JP2586053B2 - 電界効果トランジスタ - Google Patents

電界効果トランジスタ

Info

Publication number
JP2586053B2
JP2586053B2 JP62242143A JP24214387A JP2586053B2 JP 2586053 B2 JP2586053 B2 JP 2586053B2 JP 62242143 A JP62242143 A JP 62242143A JP 24214387 A JP24214387 A JP 24214387A JP 2586053 B2 JP2586053 B2 JP 2586053B2
Authority
JP
Japan
Prior art keywords
layer
effect transistor
field effect
doped
planar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62242143A
Other languages
English (en)
Other versions
JPS6482677A (en
Inventor
広信 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP62242143A priority Critical patent/JP2586053B2/ja
Priority to US07/248,545 priority patent/US4942438A/en
Priority to EP88308896A priority patent/EP0309290A1/en
Publication of JPS6482677A publication Critical patent/JPS6482677A/ja
Application granted granted Critical
Publication of JP2586053B2 publication Critical patent/JP2586053B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • H01L29/365Planar doping, e.g. atomic-plane doping, delta-doping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/7725Field effect transistors with delta-doped channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) GaAsFETは、キャリアの移動度、飽和速度が大きく、
高周波素子として広く用いられまた高速IC素子としても
実用化を目ざし、研究開発が行なわれている。
さらに素子を高周波化、高速化するために素子の微細
化、チャネル層の薄膜化による相互コンダクタンスの増
大、ゲートソース耐圧、及び電流駆動能力の向上をはか
ることが要求されている。これを解決する構造として第
5図に示すように一原子層だけ2次元的にイオン化ドナ
が存在するプレーナドープ層10を有するFETがシューベ
ルトらによって1986年にアイ・イー・イーエレクトロン
デバイス第33巻625ページ(IEEE、ED−33、625、1986)
に提案された。
ここで7はゲート電極、8はソース電極、9はドレイ
ン電極、11はP−GaAsバッファ層、12は高抵抗基板であ
る。このときのバンドダイアグラムを第6図に示す。こ
こでは1は伝導帯、5は価電子帯、6はキャリア電子、
7はゲート電極、4はイオン化ドナーである。キャリア
電子6はイオン化ドナー4の近房に局在し、ゲート電極
7付近の電界強度は均一ドープに比較して十分小さい。
これによりゲート耐圧を保ちながらチャネルの薄膜化が
可能となった。第7図は第6図のV字型ポテンシャル井
戸部分を拡大した図で電子は量子化されたエネルギー準
位E0,E1,E2……,2をもちその電子の存在確率Ψ・Ψ*
3は空間的にイオン化ドナー4の同じ位置にピークをも
つ、その分布を第4図に示す横軸はチャネルの深さ、縦
軸はキャリア電子濃度及びイオン化ドナー濃度13、第4
図からわかるようにイオン化ドナーとキャリア電子の分
布が同じ位置にあるのでイオン散乱による散乱が大きく
なり低電界での移動度は低下する。ところでチャネル長
が1μm以下の微細なFETの相互コンダクタンスは、電
子の飽和速度Vsとチャネル深さで決まるため、イオン化
不純物散乱による低電界での移動度の低下は素子特性上
は問題ないと考えられていた。
(発明が解決しようとする問題点) しかしながら低電界での移動度が低いと、素子の寄性
抵抗を増大させるという問題がある。
また、イオン散乱が大きくなるとオーバーシュート効
果が小さくなり、微細化しても特性の大きな向上は望め
ないという問題がある。これを解決する一つの方法とし
てヘテロ接合を用いて原子層ドーピング層と電子チャネ
ルを分離する構造がプルークによりジャーナル オブ
クリスタルグーロース81巻1987年304ページ(J.Crystal
Growth81(1987)P304)に提案された。しかしヘテロ
接合を用いた場合ヘテロ接合デバイス一般に存在する深
い準位により素子特性が不安定になる問題が生じる。
本発明の目的はプレーナドープFETにおける低電界で
の移動度をヘテロ接合を使うことなしに向上し電子の散
乱の少ない速度オーバーシュート効果を利用した安定な
超高速、高周波デバイスを提供するものである。
(問題点を解決するための手段) 本発明によれば電界効果トランジスタのチャネル層
に、不純物を2次元平面状にドープしたプレーナドープ
層を電子の平均自由行程以内の間隔で2層設けることを
特徴とする電界効果トランジスタが得られる。
(作用) 第2図を参照しつつ本発明の作用を記述する。第2図
は本発明のFETのチャネル部分を拡大したエネルギーバ
ンド図である。本発明では、プレーナドープ層を電子の
平均自由行程以内の間隔で2層設けたので、第2図に示
すように量子化されたエネルギー準位がする。第2図に
おいて1は伝導帯、2は量子化されたエネルギー準位
で、大部分のキャリア電子6は基底状態E0に存在し、そ
の存在確率(Ψ・Ψ*)3はプレーナドープ層間隔(Δ
x)14の中心に存在しその分布は第3図のようになる。
このとき大部分のキャリア電子はイオン化ドナーと空間
的に分離されているためクーロン散乱の影響が小さくな
り、低電界での移動度も低下しない。
(実施例1) FETは分子線エピタキシ(MBE)法により半絶縁性GaAs
基板111上にP−GaAs(1×10-14cm-3)層112を0.8μm
成長した後、Gaのフラックスを止め、Siフラックスを面
密度にして1×1012cm-2なる時間照射し第1のプレーナ
ドープ層113を形成する。その後GaAs層114を70Å成長
し、再びGaフラックスを止め、Siフラックスを面密度に
して1×1012cm-2になる時間照射し第2のプレーナドー
プ層115を形成した後、GaAsを300Å成長した、その後ゲ
ート長0.5μmのAlゲート7を形成し、オーミック電極
8、9はAuGe/Niを450℃でアロイして形成した。このと
きの移動度はホール測定の結果4000cm2/V・secと従来値
に比較して大きく向上した。またFETのしゃ断周波数も
同一形状の従来のGaAsMESFETの値20GHzから35GHzとヘテ
ロ接合高移動度トランジスタの値に近づいた。
(実施例2) FETの能動層形成手段として碓井氏らがジャパン・ジ
ャーナル・オブ・アプライト・フィジクス・レター第25
巻212ページ(J.A.P.L.25L212(1986))に発表してい
る原子層制御エピタキシー(ALE)法で一原子層づつ成
長を行なった。デバイス構造は半絶縁性GaAs基板上に通
常のVPEにより0.8μmの高抵抗GsAsを成長した後ALEでG
aAs層を35層成長した後Seを面密度にして1×1012cm-2
−原子層成長した。そして再びGaAs層を25層成長した後
Seを面密度にして1×1012cm-2表面に吸着させその後Ga
Asを110層成長させ実施例1と同様のオーミック電極、
ゲート電極を形成した。このときも移動度は4000cm2/V
・secと従来値に比較して大きく向上しかつ、2次元的
にドーピングした原子層の間隔が原子レベルの厚さで制
御可能となり基板面内の均一性、また再現性も大幅に向
上した。このようにして作製したFETのしゃ断周波数も
従来の同一形状のGaAsMESFETの値20GHzから35GHzまでの
びたものが再現性よく得られた。
本発明は、InP系FETおよびInGaAs系FETにも適用でき
る。
(発明の効果) 以上説明したように電界効果トランジスタのチャネル
層を不純物を2次元の薄い面状に電子の平均自由行程以
内の間隔で2層用いることにより、不純物イオンによる
散乱が大幅に低減され微細素子において電子の飽和速度
のオーバーシュート効果が現われ、素子の高速性は大き
く向上した。
【図面の簡単な説明】
第1図は本発明の一実施例を示す模式的断面図、第2図
は本発明により形成したチャネル層のバンドダイアグラ
ム、第3図は本発明により形成したチャネル層のキャリ
ア電子濃度とイオン化ドナー濃度の深さ方向の分布図、
第4図は従来用いられたチャネル層のキャリア電子濃度
とイオン化ドナー濃度の深さ方向の分布図、第5図はプ
レーナドープFETの構造断面図、第6図、第7図は従来
のプレーナドープFETのバンドダイアグラム、である。
ここで 113……第1のプレーナドープ層 115……第2のプレーナドープ層 1……伝導帯 2……量子化されたエネルギー準位 3……電子の存在確率(Ψ・Ψ*) 4……イオン化ドナー 5……価電子帯 6……キャリア電子 7……ゲート電極 8……ソース電極 9……ドレイン電極 10……プレーナドープ層 11……P−バッファ層 12……高抵抗基板 13……イオン化ドナー濃度 14……イオン化ドナー面間隔 15……キャリア電子濃度 である。

Claims (1)

    (57)【特許請求の範囲】
  1. 【請求項1】電界効果トランジスタのチャネル層内に、
    不純物を2次元平面状にドープしたプレーナドープ層を
    電子の平均自由行程以内の間隔で2層設け、この2層の
    伝導型が等しいことを特徴とする電界効果トランジス
    タ。
JP62242143A 1987-09-25 1987-09-25 電界効果トランジスタ Expired - Lifetime JP2586053B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62242143A JP2586053B2 (ja) 1987-09-25 1987-09-25 電界効果トランジスタ
US07/248,545 US4942438A (en) 1987-09-25 1988-09-23 Compound semiconductor field-effect transistor
EP88308896A EP0309290A1 (en) 1987-09-25 1988-09-26 Compound semiconductor field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62242143A JP2586053B2 (ja) 1987-09-25 1987-09-25 電界効果トランジスタ

Publications (2)

Publication Number Publication Date
JPS6482677A JPS6482677A (en) 1989-03-28
JP2586053B2 true JP2586053B2 (ja) 1997-02-26

Family

ID=17084955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62242143A Expired - Lifetime JP2586053B2 (ja) 1987-09-25 1987-09-25 電界効果トランジスタ

Country Status (3)

Country Link
US (1) US4942438A (ja)
EP (1) EP0309290A1 (ja)
JP (1) JP2586053B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5497015A (en) * 1988-11-12 1996-03-05 Sony Corporation Quantum interference transistor
JPH02299273A (ja) * 1989-05-15 1990-12-11 Toshiba Corp 電界効果トランジスタ
US5013685A (en) * 1989-11-02 1991-05-07 At&T Bell Laboratories Method of making a non-alloyed ohmic contact to III-V semiconductors-on-silicon
US5081511A (en) * 1990-09-06 1992-01-14 Motorola, Inc. Heterojunction field effect transistor with monolayers in channel region
JP3135939B2 (ja) * 1991-06-20 2001-02-19 富士通株式会社 Hemt型半導体装置
US5304825A (en) * 1992-08-20 1994-04-19 Motorola, Inc. Linear heterojunction field effect transistor
US5493136A (en) * 1993-02-22 1996-02-20 Sumitomo Electric Industries, Ltd. Field effect transistor and method of manufacturing the same
US5347141A (en) * 1993-11-09 1994-09-13 The United States Of America As Represented By The Secretary Of The Army Multiterminal lateral S-shaped negative differential conductance device
DE60033656T2 (de) * 2000-03-03 2007-06-21 Matsushita Electric Industrial Co., Ltd., Kadoma Halbleiteranordnung
EP1315212A4 (en) * 2000-11-21 2008-09-03 Matsushita Electric Ind Co Ltd SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME
JP4463482B2 (ja) * 2002-07-11 2010-05-19 パナソニック株式会社 Misfet及びその製造方法
GB0608515D0 (en) * 2006-04-28 2006-06-07 Univ Aberdeen Semiconductor device for generating an oscillating voltage

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910278A (ja) * 1983-06-24 1984-01-19 Hitachi Ltd 半導体装置
US4882609A (en) * 1984-11-19 1989-11-21 Max-Planck Gesellschaft Zur Forderung Der Wissenschafter E.V. Semiconductor devices with at least one monoatomic layer of doping atoms
JPS61216316A (ja) * 1985-02-22 1986-09-26 Fujitsu Ltd 半導体装置の製造方法
JPS61241972A (ja) * 1985-04-18 1986-10-28 Fujitsu Ltd 化合物半導体装置
JPS61274370A (ja) * 1985-05-29 1986-12-04 Fujitsu Ltd 接合形電界効果トランジスタ
JPS6235677A (ja) * 1985-08-09 1987-02-16 Fujitsu Ltd 反転型高電子移動度トランジスタ装置
JPH06101559B2 (ja) * 1985-10-04 1994-12-12 日本電信電話株式会社 超格子電子素子

Also Published As

Publication number Publication date
US4942438A (en) 1990-07-17
EP0309290A1 (en) 1989-03-29
JPS6482677A (en) 1989-03-28

Similar Documents

Publication Publication Date Title
JP2586053B2 (ja) 電界効果トランジスタ
JPH01128577A (ja) 半導体装置
JPH0783107B2 (ja) 電界効果トランジスタ
JP3376078B2 (ja) 高電子移動度トランジスタ
JP2701633B2 (ja) 半導体装置
US5206527A (en) Field effect transistor
US5153682A (en) HEMT device with doped active layer
JP2636840B2 (ja) 半導体デバイス
JPH0513461A (ja) ヘテロ接合半導体装置
JPS5953714B2 (ja) 半導体装置
US5466955A (en) Field effect transistor having an improved transistor characteristic
US5900641A (en) Field effect semiconductor device having a reduced leakage current
US5751029A (en) Field-effect semiconductor device having heterojunction
RU2093924C1 (ru) Полевой транзистор на гетероструктуре
US5311045A (en) Field effect devices with ultra-short gates
JP2822400B2 (ja) 半導体装置
JP3304343B2 (ja) 電界効果トランジスタ
JPS63161677A (ja) 電界効果トランジスタ
JPH02246342A (ja) 半導体装置
Prost et al. High speed, high gain InP-based heterostructure FETs with high breakdown voltage and low leakage
JP2616634B2 (ja) 電界効果トランジスタ
EP0613191A2 (en) Channel structure for field effect transistor
JP2917530B2 (ja) 半導体装置
JPH04321239A (ja) 電界効果型トランジスタ
JPS6068661A (ja) 半導体装置