長レーザダイオード(LD)としては,たとえば
GaAlAsやGaAlPで発光波長780nmのものが用いられる。感
光体は暗所で良好な絶縁体で,コロナ放電による高い帯
電を維持する必要がある。帯電している感光体表面を光
導電性を利用して放電させ,静電潜像をつくる。この潜
像を電荷を持たせたトナーで現像し,用紙に転写する。
このような感光体は通常アルミニウム等の金属ドラムか
らなる導電性基板上に真空蒸着等によって光導電性の感
光材料を膜状に堆積することによって形成される。感光
体の構造として単層型と積層構造型とが知られている。
第2A図,第2B図とにこれらを模式的に示す。
2. Description of the Related Art In an electrophotographic apparatus, a photoconductor is used for receiving signal light from a laser diode or a light emitting diode and converting the signal light into an electronic latent image. As a light emitting diode (LED), for example, GaAlAs or GaAlP having an emission wavelength of 660 nm is used. As a short wavelength laser diode (LD), for example,
GaAlAs or GaAlP having an emission wavelength of 780 nm is used. The photoreceptor is a good insulator in a dark place and needs to maintain high charge by corona discharge. The charged photoreceptor surface is discharged using photoconductivity to create an electrostatic latent image. This latent image is developed with charged toner and transferred to paper.
Such a photoreceptor is usually formed by depositing a photoconductive photosensitive material in a film form on a conductive substrate made of a metal drum such as aluminum by vacuum evaporation or the like. As the structure of the photoreceptor, a single-layer type and a laminated structure type are known.
These are schematically shown in FIGS. 2A and 2B.

第2A図に示す単層形はセレン(Se),セレン−テルル
合金(Se−Te)又は3セレン化砒素(As2Se3)等の光導
電性感光材料を導電性基板1上に1層12に形成したもの
である。
The single-layer type shown in FIG. 2A is a single layer of a photoconductive photosensitive material such as selenium (Se), selenium-tellurium alloy (Se-Te) or arsenic triselenide (As 2 Se 3 ) on the conductive substrate 1. It is formed in 12.

第2B図に示す積層型構造物は導電性基板1上にSeの第
1層13,つぎにSe−te合金の第2層14を積層させたもの
である。なお,必要に応じ,Te濃度を変化させたSe−Te
合金の第3層をさらに積層させる場合もある。
The laminated structure shown in FIG. 2B is obtained by laminating a first layer 13 of Se and then a second layer 14 of a Se-te alloy on the conductive substrate 1. If necessary, the Se-Te concentration was changed.
In some cases, a third layer of the alloy may be further laminated.

[発明が解決しようとする問題点] 従来の単層型のものは全般に感度が十分長波長域まで
延びない。長波長域の感度を増そうとする帯電電位を高
くできない。また,As2Se3以外の感光材料は耐熱性が低
く高温で結晶化しやすい。従来のSeの第1層,Se−Te合
金の第2層を用いる積層型構造はSe−Te合金の使用によ
って長波長域の感度が向上しているが,このSe−Te合金
の第2層の膜厚制御およびTe濃度のコントロールが大変
難しい。このため歩留まりも低く,従ってコストも高
い。
[Problems to be Solved by the Invention] The conventional single-layer type does not generally have a sufficient sensitivity to a long wavelength range. The charging potential for increasing the sensitivity in the long wavelength region cannot be increased. Photosensitive materials other than As 2 Se 3 have low heat resistance and are easily crystallized at high temperatures. In the conventional laminated structure using the first layer of Se and the second layer of Se-Te alloy, the sensitivity in the long wavelength region is improved by using the Se-Te alloy. It is very difficult to control the film thickness and the Te concentration. Therefore, the yield is low and the cost is high.

本発明は感度が長波長領域まで十分あり,耐熱性が高
く,製造歩留まりの高い感光体構造物を提供しようとす
るものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a photoreceptor structure having sufficient sensitivity up to a long wavelength region, high heat resistance, and a high production yield.

[問題点を解決するための手段] 本発明は基板上に3セレン化砒素(As2Se3)感光層と
チタニルフタロシアニン(TiOフタロシアニン)を添加
した3セレン化砒素(As2Se3)の表面層とを積層した感
光体構造物を提供する。
The present invention is 3 selenide arsenic on a substrate [Means for Solving the Problems] (As 2 Se 3) the surface of the photosensitive layer and the titanylphthalocyanine 3 selenide arsenic was added (TiO phthalocyanine) (As 2 Se 3) A photoreceptor structure in which the layers are laminated.

[作用] 積層構造物としてAs2Se3感光層とTiOフタロシアニン
を添加した3セレン化砒素(As2Se3:TiOフタロシアニ
ン)表面層を用いたため十分長波長まで感度があり,帯
電電位も十分高く,耐熱性も高い。
[Action] As the laminated structure uses an As 2 Se 3 photosensitive layer and an arsenic triselenide (As 2 Se 3 : TiO phthalocyanine) surface layer to which TiO phthalocyanine is added, it has sensitivity up to a sufficiently long wavelength and a sufficiently high charging potential. , High heat resistance.

また,TiOフタロシアニンとAs2Se3の昇華温度はほぼ同
じで制御がしやすい。
The sublimation temperatures of TiO phthalocyanine and As 2 Se 3 are almost the same and are easy to control.

[実施例] 第1図に本発明の実施例による感光体構造物を示す。
アルミニウム等の導電性基板1上に真空蒸着等により作
成した3セレン化砒素(As2Se3)感光層2と,3セレン化
砒素(As2Se3)中にTiOフタロシアニンを添加した増感
用の表面層3を積層させてある。ここで,3セレン化砒素
感光層2は好ましくは1−80μmの厚さ,TiOフタロシア
ニンを添加した3セレン化砒素の増感表面層3は好まし
くは0.05−5μmの厚さで,好ましくはTiOフタロシア
ニン添加量0.5−50重量%を有する。表面層3にTiOフタ
ロシアニンを添加することで長波長域の感度が向上す
る。必要に応じて表面層3内でTiOフタロシアニンの濃
度を変化させても良い。
Embodiment FIG. 1 shows a photoreceptor structure according to an embodiment of the present invention.
Arsenic triselenide (As 2 Se 3 ) photosensitive layer 2 formed on a conductive substrate 1 such as aluminum by vacuum evaporation or the like, and for sensitization in which TiO phthalocyanine is added to arsenic triselenide (As 2 Se 3 ) Are laminated. Here, the arsenic triselenide photosensitive layer 2 preferably has a thickness of 1 to 80 μm, and the sensitized surface layer 3 of arsenic triselenide to which TiO phthalocyanine is added preferably has a thickness of 0.05 to 5 μm, preferably TiO phthalocyanine. It has a loading of 0.5-50% by weight. By adding TiO phthalocyanine to the surface layer 3, the sensitivity in the long wavelength region is improved. If necessary, the concentration of TiO phthalocyanine in the surface layer 3 may be changed.

以下製造方法の例を説明する。 Hereinafter, an example of the manufacturing method will be described.

(1)十分に洗浄したアルミニウムドラムからなる導電
性基板1を真空槽にセットし,1×10-5Torr以下の圧力ま
で真空排気を行う。
(1) The conductive substrate 1 made of a sufficiently cleaned aluminum drum is set in a vacuum chamber and evacuated to a pressure of 1 × 10 −5 Torr or less.

(2)アルミニウムドラムである導電性基板1の温度を
220℃に制御する。
(2) The temperature of the conductive substrate 1 which is an aluminum drum
Control to 220 ° C.

(3)導電性基板1の温度が220℃で一定となったらま
ず第1層目の3セレン化砒素(As2Se3)を50μmの膜厚
まで蒸着する。
(3) When the temperature of the conductive substrate 1 becomes constant at 220 ° C., first, a first layer of arsenic triselenide (As 2 Se 3 ) is deposited to a thickness of 50 μm.

(4)続いて3セレン化砒素(As2Se3)とTiOフタロシ
アニンの蒸発(昇華)速度を制御し3セレン化砒素(As
2Se3)の中にTiOフタロシアニンを約6重量%添加した
混合物の膜を膜厚約2.5μm積層する。
(4) Subsequently, the evaporation (sublimation) rate of arsenic triselenide (As 2 Se 3 ) and TiO phthalocyanine is controlled to control arsenic triselenide (As
A film of a mixture obtained by adding about 6% by weight of TiO phthalocyanine to 2 Se 3 ) is laminated to a thickness of about 2.5 μm.

このようにして得られた感光体の特性を,帯電電位,
暗減衰率,650nm,800nmでの光感度(発光ダイオード(LE
D)の発光波長660nmとレーザダイオード(LD)の発光波
長780nmとを含む波長領域を考慮した)について調べ
た。帯電電位はドラム上の感光体を帯電させ,リークに
よってそれ以上電位が上らなくなる感光体の表面電位に
よって測定し,暗減衰率は感光体に実用表面電荷を載せ
暗所で10秒後電位がどれだけ変化したかを測定し,光感
度は同様に実用表面電荷を載せた感光体に光を照射し,
表面電位が1/2に減じるまでに照射した光の総量によっ
て測定した。
The characteristics of the photoreceptor obtained in this way are determined by the charging potential,
Dark decay rate, photosensitivity at 650 nm and 800 nm (light emitting diode (LE
The wavelength region including the emission wavelength of 660 nm of D) and the emission wavelength of 780 nm of the laser diode (LD) was considered). The charging potential is measured by charging the photosensitive member on the drum and measuring the surface potential of the photosensitive member at which the potential no longer rises due to leakage. The amount of change was measured, and the light sensitivity was similarly measured by irradiating a photoreceptor carrying a practical surface charge with light,
It was measured by the total amount of light irradiated until the surface potential was reduced by half.

得られたデータを以下に示す。 The data obtained is shown below.

帯電電位 920 V 暗減衰率[DDR(10sec)] 0.87 光感度 650nm 0.95μJ/cm2 800nm 1.1 μJ/cm2 この感光体をレーザダイオードを用いたプリンタに搭
載したところたいへん良好な画像が得られた。
Charge potential 920 V Dark decay rate [DDR (10 sec)] 0.87 Photosensitivity 650 nm 0.95 μJ / cm 2 800 nm 1.1 μJ / cm 2 When this photoconductor was mounted on a printer using a laser diode, a very good image was obtained. .

なお,基板加熱温度は220℃でなくもっと低温にして
も良い。
The substrate heating temperature may be lower than 220 ° C.

表面層はあまり厚くするとAs2Se3層への入力光を減少
させるので5μm以下が好ましい。
When the surface layer is too thick, the input light to the As 2 Se 3 layer is reduced, so that the thickness is preferably 5 μm or less.

[発明の効果] 650nm以上の波長の光に対しても十分な光感度が得ら
れ,赤色発光ダイオードを用いたLEDプリンタは勿論赤
外半導体レーザダイオードを用いたLDプリンタにも使用
可能な感光体構造物が得られる。
[Effect of the Invention] A photoreceptor that has sufficient light sensitivity to light having a wavelength of 650 nm or more and can be used not only in an LED printer using a red light emitting diode but also in an LD printer using an infrared semiconductor laser diode A structure is obtained.

3セレン化砒素(As2Se3)が主材料である為,耐熱性
に優れた感光体構造物となる。
Since arsenic triselenide (As 2 Se 3 ) is the main material, a photosensitive member structure having excellent heat resistance is obtained.

TiOフタロシアニンの昇華温度は230℃付近であり,As2
Se3の昇華温度とほぼ同じであるので,TiOフタロシアニ
ンを添加したAs2Se3の表面層を作成する際の制御性がた
いへん良い。このため高い製造歩留まりを得られる。
The sublimation temperature of TiO phthalocyanine is around 230 ° C and As 2
Since the sublimation temperature of Se 3 to be approximately the same, it is very good controllability in creating a surface layer of As 2 Se 3 with the addition of TiO phthalocyanine. Therefore, a high production yield can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の1実施例による感光体構造物を模式的
に示す断面図,第2A図と第2B図は従来の感光体を模式的
に示す断面図である。 符号の説明 1……基板 2……3セレン化砒素(As2Se2)感光層 3……TiOフタロシアニン添加3セレン化砒素(As2Se3:
TiOフタロシアニン)の表面層
FIG. 1 is a cross-sectional view schematically showing a photoreceptor structure according to one embodiment of the present invention, and FIGS. 2A and 2B are cross-sectional views schematically showing a conventional photoreceptor. DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... 3 Arsenic selenide (As 2 Se 2 ) photosensitive layer 3 ... Arsenic triselenide (As 2 Se 3 ) added with TiO phthalocyanine:
TiO phthalocyanine) surface layer

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板と基板上に形成した3セレン化砒素感
光層と,3セレン化砒素感光層の上に形成したTiOフタロ
シアニンを添加した3セレン化砒素の表面層とを含む感
光体構造物。
1. A photoreceptor structure comprising: a substrate; an arsenic triselenide photosensitive layer formed on the substrate; and a surface layer of arsenic triselenide doped with TiO phthalocyanine formed on the arsenic triselenide photosensitive layer. .
JP2774888A 1988-02-10 1988-02-10 Photoconductor structure Expired - Lifetime JP2599950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2774888A JP2599950B2 (en) 1988-02-10 1988-02-10 Photoconductor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2774888A JP2599950B2 (en) 1988-02-10 1988-02-10 Photoconductor structure

Publications (2)

Publication Number Publication Date
JPH01204053A JPH01204053A (en) 1989-08-16
JP2599950B2 true JP2599950B2 (en) 1997-04-16

Family

ID=12229653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2774888A Expired - Lifetime JP2599950B2 (en) 1988-02-10 1988-02-10 Photoconductor structure

Country Status (1)

Country Link
JP (1) JP2599950B2 (en)

Also Published As

Publication number Publication date
JPH01204053A (en) 1989-08-16

Similar Documents

Publication Publication Date Title
CA1075068A (en) Imaging system
US4379821A (en) Electrophotographic recording material with As2 Se3-x Tex charge generating layer
JP2599950B2 (en) Photoconductor structure
US3498835A (en) Method for making xerographic plates
US4877700A (en) Layered electrophotographic recording material containing selenium, arsenic and bismuth or tellurium
US4439508A (en) Electrophotographic recording material comprises arsenic, selenium and tellurium
US4837099A (en) Multilayer photoconductor for electrophotography
JPH0480388B2 (en)
US4717635A (en) Electrophotographic recording material
JPH01283569A (en) Structure of photosensitive body
JPS58123542A (en) Electrophotographic receptor
JPS61256353A (en) Electrophotographic selenium photosensitive body
US4265989A (en) Photosensitive member for electrophotography
JPH0236938B2 (en)
US4292385A (en) Bi-modal photoreceptor and method
JPS5915249A (en) Electrophotographic receptor
JPS5835542A (en) Electrophotographic receptor
JPH0629971B2 (en) Electrophotographic copying method
JPS5967539A (en) Electrophotographic receptor
JPS647381B2 (en)
JPS6064357A (en) Electrophotographic sensitive body made of selenium
JPS58115443A (en) Photosensitive body
JPS5968752A (en) Electrophotographic selenium receptor
JPS63147169A (en) Recording material for xelography
JPS61112152A (en) Electrophotographic sensitive body