JP2584626B2 - Manufacturing method of colored titanium material - Google Patents

Manufacturing method of colored titanium material

Info

Publication number
JP2584626B2
JP2584626B2 JP7977187A JP7977187A JP2584626B2 JP 2584626 B2 JP2584626 B2 JP 2584626B2 JP 7977187 A JP7977187 A JP 7977187A JP 7977187 A JP7977187 A JP 7977187A JP 2584626 B2 JP2584626 B2 JP 2584626B2
Authority
JP
Japan
Prior art keywords
titanium
coating
metal
oxide
colored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7977187A
Other languages
Japanese (ja)
Other versions
JPS63247374A (en
Inventor
孝之 島宗
正志 細沼
賢一 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP7977187A priority Critical patent/JP2584626B2/en
Publication of JPS63247374A publication Critical patent/JPS63247374A/en
Application granted granted Critical
Publication of JP2584626B2 publication Critical patent/JP2584626B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/04Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、建材や装飾材としての使用に好適な、表面
が半光沢又は無光沢で、着色したチタン材とその製造方
法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a titanium material colored semi-glossy or matte and suitable for use as a building material or decorative material, and a method for producing the same. .

〔従来の技術と問題点〕[Conventional technology and problems]

従来、チタンやチタン合金はその優れた化学的安定
性、機械的強度、軽量性、耐熱性等を利用して熱交換器
や反応槽等の化学装置、電解槽や電極等の電解装置、或
いは航空機や船舶等の機械運輸装置など比較的特殊な用
途に使用されてきている。近年、チタンやチタン合金は
その特性に着目されて建築物や装飾品等に使用される機
会が増している。即ち、建築材として海水や塩害にも耐
える耐候性や耐久性を有し、メンテナンスフリーの屋根
材や壁材として注目されている。又、チタン自体の稀少
性から種々の装飾品材として使用されている。
Conventionally, titanium and titanium alloys utilize their excellent chemical stability, mechanical strength, light weight, heat resistance, etc. to make use of chemical devices such as heat exchangers and reaction vessels, electrolytic devices such as electrolytic vessels and electrodes, or It has been used for relatively special applications such as mechanical transportation devices such as aircraft and ships. In recent years, attention has been paid to titanium and titanium alloys for their properties, and the chances of using titanium and titanium alloys for buildings and decorative articles are increasing. That is, as a building material, it has weather resistance and durability that can withstand seawater and salt damage, and is attracting attention as a maintenance-free roof material or wall material. Further, titanium is used as various decorative materials because of the scarcity of titanium itself.

このように、チタン材の需要は多方面にわたってきて
いるが、一般用としては、装飾材を除き、着色等の美観
や外観上の配慮は殆ど払われていない。これら金属チタ
ンの着色は、一般に1μm以下程度の酸化物被覆膜の形
成によって得られ、その代表的な形成方法として、陽極
酸化による電気化学的方法及び酸化雰囲気中での加熱に
よる表面熱酸化法が知られている。これらの方法による
着色チタンはその着色層が極めて薄いため、透明度が高
く、光沢表面を呈するので重量感、質感に乏しく、美観
上必ずしも満足し得るものではなかった。
As described above, demand for titanium materials has been widespread, but little attention has been paid to aesthetics such as coloring and appearance in general use except for decorative materials. The coloring of the titanium metal is generally obtained by forming an oxide coating film having a thickness of about 1 μm or less. Typical examples of the formation method include an electrochemical method by anodic oxidation and a surface thermal oxidation method by heating in an oxidizing atmosphere. It has been known. Colored titanium produced by these methods has an extremely thin colored layer, has high transparency, and has a glossy surface. Therefore, the weight and texture are poor, and it is not always satisfactory in aesthetic appearance.

又、表面が平滑であり着色酸化被膜が薄いのできずが
目立ちやすく、建材等大型材の着色には適した方法とは
言えない。尚、表面の平滑さをなくすために、従来から
ブラスト処理が行われているが、薄板、特に厚さが0.5m
m以下では処理時に大きな歪が生じてしまい実用的でな
いこと、又、大型材では均一なブラスト処理が困難で、
色むらの原因となる等の問題がある。
In addition, the surface is smooth and the colored oxide film cannot be thinned, but it is conspicuous and cannot be said to be a method suitable for coloring large materials such as building materials. In order to eliminate the surface smoothness, blasting has been performed conventionally.
If it is less than m, large distortion occurs during processing and it is not practical, and uniform blasting is difficult with large materials,
There are problems such as causing color unevenness.

〔発明の目的〕[Object of the invention]

本発明は、前記の問題を解決し、建材等の大型材にも
適用が可能な半光沢または無光沢で、表面梨地状の着色
チタン材を製造する方法を提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems and to provide a method for producing a semi-glossy or matte-colored surface-titanium-colored titanium material applicable to large-sized materials such as building materials.

〔問題を解決するための手段〕[Means for solving the problem]

本発明は、着色チタン材の製造方法において、金属チ
タン表面を電解浴中で火花放電加工して梨地化すると共
に、チタン酸化物の被膜を形成し、次いで熱分解可能な
金属の塩を含む溶液を塗布し、加熱処理して金属酸化物
を被覆することを特徴とするものである。
The present invention relates to a method for producing a colored titanium material, wherein a metal titanium surface is spark-discharged in an electrolytic bath to form a matte finish, a titanium oxide film is formed, and then a solution containing a thermally decomposable metal salt. And heat-treating it to coat the metal oxide.

以下、本発明をより詳細に説明する。 Hereinafter, the present invention will be described in more detail.

本発明において、チタン(材)とは金属チタンの他、
Nb、Ta、Zr、V、Mo、Al等少量の他の金属を含むチタン
基合金を含むものである。
In the present invention, titanium (material) refers to metal titanium,
It contains a titanium-based alloy containing a small amount of other metals such as Nb, Ta, Zr, V, Mo, and Al.

金属チタン材を電解浴中において、陽極として通電す
ると、最初微少電流が流れ、表面にチタンの酸化物被膜
が形成され不働態化が生じる。この時の酸化物被膜の厚
さは1μm以下であり、膜厚により種々の色調を呈す
る。従来の着色法はこの段階にとどまっており、重量感
や質感の乏しいものとなりがちであった。
When a metal titanium material is supplied with electricity as an anode in an electrolytic bath, a very small current flows first, and an oxide film of titanium is formed on the surface to cause passivation. The thickness of the oxide film at this time is 1 μm or less, and various colors are exhibited depending on the film thickness. Conventional coloring methods remain at this stage, and tend to be poor in weight and texture.

この状態にて、更に電圧を大きくしていくと、チタン
の表面から火花を発しながら電流が流れるようになる。
これが火花放電現象である。その際同時にチタン表面に
酸化チタンを主とする層が形成される。
In this state, when the voltage is further increased, a current flows while emitting a spark from the surface of the titanium.
This is the spark discharge phenomenon. At the same time, a layer mainly composed of titanium oxide is formed on the titanium surface.

このような火花放電では、チタンの表面に均一で厚い
酸化チタンの層が形成されると同時に、表面の一部を溶
解して梨地化する作用があることを見出した。
It has been found that in such a spark discharge, a uniform and thick layer of titanium oxide is formed on the surface of titanium, and at the same time, a part of the surface is dissolved to form a matte finish.

又、通常、火花放電による酸化物被膜の色は、電解浴
の種類にもよるが、灰白色のルチル又はアナターゼに代
表される酸化チタンの色調である。ところが、更にその
上に熱分解可能な金属の塩を含む溶液を塗布し、加熱処
理して金属酸化物を被覆することによって梨地状で種々
の色調を呈し、耐久性にも優れた着色チタン材が得られ
ることを見出し、本発明に至った。
Usually, the color of the oxide film due to the spark discharge is a color tone of titanium oxide typified by off-white rutile or anatase, depending on the type of electrolytic bath. However, furthermore, a solution containing a thermally decomposable metal salt is applied thereon, and then heated to cover the metal oxide, thereby providing a satin-like colored color tone and a highly durable colored titanium material. Was obtained, and the present invention was achieved.

すなわち、火花放電加工によりチタン基材表面に形成
された下地層チタン酸化物の上に、金属塩の溶液から熱
分解的に金属酸化物を焼き付け、或いは該チタン酸化物
と金属酸化物との複合酸化物を加熱して形成することに
よって、表面金属酸化物に基づく色調の他に、下地層酸
化物との複合化により、所望の色調に呈色するチタン材
が製造される。
That is, a metal oxide is baked by thermal decomposition from a solution of a metal salt on an underlayer titanium oxide formed on a titanium substrate surface by spark electric discharge machining, or a composite of the titanium oxide and the metal oxide By forming the oxide by heating, in addition to the color tone based on the surface metal oxide, a titanium material having a desired color tone is produced by complexing with the underlayer oxide.

火花放電加工を行う電解浴液は、種々のものを使用す
ることができ、それぞれの液によって特徴のある表面を
作る。無光沢で比較的荒い梨地を望む場合は、炭酸塩又
は硫酸塩の水溶液が望ましい。又、半光沢でより金属的
な質感を望む場合には、任意の無機酸塩中に蔗糖又は有
機酸等の有機物を加えればよい。
Various electrolytic bath solutions for performing spark discharge machining can be used, and each of the solutions creates a characteristic surface. If a matte and relatively rough satin is desired, an aqueous solution of carbonate or sulfate is preferred. When a semi-gloss and more metallic texture is desired, an organic substance such as sucrose or an organic acid may be added to any inorganic acid salt.

尚、本発明において、後記する遷移金属の中から適宜
選択した金属の少なくとも一種を電解液中に含ませてチ
タンを火花放電加工し、得られる所望の色調を呈する着
色チタンを基材として用いることも出来る。
In the present invention, spark discharge machining is performed on titanium by including at least one metal appropriately selected from transition metals described below in an electrolytic solution, and the obtained colored titanium having a desired color tone is used as a base material. You can also.

火花放電加工を行う際の電解電圧は、電解浴の種類に
よっても異なるが、通常20〜150Vの範囲であり、好まし
くは約40〜120Vである。
The electrolytic voltage at the time of performing spark discharge machining varies depending on the type of electrolytic bath, but is usually in the range of 20 to 150 V, preferably about 40 to 120 V.

尚、ハロゲンイオンを電解浴中に含ませると、火花放
電加工に必要とする電圧はかなり低くなり、均一な処理
が多少難しくなるが、より粗な梨地が得られるので目的
によっては有効である。
In addition, when halogen ions are contained in the electrolytic bath, the voltage required for spark discharge machining is considerably reduced, and uniform treatment is somewhat difficult. However, coarser satin is obtained, which is effective for some purposes.

火花放電加工に必要とする電流は、通常5〜200A/dm2
であり、好ましくは約10〜100A/dm2である。5A/dm2未満
では火花放電加工として不十分で、光沢のある金属性の
表面となりやすい。又、200A/dm2を越えると、チタンの
溶出が優勢となり実用的でなくなる。通電処理時間は10
秒〜5分位が適当であり、10秒より短いと均質な被膜が
得られず、表面の梨地化も不十分である。5分より長い
とチタンの溶出が大きくなり過ぎる。
The current required for spark electric discharge machining is usually 5-200 A / dm 2
And preferably about 10 to 100 A / dm 2 . If it is less than 5 A / dm 2, it is insufficient for spark electric discharge machining, and it tends to have a glossy metallic surface. On the other hand , if it exceeds 200 A / dm 2 , the elution of titanium becomes predominant, making it impractical. Energization processing time is 10
A time of about 2 to 5 minutes is appropriate, and if it is shorter than 10 seconds, a uniform film cannot be obtained, and the surface is not sufficiently matted. If it is longer than 5 minutes, the elution of titanium becomes too large.

以上のようにして、チタン表面が半光沢又は無光沢な
梨地状チタン基材を容易に得ることができる。
As described above, a satin-finished titanium base material having a semi-glossy or matte titanium surface can be easily obtained.

次いで、その表面に金属酸化物の着色表面層を被覆形
成する。該表面層は、通常の塗装のように基体と単に物
理的に付着しているのではなく、基体表面のチタン酸化
物層と強固な結合を有するものである。これによって、
耐食性に優れ、且つ極めて安定な耐久性のある被覆層と
することが出来る。そのために、該着色被覆層は、金属
塩を含有した水溶液又は有機物溶液を基体表面に塗布
し、乾燥後、大気中又は酸化性の雰囲気中で加熱するこ
とによって得られる。
Next, a colored surface layer of a metal oxide is coated on the surface. The surface layer has a strong bond with the titanium oxide layer on the surface of the substrate, instead of simply physically adhering to the substrate as in a normal coating. by this,
An extremely stable and durable coating layer having excellent corrosion resistance can be obtained. For this purpose, the colored coating layer is obtained by applying an aqueous solution or an organic solution containing a metal salt to the surface of the substrate, drying and heating the coating in the air or in an oxidizing atmosphere.

金属塩の塗布溶液は、硝酸や塩酸等の無機酸、酢酸や
酸等の有機酸又は無機酸にアルコール等の有機溶剤を
含むことが望ましく、これらは高温でチタンやチタン酸
化物と反応し、塗布した金属塩の熱分解時に、基体と熱
分解生成物との間の化学的結合の形成に役立つ。前記塗
布液に含む熱分解可能な金属塩の金属は、目的とする色
調によって適宜選択して使用することができる。遷移元
素は一般に原子番号21Scから30Zn迄、39Yから48Cd迄、5
7Laから80Hg迄、及び89Ac以上の金属元素を言い、これ
らは数種の安定な原子価を有し、それらの化合物は着色
していることが多い。
The coating solution of the metal salt preferably contains an inorganic acid such as nitric acid or hydrochloric acid, an organic acid such as acetic acid or an acid or an organic acid such as an alcohol in an inorganic acid, and these react with titanium or titanium oxide at a high temperature, During the pyrolysis of the applied metal salt, it helps to form a chemical bond between the substrate and the pyrolysis products. The metal of the thermally decomposable metal salt contained in the coating liquid can be appropriately selected and used depending on the desired color tone. Transition elements generally have atomic numbers 21Sc to 30Zn, 39Y to 48Cd, 5
Metal elements from 7La to 80Hg and above 89Ac, which have several stable valences, their compounds are often colored.

従って、本発明においてこれらの遷移金属の中から適
宜選択した金属の少なくとも一種を適用することができ
るが、それらの酸化物が耐食性に優れていることが望ま
しい。例えば、周期律表IVB族、VB族に属する弁金属
は、基体チタン並びに酸化チタン下地層との親和性が良
好で、塗布加熱により固溶化してルチル型酸化物を形成
し、強固な結合層となり、且つ、耐食性が極めて良好で
ある。又、VB族のTaの塩酸水溶液、又はIVB族のTiとTa
の混合塩酸水溶液を塗布し、500℃程度の温度で焼付け
ると、薄い青色を呈するものが得られる。又、白金族金
属元素と組み合わせて使用することもでき、Rhを少量含
むRu塩化物とブチルチタネートの混合アルコール溶液を
塗布液とし、約400℃で焼付けると黒青色の被覆が出来
る。又、TiをTa又はNbに替えると黒色を呈し、これらは
いずれもルチル型の安定な酸化物からなる。更に、VIII
族の金属の塩を使用することができ、例えばNi塩の溶液
を塗布液とし、約600℃で焼付けると緑〜黒色の酸化物
被覆が得られる。
Therefore, in the present invention, at least one kind of metal appropriately selected from these transition metals can be applied, but it is desirable that the oxides have excellent corrosion resistance. For example, valve metals belonging to Groups IVB and VB of the periodic table have a good affinity for the base titanium and the titanium oxide underlayer, and form a rutile-type oxide by forming a solid solution by coating and heating, thereby forming a strong bonding layer. And the corrosion resistance is extremely good. Also, aqueous hydrochloric acid solution of VB group Ta, or IVB group Ti and Ta
When a mixed hydrochloric acid aqueous solution is applied and baked at a temperature of about 500 ° C., a light blue color is obtained. Further, it can be used in combination with a platinum group metal element. When a mixed alcohol solution of Ru chloride and butyl titanate containing a small amount of Rh is used as a coating solution and baked at about 400 ° C., a black-blue coating can be obtained. Further, when Ti is replaced with Ta or Nb, they exhibit a black color, each of which is composed of a rutile-type stable oxide. Furthermore, VIII
A group metal salt can be used. For example, when a solution of a Ni salt is used as a coating solution and baked at about 600 ° C., a green-black oxide coating is obtained.

塗布液の濃度は塗布法、塗布条件によって適宜選定で
き、塗布法として刷毛塗、ローラー塗布、吹付法等適宜
の手段が適用できる。
The concentration of the coating solution can be appropriately selected depending on the coating method and the coating conditions, and appropriate methods such as brush coating, roller coating, and spraying can be applied as the coating method.

加熱温度は、金属塩の種類によって選定されるが、通
常約300〜700℃が望ましい。300℃未満では基体と着色
表面層との結合が不十分であり、700℃を越えるとチタ
ン又はチタン合金自体の酸化が進み、基体の歪みも大き
くなる。
The heating temperature is selected depending on the type of the metal salt, but is usually preferably about 300 to 700 ° C. If the temperature is lower than 300 ° C., the bond between the substrate and the colored surface layer is insufficient. If the temperature exceeds 700 ° C., the oxidation of titanium or titanium alloy itself proceeds, and the distortion of the substrate increases.

以上のようにして、火花放電加工したチタン材表面に
安定な酸化物の被覆を設けることができるが、一度の被
覆だけでなく、必要に応じて塗布、加熱、焼付を複数回
繰り返し、より均質で均一な色調を呈する着色チタン材
を得ることが可能である。又、更に適宜の温度で色調の
調整や安定化等のため、後処理加熱を行っても良い。
As described above, a stable oxide coating can be provided on the surface of the titanium material subjected to spark discharge machining.However, not only a single coating but also coating, heating, and baking may be repeated several times as necessary to obtain a more uniform coating. Thus, it is possible to obtain a colored titanium material having a uniform color tone. Further, post-treatment heating may be performed at an appropriate temperature for adjusting and stabilizing the color tone.

〔実施例〕〔Example〕

以下、本発明を実施例により具体的に示すが、本発明
はこれらに限定されるものではない。
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto.

実施例1 縦50mm横50mm厚さ1mmの市販級純チタン板に3mmφのチ
タン線を溶接し、板の表面を中性洗剤にて洗浄した後、
更にトリクロルエチレン蒸気中にて脱脂した。
Example 1 A commercially available pure titanium plate having a length of 50 mm, a width of 50 mm and a thickness of 1 mm was welded with a titanium wire of 3 mmφ, and the plate surface was washed with a neutral detergent.
It was further degreased in trichlorethylene vapor.

電解浴として100g/l炭酸カリウム水溶液1を用意
し、この液を攪拌しながら恒温装置により30℃に保持
し、上記チタン板を陽極とし、同様に処理した同じ大き
さのチタン板を陰極として、5mmの間隔で液中に対向配
置した。陽陰極間に電圧を印加し、5A(20A/dm2に相
当)で2分間通電を行った。その時の電圧は、約60Vで
あった。かくして火花放電加工を行ったチタン材を取り
出し、水洗後乾燥して表面に強固な酸化チタン層を有す
る梨地状のチタン板が得られた。
A 100 g / l aqueous solution of potassium carbonate 1 was prepared as an electrolytic bath, and the solution was kept at 30 ° C. with a thermostat while stirring, and the titanium plate was used as an anode, and a titanium plate of the same size treated similarly was used as a cathode. They were arranged facing each other in the liquid at intervals of 5 mm. A voltage was applied between the positive and negative electrodes, and electricity was supplied at 5 A (corresponding to 20 A / dm 2 ) for 2 minutes. The voltage at that time was about 60V. Thus, the titanium material subjected to spark discharge machining was taken out, washed with water and dried to obtain a satin-like titanium plate having a strong titanium oxide layer on the surface.

一方、塗布液として、タンタルとして5g/l含む10wt%
HCl水溶液を用意し、これを刷毛で上記処理したチタン
板表面に塗布し、室温で10分間保持後、40℃の恒温槽中
で乾燥した。
On the other hand, as a coating solution, 10wt% containing 5g / l as tantalum
An aqueous HCl solution was prepared, applied to the surface of the titanium plate treated with a brush, kept at room temperature for 10 minutes, and then dried in a constant temperature bath at 40 ° C.

乾燥後、これを空気を通したマッフル炉で500℃に15
分間加熱し、焼付けした。かくして表面が梨地状で無光
沢の淡青色を呈するチタン材が得られた。
After drying, this is heated to 500 ° C in a muffle furnace through air.
Heated and baked for minutes. Thus, a titanium material having a matte surface and a dull pale blue color was obtained.

尚、表面状態をX線回折計により測定したところ、ブ
ロードなルチル型結晶相の回折線が認められ、被覆層が
ルチル型酸化物単相からなっていることがわかった。
When the surface state was measured by an X-ray diffractometer, a broad diffraction line of a rutile-type crystal phase was recognized, and it was found that the coating layer was composed of a rutile-type oxide single phase.

実施例2 電解浴として硫酸ナトリウム50g/l+硫酸100g/lの水
溶液を1用意し、攪拌しながら温度調節計で30℃に保
持した。その中に、実施例1と同様に準備した2枚のチ
タン板を5mmの間隔をおいて対向配置した。この2枚の
チタン板に直流を印加し、10A/(40A/dm2)で1分間通
電を行った。その時の電圧は、約70Vであった。陽電位
側のチタン板は、表面が梨地となり強固な白色の酸化チ
タン層が出来ていた。このチタン板を純水で洗浄後、乾
燥した。一方、塗布液としてロジウム1g/l、ルテニウム
9g/l及びチタン40g/lに相当する各金属の塩化物を含
み、ブチルアルコールを塗布液量の10%とした10%塩酸
水溶液を用意し、スプレーにて該チタン板に塗布した。
室温で5分間乾燥後、50℃の恒温槽中で10分間乾燥し
た。更に空気を通した400℃のマッフル炉中で20分間焼
付加熱を行った。この塗布、加熱操作を2回繰り返し
て、青みがかった黒色の、わずかにつやのある梨地の着
色チタン板が得られた。これをX線回折で調べたとこ
ろ、ルチル型酸化物結晶相のみの存在が認められた。
Example 2 One aqueous solution of sodium sulfate 50 g / l + sulfuric acid 100 g / l was prepared as an electrolytic bath, and kept at 30 ° C. with a temperature controller while stirring. In this, two titanium plates prepared in the same manner as in Example 1 were arranged facing each other at an interval of 5 mm. A direct current was applied to the two titanium plates, and current was applied at 10 A / (40 A / dm 2 ) for 1 minute. The voltage at that time was about 70V. The surface of the titanium plate on the positive potential side became matte, and a strong white titanium oxide layer was formed. The titanium plate was washed with pure water and dried. On the other hand, rhodium 1g / l, ruthenium
A 10% hydrochloric acid aqueous solution containing 9 g / l and a chloride of each metal corresponding to 40 g / l of titanium and containing butyl alcohol at 10% of the amount of the coating solution was prepared and applied to the titanium plate by spraying.
After drying at room temperature for 5 minutes, it was dried in a thermostat at 50 ° C. for 10 minutes. Further, additional heat was applied for 20 minutes in a muffle furnace at 400 ° C. through which air was passed. This coating and heating operation were repeated twice to obtain a bluish black, slightly shiny satin-colored titanium plate. When this was examined by X-ray diffraction, it was confirmed that only the rutile oxide crystal phase was present.

実施例3 実施例2と同様の操作によって表面が梨地の強固な白
色の酸化チタン層を有するチタン板を得た。塗布液とし
て、チタンをタンタルに替え、ブチルアルコールを除い
た以外、実施例2と同じものを用意し、スプレーにて該
チタン板に塗布した。これを室温で15分間乾燥後、50℃
の恒温槽中で15分間更に乾燥した後、空気を通した500
℃のマッフル炉中で15分間加熱焼付けを行った。
Example 3 By the same operation as in Example 2, a titanium plate having a strong white titanium oxide layer with a matte surface was obtained. The same coating liquid as in Example 2 was prepared, except that titanium was replaced with tantalum and butyl alcohol was removed, and the coating liquid was applied to the titanium plate by spraying. After drying this at room temperature for 15 minutes,
After further drying for 15 minutes in a constant temperature bath,
Heat baking was performed in a muffle furnace at 15 ° C. for 15 minutes.

このようにして、無光沢の黒色の被覆を有するチタン
板が得られた。
Thus, a titanium plate having a matte black coating was obtained.

実施例4 50×50×1mmtのTi−5%Ta合金板に3mmφのチタン線
を導電棒として溶接して基体とした。これを実施例1と
同様の加工を行い、表面が梨地の強固な白色の酸化チタ
ン層からなる基体を得た。塗布液として、塩化ニッケル
をニッケルとして50g/l含む塩酸水溶液を用意し、これ
を刷毛で酸化チタン層を表面に形成した上記基体表面に
塗布した。室温で20分間保持後、40℃の恒温槽中で20分
間乾燥した。これを600℃のマッフル炉中で15分間保持
し、加熱焼付けを行った。
Example 4 A base was obtained by welding a 3 mmφ titanium wire as a conductive rod to a 50 × 50 × 1 mmt Ti-5% Ta alloy plate. This was processed in the same manner as in Example 1 to obtain a substrate made of a strong white titanium oxide layer having a matte surface. An aqueous hydrochloric acid solution containing 50 g / l of nickel chloride as nickel was prepared as a coating liquid, and this was applied to the surface of the above-mentioned substrate having a titanium oxide layer formed on the surface thereof with a brush. After being kept at room temperature for 20 minutes, it was dried in a constant temperature bath at 40 ° C. for 20 minutes. This was kept in a muffle furnace at 600 ° C. for 15 minutes and heated and baked.

このようにして、黒みがかった緑色の被覆を有する梨
地表面のTi−Ta合金板が得られた。
Thus, a satin-finished Ti-Ta alloy plate having a dark green coating was obtained.

実施例5 電解浴として飽和硫酸ナトリウムを使用すること以外
は実施例1と同様の操作によって、チタン剤表面に径が
1〜2μの多数の微細孔を持つ梨地の強固な白色の酸化
チタン層を形成した。
Example 5 By the same operation as in Example 1 except that saturated sodium sulfate was used as the electrolytic bath, a strong white titanium oxide layer of satin finish having a large number of micropores having a diameter of 1 to 2 μm was formed on the surface of the titanium agent. Formed.

塗布液として、約12%のコバルトを含有する2−エチ
ルヘキサン酸コバルトの10%ブタノール溶液を用意し、
これを刷毛で酸化チタン層を表面に形成した上記基体表
面に塗布した。室温で15分間保持した後、50℃の恒温槽
中で10分間乾燥した。これをマッフル炉中で450℃に15
分間保持し、加熱焼付けを行った。
As a coating solution, a 10% butanol solution of cobalt 2-ethylhexanoate containing about 12% of cobalt was prepared.
This was applied to the surface of the above-mentioned substrate having a titanium oxide layer formed on the surface thereof with a brush. After being kept at room temperature for 15 minutes, it was dried in a thermostat at 50 ° C. for 10 minutes. This is brought to 450 ° C in a muffle furnace
It was held for a minute and heated and baked.

このようにして、淡青緑色の被覆を有するチタン板が
得られた。
Thus, a titanium plate having a pale blue-green coating was obtained.

〔発明の効果〕〔The invention's effect〕

本発明は、チタン又はチタン合金の表面を電解浴中で
火花放電加工し、更に熱分解的に金属酸化物を被覆する
ので表面が梨地化されると共に、金属酸化物層と下地の
チタン酸化物層との色調が複合した無光沢又は半光沢の
所望の色調を呈する着色チタン材が得られる。
In the present invention, the surface of titanium or a titanium alloy is subjected to spark discharge machining in an electrolytic bath, and furthermore, the metal oxide is coated by thermal decomposition, so that the surface is matted, and the metal oxide layer and the underlying titanium oxide are formed. A colored titanium material exhibiting a desired matte or semi-gloss color tone having a complex color tone with the layer is obtained.

又、チタン基材表面に均質且つ強固に結合し、耐食性
にすぐれた金属酸化層を形成することが出来るので、間
隙腐食のない、耐食性や耐久性に優れた着色チタン材を
得ることができる。
Further, since a metal oxide layer having excellent corrosion resistance can be formed uniformly and firmly on the surface of the titanium base material, a colored titanium material excellent in corrosion resistance and durability without crevice corrosion can be obtained.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属チタン表面を電解浴中で火花放電加工
して梨地化すると共に、チタン酸化物の被膜を形成し、
次いで熱分解可能な金属の塩を含む溶液を塗布し、加熱
処理して金属酸化物を被覆することを特徴とする着色チ
タン材の製造方法。
1. A metal titanium surface is spark-discharge machined in an electrolytic bath to give a matte finish, and a titanium oxide film is formed.
Next, a method for producing a colored titanium material, comprising applying a solution containing a salt of a thermally decomposable metal, followed by heat treatment to coat the metal oxide.
【請求項2】火花放電加工を10〜200A/dm2の電流密度で
行う特許請求の範囲第(1)項に記載の方法。
2. The method according to claim 1, wherein the spark electric discharge machining is performed at a current density of 10 to 200 A / dm 2 .
【請求項3】金属塩を含む溶液として無機酸、有機酸又
はアルコールの溶液を用いる特許請求の範囲第(1)項
に記載の方法。
3. The method according to claim 1, wherein a solution of an inorganic acid, an organic acid or an alcohol is used as the solution containing the metal salt.
JP7977187A 1987-04-02 1987-04-02 Manufacturing method of colored titanium material Expired - Lifetime JP2584626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7977187A JP2584626B2 (en) 1987-04-02 1987-04-02 Manufacturing method of colored titanium material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7977187A JP2584626B2 (en) 1987-04-02 1987-04-02 Manufacturing method of colored titanium material

Publications (2)

Publication Number Publication Date
JPS63247374A JPS63247374A (en) 1988-10-14
JP2584626B2 true JP2584626B2 (en) 1997-02-26

Family

ID=13699468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7977187A Expired - Lifetime JP2584626B2 (en) 1987-04-02 1987-04-02 Manufacturing method of colored titanium material

Country Status (1)

Country Link
JP (1) JP2584626B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990009670A1 (en) * 1989-02-14 1990-08-23 Sumitomo Electric Industries, Ltd. Insulated electric wire
JP2890631B2 (en) * 1989-03-28 1999-05-17 住友電気工業株式会社 Insulated wire
JPH05209297A (en) * 1991-10-30 1993-08-20 Nippon Alum Co Ltd Composite coating film forming method on surface of ti and ti alloy
CH693272A5 (en) * 1997-06-04 2003-05-15 Mitsubishi Electric Corp Etappareil process for surface treatment parétincelage.
JP6094351B2 (en) * 2013-04-15 2017-03-15 新日鐵住金株式会社 Titanium production method and titanium anticorrosion method
CN115177385B (en) * 2022-07-15 2023-08-22 成都贝施美生物科技有限公司 Implant with natural tooth root color

Also Published As

Publication number Publication date
JPS63247374A (en) 1988-10-14

Similar Documents

Publication Publication Date Title
US3663280A (en) Electrodes for electrochemical processes
US4481097A (en) Durable electrode for electrolysis
JP3450979B2 (en) Metallic material having photocatalytic activity and method for producing the same
US6217729B1 (en) Anode formulation and methods of manufacture
JPS636636B2 (en)
US6106955A (en) Metal material having photocatalytic activity and method of manufacturing the same
JP2003507580A (en) Cathode usable for electrolysis of aqueous solution
JPS62274087A (en) Durable electrode for electrolysis and its production
JP2007154237A (en) Electrolytic electrode, and its production method
US5059297A (en) Durable electrode for use in electrolysis and process for producing the same
JP2584626B2 (en) Manufacturing method of colored titanium material
US4456518A (en) Noble metal-coated cathode
JP6404226B2 (en) Electrode for oxygen generation in industrial electrochemical processes, method for producing the electrode, and method for cathodic electrodeposition of metal from aqueous solution using the electrode
JPS5923890A (en) Insoluble electrode
JP2596821B2 (en) Anode for oxygen generation
JPH05171483A (en) Manufacture of anode for generating oxygen
EP0648863B1 (en) Enamellable oxide layer
US3107159A (en) Colored anodized aluminum article and alloys therefor
JPH11100627A (en) Titanium or titanium alloy making macrocrystal grain deposited on surface
JPH0343353B2 (en)
JP2004360067A (en) Electrode for electrolysis, and its production method
JPS63237816A (en) Manufacture of colored titanium material
JPH06306670A (en) Production of electrode for generating oxygen
JPH01312096A (en) Electrode for electrolysis and production thereof
JPH01275797A (en) Lead dioxide electrode for chromium plating