JP2590283B2 - Coating layer formation method - Google Patents

Coating layer formation method

Info

Publication number
JP2590283B2
JP2590283B2 JP4207290A JP4207290A JP2590283B2 JP 2590283 B2 JP2590283 B2 JP 2590283B2 JP 4207290 A JP4207290 A JP 4207290A JP 4207290 A JP4207290 A JP 4207290A JP 2590283 B2 JP2590283 B2 JP 2590283B2
Authority
JP
Japan
Prior art keywords
hole
coating layer
magnesium hydroxide
sol
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4207290A
Other languages
Japanese (ja)
Other versions
JPH03245874A (en
Inventor
和民 川村
洋一 西岡
充郎 見田
康博 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP4207290A priority Critical patent/JP2590283B2/en
Publication of JPH03245874A publication Critical patent/JPH03245874A/en
Application granted granted Critical
Publication of JP2590283B2 publication Critical patent/JP2590283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、被覆層の形成方法に関するものであり、さ
らに詳しくは、電子増倍機能板、電子増倍素子の電極な
どに用いられる貫通孔を有する材料の上記貫通孔の内壁
表面に被覆層を形成する方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for forming a coating layer, and more specifically, to a through hole used for an electron multiplying function plate, an electrode of an electron multiplying element, and the like. And a method for forming a coating layer on the inner wall surface of the through hole of a material having the following.

[従来の技術] 近年、電子ビームを折返し平面形に偏向制御すること
による薄平面形画像表示装置が検討されている。上記画
像表示装置においては、電子ビームの電流値及び電子の
走行速度を極端に低減しなければならず、必要とされる
輝度を上記条件下にて実現するために電子増倍機能板が
組込まれていることが一般的である。
[Prior Art] In recent years, a thin-plane image display device by controlling the deflection of an electron beam into a folded plane has been studied. In the above image display device, an electron multiplying function plate is incorporated in order to realize the required brightness under the above conditions, in which the current value of the electron beam and the traveling speed of the electrons must be extremely reduced. That is common.

第2図は、従来の電子増倍機能板を画像表示装置に使
用する例を示す構成図である。第2図において、電子増
倍機能板21は、画像表示装置の前面基板22と冷陰極装置
23との間に配置されている。上記電子増倍機能板21は、
ランダムな大きさで且つランダムな形状の小室を連通さ
せて構成された複数の貫通孔24をランダムな位置に有し
ている。上記貫通孔24は、少なくともその表面が二次電
子増倍特性を有する物質からなっていることが必要であ
る。上記二次電子増倍性物質としては、通常、酸化マグ
ネシウム(MgO)、酸化セシウム(Cs2O)などが使用さ
れる。
FIG. 2 is a configuration diagram showing an example in which a conventional electron multiplier plate is used for an image display device. In FIG. 2, an electron multiplying function plate 21 includes a front substrate 22 of an image display device and a cold cathode device.
It is located between 23 and. The electron multiplying function plate 21 is
A plurality of through holes 24, which are formed by communicating small chambers having a random size and a random shape, are provided at random positions. It is necessary that at least the surface of the through hole 24 is made of a material having secondary electron multiplication characteristics. As the secondary electron multiplying substance, usually, magnesium oxide (MgO), cesium oxide (Cs 2 O) or the like is used.

第2図の画像表示装置において上記冷陰極装置23から
電子ビームが照射されると、電子ビームは上記電子増倍
機能板21の貫通孔24の1つの小室の内壁表面に衝突し、
該内壁の二次電子増倍性物質から二次電子が放出され
る。上記二次電子は、上記電子増倍機能板21の上面に設
けられている一方の電極25及び下面に設けられているも
う一方の電極26に印加されている電圧により加速され、
貫通孔24を構成する別の小室に入射する。そして、最初
の小室と同様の作用によりさらに増倍された二次電子が
放出される。上記作用の繰返しにより電子増倍された電
子ビームは、前面基板22の冷陰極装置23に対向する面に
設けられた透明電極27上にストライプ状に形成されてい
る蛍光体28に入射し、該蛍光体28を励起させて、蛍光を
発生させる。
When the electron beam is irradiated from the cold cathode device 23 in the image display device of FIG. 2, the electron beam collides with the inner wall surface of one small chamber of the through hole 24 of the electron multiplying function plate 21,
Secondary electrons are emitted from the secondary electron multiplying substance on the inner wall. The secondary electrons are accelerated by a voltage applied to one electrode 25 provided on the upper surface of the electron multiplier plate 21 and the other electrode 26 provided on the lower surface,
The light enters another small chamber that forms the through hole 24. Then, secondary electrons further multiplied by the same action as the first small chamber are emitted. The electron beam multiplied by the repetition of the above operation is incident on a phosphor 28 formed in a stripe shape on a transparent electrode 27 provided on a surface of the front substrate 22 facing the cold cathode device 23, and The phosphor 28 is excited to generate fluorescence.

従来、上記電子増倍機能板21は、二次電子増倍性物
質、例えば酸化マグネシウム粉末に発泡性材料を混合し
焼成するか、多孔性材料に二次電子増倍性物質を蒸着ま
たはスプレーして該多孔性材料の貫通孔内壁に上記二次
電子増倍性物質の被覆層を形成することにより製造され
ていた。
Conventionally, the electron multiplying function plate 21 is formed by mixing a foaming material with a secondary electron multiplying substance, for example, magnesium oxide powder and baking it, or depositing or spraying a secondary electron multiplying substance on a porous material. Thus, it has been manufactured by forming a coating layer of the secondary electron multiplying substance on the inner wall of the through hole of the porous material.

[発明が解決しようとする課題] しかしながら、多孔性材料に二次電子増倍性物質を蒸
着またはスプレーして上記二次電子増倍性物質の被覆層
を形成することにより上記従来の電子増倍機能板を製造
する場合には、上記二次電子増倍性物質が上記多孔質材
料の貫通孔内部に侵入しにくいために、上記貫通孔内壁
表面が上記二次電子増倍性物質によって十分に被覆され
ないことがある。
[Problems to be Solved by the Invention] However, the conventional electron multiplication is performed by depositing or spraying a secondary electron multiplier on a porous material to form a coating layer of the secondary electron multiplier. In the case of manufacturing a functional plate, since the secondary electron multiplying substance does not easily enter the inside of the through hole of the porous material, the inner wall surface of the through hole is sufficiently exposed to the secondary electron multiplying substance. May not be coated.

そこで、本発明は上記したような従来技術の課題を解
決するためになされたもので、その目的とするところ
は、貫通孔を有する材料の上記貫通孔の内壁表面に被覆
層を形成するための改良された方法を提供することにあ
る。
Therefore, the present invention has been made in order to solve the problems of the prior art as described above, and an object thereof is to form a coating layer on the inner wall surface of the through hole of a material having a through hole. It is to provide an improved method.

[課題を解決するための手段] 本発明に係わる被覆層形成方法は、貫通孔を有する材
料を水酸化マグネシウム−ゾルに浸漬する工程と、上記
工程にて水酸化マグネシウム−ゾルがコートされた上記
材料を加熱処理して少なくとも上記貫通孔の内壁表面に
酸化マグネシウムの被覆層を形成する工程とからなるこ
とを特徴としている。
[Means for Solving the Problems] The method for forming a coating layer according to the present invention includes a step of immersing a material having a through-hole in a magnesium hydroxide-sol, and a step of coating the magnesium hydroxide-sol in the above step. Heat treating the material to form a coating layer of magnesium oxide on at least the inner wall surface of the through hole.

[作用] 本発明の被覆層形成方法においては、先ず、貫通孔を
有する材料を水酸化マグネシウム−ゾルに浸漬する。上
記操作により、水酸化マグネシウム−ゾルが上記材料の
貫通孔の内部に侵入し、該貫通孔の内壁表面を含む上記
材料の表面全体に、上記水酸化マグネシウム−ゾルのコ
ーティング層が形成される。
[Operation] In the coating layer forming method of the present invention, first, a material having a through hole is immersed in a magnesium hydroxide-sol. By the above operation, the magnesium hydroxide-sol penetrates into the through hole of the material, and the coating layer of the magnesium hydroxide-sol is formed on the entire surface of the material including the inner wall surface of the through hole.

次に、上記コーティング層が形成された上記貫通孔を
有する材料を加熱処理することにより、上記水酸化マグ
ネシウム−ゾルの溶媒が除去されるとともに、水酸化マ
グネシウムが熱分解して酸化マグネシウムが生成する。
Next, by heat-treating the material having the through-hole on which the coating layer is formed, the solvent of the magnesium hydroxide-sol is removed, and the magnesium hydroxide is thermally decomposed to generate magnesium oxide. .

上記反応は、上記コーテイング層が形成されている上
記貫通孔を有する材料の表面全体にて起きるので、上記
貫通孔の内壁表面にも酸化マグネシウムの被覆層が形成
される。
Since the reaction occurs on the entire surface of the material having the through hole on which the coating layer is formed, a coating layer of magnesium oxide is also formed on the inner wall surface of the through hole.

[実施例] 以下に本発明の実施例を、必要に応じて第1図を参照
しながら説明する。
Example An example of the present invention will be described below with reference to FIG. 1 as necessary.

実施例1 第1図は、本発明の方法で得られた電子増倍機能板の
一例を構成を示す図である。第1図の電子増倍機能板
は、厚さ約1mmのガラス基板1から形成されており、該
ガラス基板1は直径約10μmの細孔が連通して形成して
いる貫通孔2を有している。
Example 1 FIG. 1 is a view showing the structure of an example of an electron multiplier plate obtained by the method of the present invention. The electron multiplying plate shown in FIG. 1 is formed from a glass substrate 1 having a thickness of about 1 mm, and the glass substrate 1 has a through-hole 2 formed by communicating pores having a diameter of about 10 μm. ing.

本実施例では先ず、マグネシウムイソプロポキシド2
8.2gをイソプロピルアルコール120gに混合し、室温で1
時間撹拌して、マグネシウムイソプロポキシドのイソプ
ロピルアルコール溶液を得た。次に、上記溶液に3.6gの
水を加えて、1時間撹拌して加水分解し、イソプロピル
アルコールを溶媒とする水酸化マグネシウム−ゾルを得
た。
In this example, first, magnesium isopropoxide 2
8.2 g is mixed with 120 g of isopropyl alcohol,
After stirring for an hour, an isopropyl alcohol solution of magnesium isopropoxide was obtained. Next, 3.6 g of water was added to the above solution, and the mixture was stirred for 1 hour and hydrolyzed to obtain a magnesium hydroxide sol using isopropyl alcohol as a solvent.

次に、上記ガラス基板1を上記水酸化マグネシウム−
ゾルに約1分間浸漬し、上記水酸化マグネシウム−ゾル
をガラス基板1の貫通孔2に侵入させ、貫通孔2の内壁
表面に水酸化マグネシウム−ゾルのコーテイング層を形
成した。
Next, the glass substrate 1 was treated with the magnesium hydroxide-
The magnesium hydroxide-sol was immersed in the sol for about 1 minute to penetrate the magnesium hydroxide-sol into the through-hole 2 of the glass substrate 1, and a coating layer of magnesium hydroxide-sol was formed on the inner wall surface of the through-hole 2.

次に、上記コーティング層の形成されたガラス基板1
を空気中で、500℃の温度にて10分間熱処理し、上記コ
ーティング層を形成している水酸化マグネシウム−ゾル
の溶媒を除去するとともに、水酸化マグネシウムを熱分
解した。
Next, the glass substrate 1 on which the coating layer is formed
Was heat-treated in air at a temperature of 500 ° C. for 10 minutes to remove the solvent of the magnesium hydroxide-sol forming the coating layer and thermally decompose the magnesium hydroxide.

上述の操作により、貫通孔2の内壁表面に酸化マグネ
シウムの被覆層3が0.05μmの厚さにて形成されている
ガラス基板1を電子増倍機能板として得た。上記被覆層
3の厚さは0.05μmであるが、上述の浸漬操作及び熱処
理操作をもう一度繰返す(合計2サイクル行なう)こと
により、厚さ0.1μmの被覆層が得られる。さらに、上
述の操作を繰返すことにより、厚さ0.1μm以上の被覆
層を形成することも可能である。
By the above operation, the glass substrate 1 in which the coating layer 3 of magnesium oxide was formed on the inner wall surface of the through-hole 2 with a thickness of 0.05 μm was obtained as an electron multiplying function plate. Although the thickness of the coating layer 3 is 0.05 μm, the coating layer having a thickness of 0.1 μm can be obtained by repeating the above immersion operation and heat treatment operation once more (total of two cycles). Furthermore, a coating layer having a thickness of 0.1 μm or more can be formed by repeating the above operation.

実施例2 実施例1で使用したガラス基板の代りに、貫通孔の平
均孔径14μm、厚さ1mmのアルミナシリケート基板を用
いた以外は、実施例1と同様にして、上記貫通孔の内壁
表面に厚さ0.5μmの酸化マグネシウムの被覆層が形成
されている電子増倍機能板を得た。
Example 2 The same procedure as in Example 1 was repeated except that the glass substrate used in Example 1 was replaced with an alumina silicate substrate having an average diameter of through-holes of 14 μm and a thickness of 1 mm. An electron multiplier plate having a 0.5 μm-thick magnesium oxide coating layer was obtained.

本発明に使用する水酸化マグネシウム−ゾルは、貫通
孔を有する材料の貫通孔内部に侵入する作用を有するも
のであればよく、上述のアルコキシドの加水分解により
得られるものに限定されるものではない。尚、本明細書
において、上記水酸化マグネシウム−ゾルとは、水酸化
マグネシウムが溶媒に溶解または均一に分散している状
態のものを意味する。
The magnesium hydroxide sol used in the present invention is not limited to the one obtained by hydrolysis of the above-mentioned alkoxide as long as it has an action of penetrating the inside of the through-hole of the material having the through-hole. . In the present specification, the above-mentioned magnesium hydroxide-sol means a state in which magnesium hydroxide is dissolved or uniformly dispersed in a solvent.

本発明に使用できる貫通孔を有する材料としては、該
貫通孔の平均孔径が数μm〜数百μmの範囲にあり、該
貫通孔の専有体積率が20〜80体積%の材料が好ましい。
上記材料として、例えば、ガス、液体等の濾過材として
公知の多孔質ガラス基板もしくは多孔質セラミックス基
板、または、金属メッシュ、電子増倍素子の電極に使用
される貫通孔の形成されている金属板等を挙げることが
できる。
As a material having a through hole that can be used in the present invention, a material having an average hole diameter of several μm to several hundred μm in which the exclusive volume ratio of the through hole is 20 to 80% by volume is preferable.
As the material, for example, a known porous glass substrate or porous ceramics substrate as a filtering material for gas, liquid, or the like, or a metal mesh, a metal plate provided with a through hole used for an electrode of an electron multiplier element And the like.

本発明において、上記熱処理の温度及び時間は、貫通
孔を有する材料の材質及び形成する被覆層の厚さにより
任意に設定することができるが、通常は、200〜800℃の
温度範囲にて1〜120分間行なう。
In the present invention, the temperature and time of the heat treatment can be arbitrarily set according to the material of the material having the through-hole and the thickness of the coating layer to be formed. Perform for ~ 120 minutes.

[発明の効果] 以上説明したように、本発明によれば、貫通孔を有す
る材料の上記貫通孔の内壁表面に酸化マグネシウムの被
覆層を有利に形成することができる。上記被覆層を形成
した材料は、電子増倍機能板、電子増倍素子の電極など
に好適に使用することができる。
[Effects of the Invention] As described above, according to the present invention, a coating layer of magnesium oxide can be advantageously formed on the inner wall surface of a through-hole made of a material having a through-hole. The material on which the coating layer is formed can be suitably used for an electron multiplication function plate, an electrode of an electron multiplication element, and the like.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例で得られた電子増倍機能板の
構成を示す断面図、 第2図は従来の電子増倍機能板の使用例を示す構成図で
ある。 1……ガラス基板、 2……貫通孔、 3……酸化マグネシウムの被覆層、 21……電子増倍機能板、 22……前面基板 23……冷陰極装置、 24……貫通孔。
FIG. 1 is a cross-sectional view showing the configuration of an electron multiplying plate obtained in one embodiment of the present invention, and FIG. 2 is a configuration diagram showing an example of use of a conventional electron multiplying plate. DESCRIPTION OF SYMBOLS 1 ... Glass substrate, 2 ... Through-hole, 3 ... Magnesium oxide coating layer, 21 ... Electron multiplication function plate, 22 ... Front substrate 23 ... Cold cathode device, 24 ... Through-hole.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】貫通孔を有する材料を水酸化マグネシウム
−ゾルに浸漬する工程と、 上記工程にて水酸化マグネシウム−ゾルがコートされた
上記材料を加熱処理して少なくとも上記貫通孔の内壁表
面に酸化マグネシウムの被覆層を形成する工程とからな
ることを特徴とする被覆層形成方法。
1. A step of immersing a material having a through-hole in a magnesium hydroxide sol; and heat-treating the material coated with the magnesium hydroxide-sol in the above-mentioned step to at least apply a heat treatment to the inner wall surface of the through-hole. Forming a coating layer of magnesium oxide.
JP4207290A 1990-02-22 1990-02-22 Coating layer formation method Expired - Fee Related JP2590283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4207290A JP2590283B2 (en) 1990-02-22 1990-02-22 Coating layer formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4207290A JP2590283B2 (en) 1990-02-22 1990-02-22 Coating layer formation method

Publications (2)

Publication Number Publication Date
JPH03245874A JPH03245874A (en) 1991-11-01
JP2590283B2 true JP2590283B2 (en) 1997-03-12

Family

ID=12625867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4207290A Expired - Fee Related JP2590283B2 (en) 1990-02-22 1990-02-22 Coating layer formation method

Country Status (1)

Country Link
JP (1) JP2590283B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8094297B2 (en) 2005-07-07 2012-01-10 Kabushiki Kaisha Toshiba Laser-based maintenance apparatus for inspecting flaws

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0697013B1 (en) * 1994-02-28 1999-08-18 Koninklijke Philips Electronics N.V. Coating solution suitable for the manufacture of a magnesium-oxide layer and a method of manufacturing such a layer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8094297B2 (en) 2005-07-07 2012-01-10 Kabushiki Kaisha Toshiba Laser-based maintenance apparatus for inspecting flaws
US8115936B2 (en) 2005-07-07 2012-02-14 Kabushiki Kaisha Toshiba Laser ultrasonic detection device including a laser oscillating device which includes a seed laser oscillating element
US8248595B2 (en) 2005-07-07 2012-08-21 Kabushiki Kaisha Toshiba Laser-based maintenance apparatus for inspecting flaws based on a generated surface wave
US8497986B2 (en) 2005-07-07 2013-07-30 Kabushiki Kaisha Toshiba Laser-based maintenance apparatus using ultrasonic wave detection for flaw analysis and repair

Also Published As

Publication number Publication date
JPH03245874A (en) 1991-11-01

Similar Documents

Publication Publication Date Title
US6818114B2 (en) Methods using electrophoretically deposited patternable material
JP3675326B2 (en) Multi-channel plate manufacturing method
KR100221294B1 (en) Electron emitting device and manufacturing method of electron source with this device and image forming device
US5503582A (en) Method for forming spacers for display devices employing reduced pressures
US6187604B1 (en) Method of making field emitters using porous silicon
KR20060019849A (en) Electron emission device and manufacturing method thereof
JP2590283B2 (en) Coating layer formation method
TW200847226A (en) Surface treatment method for phosphor and method for manufacturing flat display
KR910002969B1 (en) Electron tube cathode
KR19980701858A (en) Glass substrate manufacturing method and glass substrate for electronic display
US6688934B2 (en) Spacers, display devices containing the same, and methods for making and using the same
JP4075647B2 (en) Method for manufacturing protective film for FPD
US2403225A (en) Method of manufacturing electrode foundation structures
JPS61269828A (en) Manufacture of electron tube cathode
US2188940A (en) Electron discharge device
US3819409A (en) Method of manufacturing a display screen
JP3965298B2 (en) LIGHT EMITTING STRUCTURE, LIGHT EMITTING METHOD, AND LIGHTING BODY
JPH0660800A (en) Micro channel plate and its manufacture
EP0232941A2 (en) Sol-gel process for producing luminescent thin film, and film so produced, and devices utilizing same
JP2001351510A (en) Anode substrate for luminescent element and electroluminescent element
US1758710A (en) Electron-discharge device
JPS61208721A (en) Manufacture of cathode for electron tube
US2505909A (en) Cathode-ray tube with oxide coated cathode
JP2000011928A (en) Electrode structure of fluorescent character display tube having solid grid and its manufacture
US2428289A (en) Electron tube coating

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees