JP2584615B2 - Method of manufacturing hard aluminum alloy rolled sheet for forming - Google Patents

Method of manufacturing hard aluminum alloy rolled sheet for forming

Info

Publication number
JP2584615B2
JP2584615B2 JP61025252A JP2525286A JP2584615B2 JP 2584615 B2 JP2584615 B2 JP 2584615B2 JP 61025252 A JP61025252 A JP 61025252A JP 2525286 A JP2525286 A JP 2525286A JP 2584615 B2 JP2584615 B2 JP 2584615B2
Authority
JP
Japan
Prior art keywords
ingot
aluminum alloy
rolling
temperature
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61025252A
Other languages
Japanese (ja)
Other versions
JPS62182257A (en
Inventor
和博 深田
政文 溝内
毅 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP61025252A priority Critical patent/JP2584615B2/en
Publication of JPS62182257A publication Critical patent/JPS62182257A/en
Application granted granted Critical
Publication of JP2584615B2 publication Critical patent/JP2584615B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は強度が要求される成形加工品に使用される
硬質アルミニウム合金圧延板の製造方法に関し、特にア
ルミニウム2ピースD/I缶缶胴材や缶蓋材、あるいは王
冠、キャップ缶、そのほか深絞り加工や再絞り加工によ
り成形される食缶用アルミニウム合金材等に適した、成
形加工時における耳率の低い硬質アルミニウム合金圧延
板の製造方法に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a rolled hard aluminum alloy plate used for a molded product requiring strength, and more particularly to a two-piece aluminum can / body can or can. A method for producing a hard aluminum alloy rolled sheet having a low ear ratio at the time of forming, suitable for a lid material, a crown, a cap can, and other aluminum alloy materials for food cans formed by deep drawing or redrawing. It is.

従来の技術 従来一般にアルミニウム2ピースD/I缶缶胴材にはJIS
規格3004合金のH19材あるいはH39材、また缶蓋材には50
52合金、5086合金、5182合金等のH18材もしくはH38材、
王冠材やキャップ材には3003合金のH26材や3105合金のH
18材もしくはH26材、あるいは5052合金のH38材、深絞り
缶やDRD(絞り−再絞り)食缶用材には5052合金のH18材
もしくはH38材あるいは5042合金のH38材が多く用いられ
ている。これらのアルミニウム合金の形成用硬質材の製
造過程においては、再結晶によって圧延性、成形性、強
度を調整するために中間板厚で熱処理(中間焼鈍)を行
なうのが通常であるが、このような調質を目的とした焼
鈍の具体的方法としては、従来は一般に箱焼鈍炉を用い
たバッチ式焼鈍を採用している。このバッチ焼鈍では、
昇温速度が20〜50℃/hrと極めて遅いのが通常である。
Conventional technology Conventionally, aluminum 2-piece D / I cans can be JIS
H19 or H39 material of standard 3004 alloy, and 50 for can lid material
H18 or H38 material such as 52 alloy, 5086 alloy, 5182 alloy,
3003 alloy H26 and 3105 alloy H for crown and cap materials
18 or H26 material, or H52 material of 5052 alloy, H18 or H38 material of 5052 alloy or H38 material of 5042 alloy are often used for deep drawn cans and DRD (draw-redraw) food cans. In the production process of the hard material for forming these aluminum alloys, heat treatment (intermediate annealing) is usually performed at an intermediate plate thickness in order to adjust the rollability, formability, and strength by recrystallization. As a specific method of annealing for the purpose of proper refining, conventionally, batch annealing using a box annealing furnace is generally employed. In this batch annealing,
Usually, the rate of temperature rise is extremely slow at 20 to 50 ° C./hr.

ところで前述のような用途においては、成形加工時に
おける耳の発生が少ないことが必要であり、耳率が高け
れば材料歩留りが低下して材料コスト増大を招くばかり
でなく、成形加工装置におけるツーリング上のトラブル
も発生する。そこでこれらの用途のアルミニウム合金圧
延板の製造過程においても成形加工に供せられる最終板
の方向性を少なくして形成加工時の耳率を少なくするた
めの対応策が種々とられているが、いずれにしても前述
のような昇温速度が極めて遅い徐速焼鈍を前提とした対
策であった。
By the way, in the above-mentioned applications, it is necessary that the generation of ears during molding is small. If the ear ratio is high, not only the material yield is reduced and the material cost is increased, but also the tooling in the molding machine is reduced. Trouble also occurs. Therefore, various measures have been taken to reduce the directionality of the final plate subjected to the forming process in the manufacturing process of the rolled aluminum alloy plate for these uses and to reduce the ear rate during the forming process, In any case, the above measures are based on the premise of slow annealing, which has a very low temperature rising rate.

発明が解決すべき問題点 近年に至り、生産性向上やコストダウン、品質向上等
の観点から、バッチ焼鈍に代わり連続焼鈍が採用される
ようになっている。連続焼鈍は、連続的にコイルを巻戻
しながら加熱・冷却を行なうものであり、従来の一般的
なバッチ焼鈍と比較して昇温速度が速いこと、また比較
的高温に到達させ易いこと、さらに冷却速度が速いこと
が特徴である。このような連続焼鈍を適用した場合、合
金組成によっては、従来のバッチ式焼鈍を前提とした耳
率低減策では、成形加工に供せられる最終板の耳率が従
来と比較して極端に高くなり、材料歩留りの低下や成形
加工上のトラブルを招くことがある。
Problems to be Solved by the Invention In recent years, continuous annealing has been adopted instead of batch annealing from the viewpoints of productivity improvement, cost reduction, quality improvement, and the like. In continuous annealing, heating and cooling are performed while continuously rewinding a coil.The rate of temperature rise is higher than that of conventional general batch annealing, and it is easy to reach a relatively high temperature. It is characterized by a high cooling rate. When such continuous annealing is applied, depending on the alloy composition, the ear ratio of the final sheet subjected to the forming process is extremely high in the ear ratio reduction method based on the conventional batch annealing, as compared with the conventional one. This may lead to a reduction in material yield and troubles in forming.

すなわち、純アルミ系の1050合金や1100合金のように
Fe、Siの量が不純物量程度である場合には、Feの固容量
が比較的高くかつ中間焼鈍前の冷間圧延率が高い場合の
み耳率が高い問題が生じるから、その問題が生じなによ
うに製造することは比較的容易であり、また5052合金等
のように添加遷移金属であるCrの拡散係数が極めて遅い
場合でかつその添加量も少ない場合にも問題が少ない。
これに対し、Fe、Si、Mnが同時に添加されている合金、
例えば3003合金、3004合金、5042合金、5086合金、5182
合金等の場合には、Mnが主体の不溶性化合物が鋳造およ
び鋳塊熱処理時に必ずアルミマトリックス鋳に析出分散
してくる。この析出物は、焼鈍時にも残存し、特に連続
焼鈍のように比較的高温に短時間で到達させる焼鈍の場
合には、その析出物が、多数発生した再結晶核の成長を
抑制する作用を果たし、結果的に焼鈍後の再結晶組織が
45゜方位の残存の強い組織となってしまい、所要の硬さ
を得るための焼鈍後の冷間圧延においてさらに45゜方位
が強く発達し、成形加工時における耳率の高い材料にな
ってしまう問題を招く。しかるに従来はこのようなMnを
主体とする不溶性化合物が析出する系の合金について連
続焼鈍を適用した場合に、耳率を小さくするための具体
的方法は確立されていなかったのが実情である。なお、
連続焼鈍を適用しながらも、耳率の小さい材料を得るた
めの一つの方策としては、析出物の生成に寄与するFe、
Si、Mnの含有量を厳密に規制すること、例えば特開昭58
−126967号に示されているようにFe+Mn/Siの比が14以
上となるようにFe量、Mn量、Si量の相互の関係を厳密に
調整することも考えられる。しかしながらその場合に
は、溶解原料としてスクラップの使用が制約されたり、
他の性能を損なったりする問題がある。
That is, like pure aluminum 1050 alloy or 1100 alloy
When the amount of Fe and Si is about the amount of impurities, since the solid content of Fe is relatively high and the ear ratio is high only when the cold rolling ratio before intermediate annealing is high, the problem does not occur. It is relatively easy to manufacture as described above, and there are few problems when the diffusion coefficient of Cr, which is an added transition metal, is extremely slow and the amount of addition is small, such as 5052 alloy.
In contrast, alloys in which Fe, Si, and Mn are simultaneously added,
For example, 3003 alloy, 3004 alloy, 5042 alloy, 5086 alloy, 5182
In the case of an alloy or the like, an insoluble compound mainly composed of Mn is always precipitated and dispersed in aluminum matrix casting during casting and ingot heat treatment. This precipitate remains even during annealing, and particularly in the case of annealing that reaches a relatively high temperature in a short time as in continuous annealing, the precipitate has an effect of suppressing the growth of a large number of recrystallized nuclei. As a result, the recrystallized structure after annealing
It becomes a structure with a strong 45 ° orientation, and the 45 ° orientation further develops in cold rolling after annealing to obtain the required hardness, resulting in a material with a high ear ratio during forming. Cause problems. However, in the prior art, when continuous annealing is applied to such an alloy in which an insoluble compound mainly composed of Mn is precipitated, a specific method for reducing the ear ratio has not been actually established. In addition,
One way to obtain a material with a small ear ratio while applying continuous annealing is to contribute to the formation of precipitates,
Strictly regulate the content of Si and Mn, for example,
It is also conceivable to strictly adjust the mutual relationship between the amount of Fe, the amount of Mn, and the amount of Si so that the ratio of Fe + Mn / Si becomes 14 or more as shown in US Pat. However, in that case, the use of scrap as a melting raw material is restricted,
There is a problem of impairing other performances.

この発明は以上の事情を背景としてなされたもので、
Mn、Fe、Siの含有量を厳密に規制せずに、Mn、Fe、Siを
同時に添加した成分系のアルミニウム合金において、連
続焼鈍を適用した場合に従来のバッチ式焼鈍を適用した
圧延板と同程度もしくはそれより低い耳率を有し、かつ
成形性も劣らないアルミニウム合金圧延板を製造する方
法を提供することを目的とするものである。
The present invention has been made in view of the above circumstances,
Mn, Fe, without strictly controlling the content of Si, Mn, Fe, in a component type aluminum alloy to which Si is simultaneously added, when continuous annealing is applied to the rolled sheet to which the conventional batch-type annealing is applied It is an object of the present invention to provide a method for producing a rolled aluminum alloy sheet having the same or lower ear ratio and not inferior in formability.

問題点を解決するための手段 本願の第1発明の成形加工用硬質アルミニウム合金圧
延板製造方法は、重量%でSi0.05〜0.60%、Mn0.20〜1.
3%、Fe0.20〜1.3%を含有し、残部がAlおよび不可避的
不純物よりなるアルミニウム合金を素材とし、そのアル
ミニウム合金鋳塊中の無析出物帯の領域が鋳塊断面の平
均面積率で60%以上を占めるように、600〜640℃の温度
での15時間以上の高温長時間加熱を施して鋳塊組織を調
整した後、所要の板厚となるまで圧延し、続いて0.5℃/
sec以上の昇温速度で450℃以上の温度域まで加熱して、
直ちにもしくは60秒以内の時間保持してから急速冷却
し、さらに圧延率20%以上の冷間圧延を施すことを特徴
とするものである。
Means for Solving the Problems The method for producing a hardened aluminum alloy rolled sheet for forming according to the first invention of the present application is as follows: Si 0.05 to 0.60% by weight, Mn 0.20 to 1.
Aluminum alloy containing 3% and Fe 0.20-1.3%, the balance being Al and unavoidable impurities. The area of the non-precipitated zone in the aluminum alloy ingot is the average area ratio of the ingot cross section. After adjusting the ingot structure by heating at a temperature of 600 to 640 ° C for 15 hours or more at a high temperature for a long time so as to occupy 60% or more, rolling to the required sheet thickness, then 0.5 ° C /
Heat to a temperature range of 450 ° C or more with a temperature rise rate of sec or more,
Immediately or after holding for a time of 60 seconds or less, rapid cooling is performed, and cold rolling at a rolling reduction of 20% or more is performed.

また本願の第2発明の成形加工用硬質アルミニウム合
金圧延板製造方法は、重量%でSi0.05〜0.60%、Mn0.20
〜1.3%、Fe0.20〜1.3%を含有し、さらにCu0.10〜1.0
%、Mg0.30〜5.0%のうちの1種または2種を含有する
アルミニウム合金を素材とし、そのアルミニウム合金鋳
塊中の無析出物帯の領域が鋳塊断面の平均面積率で60%
以上を占めるように、560〜630℃の温度での15時間以上
の高温長時間加熱を施して鋳塊組織を調整した後、所要
の板厚となるまで圧延し、続いて0.5℃/sec以上の冷却
速度で450〜580℃の温度域まで加熱して、直ちにもしく
は60秒以内の時間保持してから急速冷却し、さらに圧延
率20%以上の冷間圧延を施すことを特徴とするものであ
る。
In addition, the method for producing a hardened aluminum alloy rolled sheet for forming according to the second invention of the present application is as follows.
~ 1.3%, Fe0.20 ~ 1.3%, further Cu0.10 ~ 1.0
%, Mg 0.30-5.0% Aluminum alloy containing one or two of the materials, the area of the non-precipitated zone in the aluminum alloy ingot is 60% in average area ratio of the ingot cross section
To occupy the above, after adjusting the ingot structure by applying high-temperature and long-time heating at a temperature of 560 to 630 ° C for 15 hours or more, rolling to the required thickness, and then 0.5 ° C / sec or more Heating to a temperature range of 450 to 580 ° C at a cooling speed of, immediately or holding for a period of 60 seconds or less, then rapidly cooling, and further performing cold rolling at a rolling reduction of 20% or more. is there.

作用 本願の第1発明の製造方法においては、前述のように
Mn、Fe、Siを添加したアルミニウム合金について鋳塊段
階で無析出物帯の領域面積を調整し、中間板厚での急速
加熱、急速冷却を組合せることによって、連続焼鈍にお
いても安定して低い耳率を得ることが可能となり、その
後の冷間圧延を圧延率20%以上の範囲で施して調質する
ことにより、キャップ材等に適した耳率の低い成形加工
用硬質アルミニウム合金圧延板を得ることができる。
In the manufacturing method of the first invention of the present application, as described above,
Mn, Fe, and Si are added to the aluminum alloy to adjust the area of the non-precipitated zone at the ingot stage, and to combine the rapid heating and rapid cooling at the intermediate plate thickness, thereby stably reducing even in continuous annealing. Ear ratio can be obtained, and the subsequent cold rolling is performed at a rolling ratio of 20% or more for tempering, so that a hard aluminum alloy rolled plate for forming with a low ear ratio suitable for cap materials, etc. Obtainable.

また第2発明の製造方法では、さらに高強度を有する
硬質アルミニウム合金圧延板を整造する場合の強化策と
して、Cuおよび/またはMgを添加した場合において、前
記同様にして耳率が低くしかもより高い強度を有するキ
ャップ材、あるいは缶胴材、食缶材、缶蓋材等に適した
成形加工用アルミニウム合金圧延板を得ることができ
る。
Further, in the manufacturing method of the second invention, as a strengthening measure when preparing a hardened aluminum alloy rolled plate having higher strength, when Cu and / or Mg are added, the ear ratio is low and more in the same manner as described above. An aluminum alloy rolled plate for forming suitable for a cap material having high strength, or a can body material, a food can material, a can lid material, or the like can be obtained.

以下にさらに各発明の方法における作用を、成分限定
理由および各工程のプロセス条件限定理由とともに詳細
に説明する。
The operation of the method of each invention will be described below in detail, together with the reasons for limiting the components and the process conditions for each step.

先ず本願各発明における成分限定理由を説明する。 First, the reasons for limiting the components in each invention of the present application will be described.

この発明の主眼は、既に述べたように、従来適用して
いたバッチ式焼鈍を連続焼鈍に切替えたことによって生
じる耳率制御技術上の問題点を、従来から使用されてい
る成分組成域の合金でも解消できることである。そこで
この発明においても、基本的には連続焼鈍法を適用した
場合に耳率の点で問題があったMn、Fe、Siを添加した系
の合金を対象とし、次のようにFe、Si、Mnを必須成分と
している。
As described above, the main object of the present invention is to solve the problem in the ear rate control technology caused by switching from the conventionally applied batch type annealing to the continuous annealing to the conventionally used alloy composition range. But it can be resolved. Therefore, in the present invention, Mn, Fe, which had a problem in terms of the ear ratio when the continuous annealing method was applied, was targeted for a system alloy to which Fe, Si, and Fe were added as follows. Mn is an essential component.

Si: SiはFe、Mnの析出を促進し、再結晶粒の方向性を制御
するために欠くことのできない元素であるが、0.60%を
越えて添加した場合、熱間圧延の段階でも新たな析出を
捉してしまい、初期の鋳塊段階で無析出物帯を調整した
効果が薄らぐ。一方Siが0.05%未満では析出を促進する
効果自体が小さくなり、かえって鋳塊での無析出物帯の
調整が困難となる。したがってSiは0.05〜0.60%の範囲
内とした。
Si: Si is an indispensable element for promoting the precipitation of Fe and Mn and controlling the directionality of recrystallized grains. However, if added in excess of 0.60%, a new element is obtained even in the hot rolling stage. The effect of adjusting the non-precipitated zone in the initial ingot stage is reduced by seizing the precipitation. On the other hand, if Si is less than 0.05%, the effect of accelerating the precipitation itself becomes small, and it becomes rather difficult to adjust the precipitate-free zone in the ingot. Therefore, Si is set in the range of 0.05 to 0.60%.

Mn: Mnは強度向上に寄与するとともに成形性向上に有効な
元素である。また蓋材やキャップ材に用いられた場合に
は蓋のスコアー部やキャップのミシン目における引きち
ぎりが容易であることが望ましいが、Mnはこの引きちぎ
り性向上に有効である。さらに、SiやFe等の影響で促進
されるMn系不溶性化合物の析出物は、再結晶粒の微細化
や方向性の制御に極めて重要である。但し1.3%を越え
てMnを添加した場合には、SiやFeの添加量を制御しなけ
れば鋳造速度が遅い場合に巨大金属間化合物の初晶が生
成し、成形性が低下してしまう。一方Mnが0.20%未満で
はMnの添加効果自体が小さくなってしまう。したがって
Mnは0.20〜1.3%の範囲内とした。
Mn: Mn is an element that contributes to improving strength and is effective for improving formability. When used for a lid material or a cap material, it is desirable that tearing of a score portion of the lid or a perforation of the cap is easy, and Mn is effective for improving this tearing property. Further, the precipitate of the Mn-based insoluble compound promoted by the influence of Si, Fe, and the like is extremely important for miniaturization of recrystallized grains and control of directionality. However, when Mn is added in excess of 1.3%, primary crystals of a giant intermetallic compound are formed at low casting speeds unless the amounts of Si and Fe added are controlled, resulting in reduced formability. On the other hand, if Mn is less than 0.20%, the effect of adding Mn itself becomes small. Therefore
Mn was set in the range of 0.20 to 1.3%.

Fe: FeはSi、Mnとともに方向性の改善と再結晶粒微細化に
有効である。すなわちFeはMnの晶出および析出を促進さ
せる作用を有し、均熱処理と組合せることによって再結
晶粒を微細化しかつ方向性を安定化するのに有効であ
る。但しこの発明の場合Mnを必須成分としている関係
上、Feが1.3%を越えれば巨大金属間化合物の生成域を
外して方向性の安定化を図ることが困難となる。一方Fe
が0.20%未満では方向性改善および再結晶粒微細化効果
が充分ではなく、したがってFeは0.20〜1.3%の範囲内
に限定した。
Fe: Fe, together with Si and Mn, is effective for improving directionality and refining recrystallized grains. That is, Fe has an action to promote crystallization and precipitation of Mn, and is effective in refining recrystallized grains and stabilizing directionality by being combined with soaking. However, in the case of the present invention, since Mn is an essential component, if Fe exceeds 1.3%, it is difficult to stabilize the direction by excluding the formation region of the huge intermetallic compound. On the other hand Fe
Is less than 0.20%, the effect of improving the directionality and refining the recrystallized grains is not sufficient. Therefore, Fe is limited to the range of 0.20 to 1.3%.

以上の各成分の残存は、第1発明の場合は、Alおよび
付可避的不純物とすれば良い。
In the case of the first invention, the remaining components described above may be Al and unavoidable impurities.

一方第2発明の場合は、より高強度が必要となる用途
向けの材料、例えば缶の胴材、食缶材、缶蓋材などに適
したアルミニウム合金圧延板を提供するため、前述のS
i、Fe、Mnのほか、Cuおよび/またはMgを含有させる。
これらの成分の限定理由を次に説明する。
On the other hand, in the case of the second invention, in order to provide a material for applications requiring higher strength, for example, an aluminum alloy rolled plate suitable for a can body material, a food can material, a can lid material, etc.
In addition to i, Fe, Mn, Cu and / or Mg are contained.
The reasons for limiting these components are described below.

Cu: Cuは強度を向上させるとともに、塗装焼付け後の伸び
を向上させて形成性を良好にするに有効な元素である。
但し、1.0%を越えてCuを添加した場合には、強度は向
上するものの、成形性がかえって低下してしまう。一方
Cuが0.1%未満では大幅な強度向上が望めないところか
ら、Cuは0.1〜1.0%の範囲内とした。
Cu: Cu is an element that is effective in improving strength and improving elongation after baking to improve the formability.
However, when Cu is added in excess of 1.0%, although the strength is improved, the moldability is rather lowered. on the other hand
If the Cu content is less than 0.1%, a significant improvement in strength cannot be expected, so the Cu content is set in the range of 0.1 to 1.0%.

Mg: MgはCuと同様に強度向上と塗装焼付け後の伸び向上に
有効な元素である。但しMgが0.30%未満では用途に応じ
た強度を期待することができず、一方5.0%を越えれば
成形性が極端に低下することから、0.30〜5.0%の範囲
内に限定した。
Mg: Like Cu, Mg is an effective element for improving strength and elongation after baking. However, if the Mg is less than 0.30%, the strength according to the application cannot be expected, while if it exceeds 5.0%, the moldability will be extremely reduced, so it was limited to the range of 0.30 to 5.0%.

なお通常のアルミニウム合金においては、鋳塊結晶粒
微細化のために、TiあるいはTiおよびBを微量添加する
ことが多く、第1発明および第2発明のアルミニウム合
金圧延板においても微量のTi、あるいはTiおよびBを含
有する場合を除外するものではない。但しTiを添加する
場合、0.01%未満では鋳塊結晶粒微細化効果が得られ
ず、一方0.15%を越えれば初晶Ti3Alが晶出して成形性
を害するから、Tiは0.01〜0.15%の範囲内とすることが
好ましい。またTiとともにBを添加する場合、Bが1ppm
未満ではその効果がなく、一方500ppmを越えればTiB2
粗大粒子が混入して成形性を害するから、Bは1〜500p
pmの範囲内とすることが好ましい。
In ordinary aluminum alloys, a small amount of Ti or Ti and B is often added in order to refine the ingot crystal grains. In the aluminum alloy rolled sheets of the first and second inventions, a small amount of Ti or This does not exclude the case where Ti and B are contained. However, in the case of adding Ti, if less than 0.01%, the effect of refining the ingot crystal grain cannot be obtained, while if it exceeds 0.15%, primary crystal Ti 3 Al is crystallized to impair the formability. Is preferably within the range. When B is added together with Ti, B is 1ppm
If it is less than 500 ppm, on the other hand, if it exceeds 500 ppm, coarse particles of TiB 2 are mixed and formability is impaired.
It is preferable to be within the range of pm.

次にこの発明における製造プロセス条件について説明
する。
Next, the manufacturing process conditions in the present invention will be described.

先ず前述のような成分組成を有するアルミニウム合金
鋳塊を常法にしたがって連続鋳造法、半連続鋳造法、あ
るいばDC鋳造法により作成する。
First, an aluminum alloy ingot having the above-described composition is prepared by a continuous casting method, a semi-continuous casting method, or a DC casting method according to a conventional method.

次いでその鋳塊に対して、均質化処理としての加熱を
施した後熱間圧延前の予備加熱を施すか、または均質化
を兼ねた熱間圧延予備加熱を施す。このような均質化処
理もしくは熱間圧延前の予備加熱においては、鋳塊中に
析出するMn系の不溶性化合物の析出帯を鋳塊断面での平
均面積率で40%未満となるよう、換言すればMn系の不溶
性化合物が実質的に析出していない無析出帯の領域の平
均面積率が60%以上となるように調整する。
Next, the ingot is heated as a homogenization treatment and then subjected to preheating before hot rolling, or is subjected to hot rolling preheating also serving as homogenization. In such a homogenization treatment or preheating before hot rolling, in other words, the precipitation zone of the Mn-based insoluble compound that precipitates in the ingot is less than 40% in terms of the average area ratio in the ingot cross section. For example, it is adjusted so that the average area ratio of the region of the non-precipitation zone where the Mn-based insoluble compound is not substantially precipitated is 60% or more.

すなわち、鋳塊に対する均質化処理または熱間圧延前
の予備加熱の昇温過程においては、Mn系の不溶性化合物
が分散析出するが、その加熱を高温で長時間行なうこと
によりその析出物は次第にマトリックス中に溶け込み、
第1図に模式的に示すように、析出物が群状に残ってい
る領域、すなわち析出物帯1と、析出物がAlマトリック
ス中に溶け込んで実質的に析出物が存在しなくなった無
析出物帯2とに分かれて行く。なお無析出物帯2では
(Mn,Fe)Al6等の晶出物3が晶出してるのが通常であ
る。このような無析出物帯の鋳塊断面における平均面積
率が60%以上となるように予備加熱または均質化処理に
おける加熱条件を制御するのである。このように鋳塊段
階での無析出物帯の平均面積率が60%以上であれば、連
続焼鈍炉を用いた急速昇温急速冷却焼鈍を施した場合で
も、従来の徐速焼鈍であるバッチ焼鈍で得られる成形加
工用硬質アルミニウム合金圧延板と同等かまたはそれ以
上の安定した方向性を有ししかも結晶粒が微細で成形性
および強度ともに満足し得る圧延板を得ることができ
る。一方無析出物帯の面積率が60%未満では、結晶粒度
が微細であるが方向性の点で従来のバッチ焼鈍により得
られた圧延板より耳率の高いものしか得られない。
That is, in the process of increasing the temperature of the ingot by homogenization treatment or preheating before hot rolling, insoluble Mn-based compounds are dispersed and precipitated, but by performing the heating at a high temperature for a long time, the precipitate gradually becomes a matrix. Melts in,
As schematically shown in FIG. 1, a region in which the precipitates remain in a group, that is, a precipitate zone 1, and a non-precipitate in which the precipitates have dissolved into the Al matrix and substantially no precipitates exist. It is divided into zone 2 and goes. In the non-precipitated zone 2, a crystallized substance 3 such as (Mn, Fe) Al 6 is usually crystallized. The heating conditions in the preheating or homogenization treatment are controlled so that the average area ratio of such a precipitate-free zone in the ingot cross section is 60% or more. As described above, if the average area ratio of the precipitate-free zone at the ingot stage is 60% or more, even if the rapid heating and rapid cooling annealing using the continuous annealing furnace is performed, the conventional slow annealing batch is used. It is possible to obtain a rolled sheet having a stable orientation equal to or higher than that of a hardened aluminum alloy rolled sheet for forming obtained by annealing, and having fine crystal grains and satisfying both formability and strength. On the other hand, when the area ratio of the non-precipitated zone is less than 60%, the crystal grain size is fine, but in terms of directionality, only those having a higher ear ratio than the rolled sheet obtained by the conventional batch annealing can be obtained.

ここで、鋳塊断面の無析出物帯が占有する面積率は、
透過電子顕微鏡を用いて直接観察を行ない、10〜20視野
の無析出物帯を含む領域における無析出物帯の占有率を
直接調べる方法もあるが、次の方法が簡便でかつ測定に
おけ個人差を排除することができる。すなわち、測定す
べき鋳塊の断面をダイヤモンドペースト研磨あるいはマ
ゴメット仕上研磨等によりミクロ研磨し、ケラー氏液を
約40倍の純水で薄めたエッチング液を用いて室温にて約
60〜80秒浸漬エッチングし、水洗・乾燥後、光学顕微鏡
による断面組織像を画像解析装置を用いて処理して、晶
出物の部分を消すとともに無析出物帯と析出物帯を2値
化し、無析出物帯の占有率を面積率で求める。このよう
に光学顕微鏡による断面組織像を画像処理装置で2値化
処理した例を第2図に示す。第2図は第1図に示される
断面組織像を処理した場合の例を示すものであり、白地
の部分が無析出物帯2、網目を施した部分が析出物帯1
をそれぞれ示し、断面組織が2値化されていることが判
る。
Here, the area ratio occupied by the precipitate-free zone of the ingot cross section is
There is also a method of directly observing by using a transmission electron microscope and directly examining the occupancy of the precipitate-free zone in a region including the precipitate-free zone in 10 to 20 visual fields. Differences can be eliminated. That is, the cross section of the ingot to be measured is micro-polished by diamond paste polishing or Magomet finish polishing, etc., and at room temperature using an etching solution diluted with Keller's solution by about 40 times pure water.
After immersion etching for 60 to 80 seconds, after washing and drying, the cross-sectional structure image by an optical microscope is processed using an image analyzer to eliminate the crystallized portion and binarize the non-precipitated zone and the precipitated zone. And the occupancy of the non-precipitated zone is determined by the area ratio. FIG. 2 shows an example in which the cross-sectional tissue image obtained by the optical microscope is binarized by the image processing apparatus. FIG. 2 shows an example in which the cross-sectional structure image shown in FIG. 1 is processed, wherein the white background portion is the non-precipitate zone 2, and the meshed portion is the precipitate zone 1.
And it can be seen that the cross-sectional structure is binarized.

なお均質化処理もしくは熱間圧延前の予備加熱におい
て無析出物帯の平均面積率が60%となるように調整する
ためには、それ均質化処理等の加熱温度を従来の一般的
な加熱温度より高目とし、また加熱時間も長時間とすれ
ば良い。具体的な加熱温度および時間は成分組成によっ
て異なるが、第1発明の合金組成の場合は、600〜640℃
で15時間以上とすれば良く、また第2発明の合金組成の
場合は560〜630℃で15時間以上とすれば良い。
In order to adjust the average area ratio of the precipitate-free zone to 60% in the preheating before the homogenization treatment or the hot rolling, the heating temperature in the homogenization treatment or the like is set to the conventional general heating temperature. The heating time may be longer and the heating time may be longer. The specific heating temperature and time vary depending on the component composition, but in the case of the alloy composition of the first invention, 600 to 640 ° C.
15 hours or more, and in the case of the alloy composition of the second invention, it may be 15 hours or more at 560-630 ° C.

上述のように鋳塊に対する均質化処理あるいは熱間圧
延前の予備加熱において無析出物帯の面積率を調整した
後、常法にしたがって圧延し、所要の中間板厚とする。
この圧延は熱間圧延のみによって行なっても良く、ある
いは熱間圧延と冷間圧延を組合せて行なっても良い。
After adjusting the area ratio of the precipitate-free zone in the ingot homogenization treatment or preheating before hot rolling as described above, the ingot is rolled according to a conventional method to obtain a required intermediate plate thickness.
This rolling may be performed only by hot rolling, or may be performed by a combination of hot rolling and cold rolling.

圧延後の中間板厚の板に対しては、第1発明の場合は
450℃以上の範囲内の温度、また第2発明の場合は450〜
580℃の範囲内の温度に0.5℃/sec以上の昇温速度で急速
加熱し、その温度から直ちに急冷、あるいはその温度に
60秒以内の時間保持して急冷する中間熱処理(中間焼
鈍)を施す。この中間熱処理は再結晶による圧延性、成
形性、強度の調整のために行なうものであり、既に述べ
たところから明らかなように連続焼鈍炉を用いて行う。
ここで連続焼鈍炉の特性として昇温速度、冷却速度は生
産効率の面から0.5℃/sec未満とすることはまれであ
り、また鋳造段階での無析出物帯の面積率を60%以上と
した効果も昇温速度が速ければ速い程大きくなり、0.5
℃/sec未満の昇温速度では従来のバッチ焼鈍材よりむし
ろ耳率は高くなってしまうから、昇温速度は0.5℃/sec
以上とした。冷却速度については特に規制は不要である
が、生産効率の面からは0.5℃/sec以上の急速冷却が好
ましく、また強度の面から溶体化効果を期待する場合も
0.5℃/sec以上の急速冷却が好ましい。中間熱処理の処
理温度は、長時間保持を行なわなくとも完全な再結晶組
織が得られるように450℃を下限とした。450℃未満では
60秒以内の短時間保持では充分な再結晶組織が得られな
い。また450℃以上の温度域まで加熱昇温すれば、その
温度域に到達後保持は行なわなくても再結晶は完了する
が、溶体化効果による強度向上を期待する場合は60秒以
内の保持を行なっても良いとした。またこの中間熱処理
における処理温度の上限は、第1発明の場合は特に定め
ないが、通常は620℃程度以下とする。一方Mgおよび/
またはCuを添加した第2発明の合金組成の場合は、580
℃以上では共晶融解を招くおそれがあるから、上限を58
0℃とした。
In the case of the first invention, for the intermediate thickness plate after rolling,
A temperature in the range of 450 ° C. or higher, and in the case of the second invention, 450 to
Rapidly heat to a temperature in the range of 580 ° C at a rate of 0.5 ° C / sec or more, and immediately cool from that temperature, or
Intermediate heat treatment (intermediate annealing) for rapid cooling while holding for less than 60 seconds is performed. This intermediate heat treatment is performed to adjust the rollability, formability, and strength by recrystallization, and is performed using a continuous annealing furnace as is apparent from the above description.
Here, as a characteristic of the continuous annealing furnace, the heating rate and cooling rate are rarely set to less than 0.5 ° C / sec from the viewpoint of production efficiency, and the area ratio of the precipitate-free zone in the casting stage is set to 60% or more. The higher the heating rate, the greater the effect
At a heating rate lower than ℃ / sec, the ear rate becomes higher than that of the conventional batch annealing material.
It was above. Although there is no particular restriction on the cooling rate, rapid cooling of 0.5 ° C / sec or more is preferred from the viewpoint of production efficiency, and also when the solution effect is expected from the viewpoint of strength.
Rapid cooling of 0.5 ° C./sec or more is preferred. The lower limit of the intermediate heat treatment temperature was 450 ° C. so that a complete recrystallized structure could be obtained without holding for a long time. Below 450 ° C
If the holding time is shorter than 60 seconds, a sufficient recrystallized structure cannot be obtained. If the temperature is raised to 450 ° C or higher, recrystallization will be completed without holding after reaching the temperature range, but if the strength is expected to be improved by the solution effect, hold it within 60 seconds. You can do it. Although the upper limit of the processing temperature in the intermediate heat treatment is not particularly defined in the case of the first invention, it is usually set to about 620 ° C. or lower. On the other hand, Mg and / or
Or 580 in the case of the alloy composition of the second invention to which Cu is added.
If the temperature is higher than ℃, eutectic melting may occur.
The temperature was set to 0 ° C.

このようにして中間熱処理を行なった後には、成形性
と強度を調整するために最終冷間圧延を行なう。この最
終冷間圧延ににおける圧延率が20%未満では、用途に応
じた必要強度を有する板が得られなくなるから、20%以
上の圧延率で最終冷間圧延するととした。
After performing the intermediate heat treatment in this way, final cold rolling is performed to adjust the formability and strength. If the rolling reduction in the final cold rolling is less than 20%, a plate having the required strength according to the application cannot be obtained, so the final cold rolling was performed at a rolling reduction of 20% or more.

以上のようにして得られた成形加工用硬質アルミニウ
ム合金圧延板は、従来のバッチ焼鈍方式により得られた
圧延板と比較して、この組成域の特徴である結晶粒が微
細であることに加え、成形加工の際の耳率の点において
も従来と同等以上のものが得られる。
The hard aluminum alloy rolled sheet for forming obtained as described above has a fine crystal grain, which is a feature of this composition range, as compared with a rolled sheet obtained by a conventional batch annealing method. Also, the ear ratio at the time of molding can be equal to or higher than the conventional one.

実 施 例 [実施例1] 第1表に示すようなほぼ同一の成分組成を有する合金
符号A〜Hの合金を常法にしたがってDC鋳造し、得られ
た鋳塊に対し、熱間圧延前の加熱における加熱温度、時
間を調整することによって無析出物帯の面積率を調整し
た。その加熱温度、時間および無析出物帯面積率を第2
表に示す。引続いて3.0mmの板厚まで熱間圧延し、さら
に0.85mmまで第1次冷間圧延を施した。その後連続焼鈍
もしくはバッチ焼鈍による中間熱処理を施した。その条
件も第2表に示す。なお連続焼鈍における急熱急冷は、
昇温速度約25℃/sec、冷却速度約22℃/secとし、保持は
行なわなかった。さらに中間焼鈍の後、最終冷間圧延を
施して0.36mmの圧延板とした。
EXAMPLES [Example 1] Alloys having alloy codes A to H having almost the same composition as shown in Table 1 were DC-cast according to a conventional method, and the obtained ingot was subjected to hot rolling. The area ratio of the non-precipitated zone was adjusted by adjusting the heating temperature and time in the heating. The heating temperature, time and non-precipitated zone area ratio were changed to the second.
It is shown in the table. Subsequently, the sheet was hot-rolled to a thickness of 3.0 mm and further subjected to primary cold rolling to 0.85 mm. Thereafter, an intermediate heat treatment by continuous annealing or batch annealing was performed. The conditions are also shown in Table 2. The rapid quenching in continuous annealing is as follows:
The heating rate was about 25 ° C./sec and the cooling rate was about 22 ° C./sec, and no holding was performed. Further, after the intermediate annealing, final cold rolling was performed to obtain a 0.36 mm rolled plate.

以上のようにして得られた各板に対し、方向性、再絞
り性、しごき加工性、およびフローラインを調べた結果
を第3表に示す。なお第3表において再絞り性、しごき
加工性、およびフローラインの評価は、合金C(従来プ
ロセス材)を基準とし、それを良(○印)として、やや
良を△印、不良を×印、従来プロセス材よりも優れてい
るものを◎印とした。また方向性は深絞り後の耳率(イ
ヤリング率)で示した。なおまた、鋳塊の加熱処理後の
無析出物帯の面積率は、既に述べたようにミクロ研磨し
た後エッチングし、光学顕微鏡で得られた組織像を画像
解析装置で処理して、2値化して求めた。
Table 3 shows the results obtained by examining the directionality, redrawability, ironing workability, and flow line of each plate obtained as described above. In Table 3, the evaluation of redrawability, ironing workability, and flow line was based on alloy C (conventional process material), which was evaluated as good (印), slightly good with Δ, and defective with X. And those which are superior to the conventional process materials are marked with ◎. The directionality was indicated by ear ratio (earring ratio) after deep drawing. In addition, the area ratio of the non-precipitated zone after the heat treatment of the ingot was determined by micro-polishing and etching as described above, and processing the structure image obtained by the optical microscope with an image analyzer to obtain a binary value. I asked for it.

第3表から、この発明の条件に従って製造したアルミ
ニウム合金圧延板(本発明例)では、従来例もしくな比
較例により得られた圧延板と比較して、方向性は従来例
による圧延板と同等以上であり、かつ再絞り性やフロー
ラインの点でも優れた素材となっていることが明らかで
ある。
From Table 3, it can be seen that the directionality of the rolled aluminum alloy sheet (Example of the present invention) manufactured according to the conditions of the present invention is higher than that of the rolled sheet obtained by the conventional example or the comparative example. It is clear that the material is equal to or more than that and is excellent in redrawability and flow line.

なお鋳塊段階で無析出物帯の面積率を調整しかつその
面積率を測定しておいた多数の鋳塊に対し、前記の実施
例と同様に熱間圧延→第1次冷間圧延→中間焼鈍(連続
焼鈍)→最終冷間圧延を行ない、その最終冷間圧延後の
最終板について圧延方向と平行な断面をミクロ研磨し
て、前述の方法でエッチングし、さらに光学顕微鏡と画
像処理装置を用い、直接析出物の占有面積率を測定し
た。その結果を鋳塊段階での無析出物帯面積率と対応し
て第3図に示す。第3図から明らかなように熱間圧延前
の鋳塊段階での測定結果と最終板における測定結果とは
直線的な相関関係が得られている。
In the ingot stage, the area ratio of the non-precipitated zone was adjusted and the area ratio was measured for a large number of ingots, in the same manner as in the above embodiment, hot rolling → first cold rolling → Intermediate annealing (continuous annealing) → final cold rolling is performed, and the final plate after the final cold rolling is micro-polished in a section parallel to the rolling direction, etched by the above-described method, and further optical microscope and image processing device Was used to directly measure the occupied area ratio of the precipitate. The results are shown in FIG. 3 corresponding to the non-precipitated zone area ratio at the ingot stage. As is clear from FIG. 3, a linear correlation is obtained between the measurement result at the ingot stage before hot rolling and the measurement result at the final plate.

[実施例2] 第4表に示すような種々の成分組成を有する合金符号
I〜Nの合金を常法にしたがってDC鋳造し、得られた各
鋳塊に対して熱間圧延前の加熱温度・時間を調整して第
5表中に示すように無析出物帯の面積率を調整した。続
いて2.5〜4.2mm厚まで熱間圧延し、さらに一部のものを
除いて1.0〜2.0mm厚まで第1次冷間圧延を施した。その
後第5表中に示すような種々の条件で中間熱処理(但
し、第5表中の「急熱急冷」は、連続焼鈍にて昇温速度
25℃/sec程度冷却速度22℃/sec程度、保持なしで行なっ
たもの)を施してから最終の2次冷間圧延を施して0.20
〜0.30mm厚の最終圧延板とした。さらにその圧延板に必
要に応じて第5表中に示すように安定化焼鈍もしくはベ
ーキングを行なった。なお第5表中において合金符号J
のものは、熱間圧延上りで第1次の中間熱処理を行な
い、次いで、0.33mmまで冷間圧延してから第2次の中間
熱処理を行ない、さらに最終の2次冷間圧延を行なった
ものである。
[Example 2] Alloys of alloy codes I to N having various component compositions as shown in Table 4 were DC cast according to a conventional method, and the obtained ingots were heated at a heating temperature before hot rolling. -The time was adjusted to adjust the area ratio of the precipitate-free zone as shown in Table 5. Subsequently, hot rolling was performed to a thickness of 2.5 to 4.2 mm, and first cold rolling was performed to a thickness of 1.0 to 2.0 mm except for a part. Thereafter, the intermediate heat treatment under various conditions as shown in Table 5 (however, the “rapid heat quenching” in Table 5 refers to the rate of temperature increase by continuous annealing).
About 25 ° C / sec, a cooling rate of about 22 ° C / sec, without holding) and then a final secondary cold rolling to 0.20
The final rolled plate was 0.30 mm thick. Further, the rolled sheet was subjected to stabilized annealing or baking as necessary as shown in Table 5. In Table 5, alloy code J
The first one was subjected to the first intermediate heat treatment after hot rolling, then cold-rolled to 0.33 mm, followed by the second intermediate heat treatment, and the final second cold-rolling It is.

以上の各材料について方向性、LDR(限界絞り比)、
エリクセン値を調べた結果を第6表に示す。
The directionality, LDR (limit drawing ratio),
Table 6 shows the results obtained by examining Erichsen values.

Mn、Fe、Siが含有される合金の特徴として、急熱焼鈍
によりいずれも結晶粒が微細化され、フローラインは良
好となるが、それに加えて第6表から明らかなように、
本発明例によるものは、従来例のものと比較して方向性
が同等以上に低く安定化され、かつ副次的にLDR、エリ
クセン値も従来例の場合より良好となっている。
As a feature of the alloy containing Mn, Fe, and Si, the crystal grains are all refined by rapid thermal annealing, and the flow line becomes good. In addition, as is clear from Table 6,
According to the example of the present invention, the directionality is stabilized to be equal to or higher than that of the conventional example, and the LDR and Erichsen values are also better than the conventional example.

発明の効果 以上の実施例からも明らかなように、この発明の方法
によれば、Si、Fe、Mnを添加した系の成形加工用用硬質
アルミニウム合金圧延板を連続焼鈍を適用して製造する
にあたって、Si、Mn、Feの含有量を厳密に規制すること
なく、高温長時間の鋳塊加熱を施して鋳塊段階での無析
出物帯の面積率を調整することにより、成形加工時の耳
率が従来のバッチ焼鈍を適用した場合と同程度以上に低
く、しかも成形加工性も優れた材料を得ることが可能と
なった。
Effect of the Invention As is clear from the above examples, according to the method of the present invention, a hard aluminum alloy rolled plate for forming of a system to which Si, Fe and Mn are added is manufactured by applying continuous annealing. In doing so, without strictly controlling the content of Si, Mn, Fe, by applying ingot heating for a long time at high temperature and adjusting the area ratio of the precipitate-free zone at the ingot stage, It has become possible to obtain a material having an ear ratio as low as or higher than the case where conventional batch annealing is applied, and also having excellent moldability.

【図面の簡単な説明】[Brief description of the drawings]

第1図は鋳塊段階において無析出物帯の面積率を調整し
た状態の鋳塊断面組織を模式的に示す模式図、第2図は
第1図の断面組織について画像処理により2値化した状
態を示す模式図、第3図は鋳塊段階での無析出物帯の面
積率と最終圧延板での析出物面積率との関係を示す相関
図である。
FIG. 1 is a schematic view schematically showing the ingot cross-sectional structure in a state where the area ratio of the non-precipitated zone is adjusted in the ingot stage, and FIG. 2 is binarized by image processing for the cross-sectional structure of FIG. FIG. 3 is a schematic diagram showing the state, and FIG. 3 is a correlation diagram showing the relationship between the area ratio of the precipitate-free zone in the ingot stage and the precipitate area ratio in the final rolled sheet.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梶山 毅 東京都中央区日本橋室町4丁目1番地 スカイアルミニウム株式会社内 (56)参考文献 特開 昭58−126967(JP,A) ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Takeshi Kajiyama 4-1-1 Nihonbashi Muromachi, Chuo-ku, Tokyo Inside Sky Aluminum Co., Ltd. (56) References JP-A-58-126967 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%でSi0.05〜0.60%、Mn0.20〜1.3
%、Fe0.20〜1.3%を含有し、残部がAlおよび不可避的
不純物よりなるアルミニウム合金を素材とし、そのアル
ミニウム合金鋳塊中の無析出物帯の領域が鋳塊断面の平
均面積率で60%以上を占めるように、その鋳塊に600〜6
40℃の温度での15時間以上の高温長時間加熱を施して鋳
塊組織を調整した後、所要の板厚となるまで圧延し、続
いて0.5℃/sec以上の昇温速度で450℃以上の温度域まで
加熱して、直ちにもしくは60秒以内の時間保持してから
急速冷却し、さらに圧延率20%以上の冷間圧延を施すこ
とを特徴とする成形加工用硬質アルミニウム合金圧延板
の製造方法。
(1) 0.05 to 0.60% by weight of Si, 0.20 to 1.3% of Mn
%, Fe 0.20 to 1.3%, the balance being Al and an unavoidable impurity made of an aluminum alloy, and the region of the non-precipitated zone in the aluminum alloy ingot has an average area ratio of 60% of the ingot cross section. % In the ingot to account for more than 600%
After adjusting the ingot structure by heating at a temperature of 40 ° C for 15 hours or more at a high temperature for a long time, rolling to the required sheet thickness, and then 450 ° C or more at a heating rate of 0.5 ° C / sec or more Production of hard aluminum alloy rolled sheet for forming, characterized in that it is heated to the temperature range described above, immediately cooled for a period of time within 60 seconds and then rapidly cooled, and further subjected to cold rolling at a rolling reduction of 20% or more. Method.
【請求項2】重量%でSi0.05〜0.60%、Mn0.20〜1.3
%、Fe0.20〜1.3%を含有し、さらにCu0.10〜1.0%、Mg
0.30〜5.0%のうちの1種または2種を含有するアルミ
ニウム合金を素材とし、そのアルミニウム合金鋳塊中の
無析出物帯の領域が鋳塊断面の平均面積率で60%以上を
占めるように、その鋳塊に560〜630℃の温度での15時間
以上の高温長時間加熱を施して鋳塊組織を調整した後、
所要の板厚となるまで圧延し、続いて0.5℃/sec以上の
昇温速度で450〜580℃の温度域まで加熱して、直ちにも
しくは60秒以内の時間保持してから急速冷却し、さらに
圧延率20%以上の冷間圧延を施すことを特徴とする成形
加工用硬質アルミニウム合金圧延板の製造方法。
(2) 0.05 to 0.60% of Si and 0.20 to 1.3 of Mn in weight%.
%, Fe 0.20-1.3%, Cu0.10-1.0%, Mg
An aluminum alloy containing one or two of 0.30 to 5.0% is used as a material, and the area of the precipitate-free zone in the aluminum alloy ingot occupies 60% or more in the average area ratio of the ingot cross section. After heating the ingot for 15 hours or more at a temperature of 560 to 630 ° C for a long time to adjust the ingot structure,
Rolling to the required sheet thickness, then heating to a temperature range of 450 to 580 ° C at a heating rate of 0.5 ° C / sec or more, immediately or holding for 60 seconds or less, and then rapidly cooling, A method for producing a hard aluminum alloy rolled sheet for forming, characterized by performing cold rolling at a rolling ratio of 20% or more.
JP61025252A 1986-02-07 1986-02-07 Method of manufacturing hard aluminum alloy rolled sheet for forming Expired - Lifetime JP2584615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61025252A JP2584615B2 (en) 1986-02-07 1986-02-07 Method of manufacturing hard aluminum alloy rolled sheet for forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61025252A JP2584615B2 (en) 1986-02-07 1986-02-07 Method of manufacturing hard aluminum alloy rolled sheet for forming

Publications (2)

Publication Number Publication Date
JPS62182257A JPS62182257A (en) 1987-08-10
JP2584615B2 true JP2584615B2 (en) 1997-02-26

Family

ID=12160805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61025252A Expired - Lifetime JP2584615B2 (en) 1986-02-07 1986-02-07 Method of manufacturing hard aluminum alloy rolled sheet for forming

Country Status (1)

Country Link
JP (1) JP2584615B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487740A (en) * 1987-09-28 1989-03-31 Sky Aluminium Aluminum alloy rolled plate for container, ingot for rolled plate and manufacture of rolled plate
JPH01123045A (en) * 1987-11-06 1989-05-16 Sumitomo Light Metal Ind Ltd Aluminum sheet having superior formability and manufacture thereof
JPH01129688A (en) * 1987-11-16 1989-05-22 Mitsubishi Electric Corp Picture signal receiver
JP2628740B2 (en) * 1989-02-20 1997-07-09 古河電気工業株式会社 Manufacturing method of aluminum alloy sheet for forming
WO1992004476A1 (en) * 1990-09-05 1992-03-19 Golden Aluminum Company Aluminum alloy sheet stock
JP3270709B2 (en) * 1996-04-10 2002-04-02 東洋鋼鈑株式会社 Method for producing resin-coated aluminum alloy sheet for drawn ironing can
KR101988146B1 (en) * 2014-12-19 2019-06-11 노벨리스 인크. Aluminum alloy suitable for the high speed production of aluminum bottle and the process of manufacturing thereof
CN107641736A (en) * 2016-07-20 2018-01-30 深圳市智联超科科技有限公司 It is a kind of can anodic oxidation pack alloy

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126967A (en) * 1982-01-23 1983-07-28 Kobe Steel Ltd Manufacture of hard aluminum alloy plate having low directional property

Also Published As

Publication number Publication date
JPS62182257A (en) 1987-08-10

Similar Documents

Publication Publication Date Title
US5634991A (en) Alloy and method for making continuously cast aluminum alloy can stock
JP2584615B2 (en) Method of manufacturing hard aluminum alloy rolled sheet for forming
JPH05195171A (en) Production of aluminum hard plate excellent in formability and low in earing rate
JP3600022B2 (en) Manufacturing method of aluminum base alloy sheet for deep drawing
US6261391B1 (en) Aluminum alloy plate for super plastic molding capable of cold pre-molding, and production method for the same
JPS626740B2 (en)
JP3161141B2 (en) Manufacturing method of aluminum alloy sheet
JP3897926B2 (en) Method for producing aluminum alloy sheet with excellent formability
JPS62149857A (en) Production of aluminum alloy foil having excellent formability
JPS6022054B2 (en) High-strength Al alloy thin plate with excellent formability and corrosion resistance, and method for producing the same
JP2626859B2 (en) Method for producing aluminum alloy sheet for high strength forming with low anisotropy
JP3201783B2 (en) Method of manufacturing aluminum alloy hard plate excellent in strength and formability
JP3587993B2 (en) Manufacturing method of aluminum alloy sheet for deep drawing
JPS6254183B2 (en)
JPS63125645A (en) Production of aluminum alloy material having fine crystal grain
JPH10330897A (en) Production of aluminum base alloy sheet for deep drawing
JPH0730430B2 (en) Aluminum alloy plate for drawing and manufacturing method thereof
JPH0570697B2 (en)
JPH08134610A (en) Production of aluminum alloy sheet for forming
JPH0387329A (en) Aluminum alloy material for baking finish and its manufacture
JP3180812B2 (en) Method for producing Al-Fe alloy foil
JPH07150282A (en) Al-mg-si alloy sheet excellent in formability and baking hardenability by crystalline grain control and its production
JP2000001730A (en) Aluminum alloy sheet for can body, and its production
JPH08333644A (en) Aluminum alloy foil and its production
JPS6054383B2 (en) High-strength Al alloy thin plate with excellent formability and corrosion resistance, and method for producing the same