JP2584519B2 - Method for producing perovskite-type composite oxide powder - Google Patents

Method for producing perovskite-type composite oxide powder

Info

Publication number
JP2584519B2
JP2584519B2 JP1343367A JP34336789A JP2584519B2 JP 2584519 B2 JP2584519 B2 JP 2584519B2 JP 1343367 A JP1343367 A JP 1343367A JP 34336789 A JP34336789 A JP 34336789A JP 2584519 B2 JP2584519 B2 JP 2584519B2
Authority
JP
Japan
Prior art keywords
perovskite
type composite
composite oxide
oxide powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1343367A
Other languages
Japanese (ja)
Other versions
JPH03205316A (en
Inventor
馨一 佐藤
裕介 光吉
新一 代々城
雅一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink Mfg Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP1343367A priority Critical patent/JP2584519B2/en
Publication of JPH03205316A publication Critical patent/JPH03205316A/en
Application granted granted Critical
Publication of JP2584519B2 publication Critical patent/JP2584519B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/20Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state
    • C01B13/22Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state of halides or oxyhalides
    • C01B13/28Methods for preparing oxides or hydroxides in general by oxidation of elements in the gaseous state; by oxidation or hydrolysis of compounds in the gaseous state of halides or oxyhalides using a plasma or an electric discharge
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は,プロブスカイト型複合酸化物粉末の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a method for producing a provskite-type composite oxide powder.

ペロブスカイト型複合酸化物粉末は,焼き固めた焼結
体またはポリマー中に分散させ,コンデンサー等の強誘
電体材料,圧電体材料等に広く用いられている。このた
め上記材料として,焼結性,結晶性,誘電性,分散性,
均一粒子径等に優れた特性を有するペロブスカイト型複
合酸化物粉末が要望されている。
The perovskite-type composite oxide powder is dispersed in a sintered compact or polymer, and is widely used in ferroelectric materials such as capacitors, piezoelectric materials, and the like. For this reason, as the above materials, sinterability, crystallinity, dielectric properties,
There is a demand for a perovskite-type composite oxide powder having excellent properties such as a uniform particle diameter.

(従来の技術) 従来から,ペロブスカイト型複合酸化物粉末を製造す
る方法には通常次のような方法が知られている。
(Prior Art) Conventionally, the following method is generally known as a method for producing a perovskite-type composite oxide powder.

一つには固相法および共沈澱法等で,得られた原材料
から焼結および粉砕工程を経て製造される方法である。
そのため焼結に際して多大のエネルギーを必要とし,粉
砕に当たっては不純物が混入するおそれがあり,粉砕方
法を注意して行なわないと結晶歪も生起する可能性等,
種々の問題点を有している。
One is a method in which the raw material obtained is subjected to sintering and pulverization steps by a solid phase method, a coprecipitation method, or the like.
Therefore, a large amount of energy is required for sintering, and impurities may be mixed in the pulverization. If the pulverization method is not performed carefully, crystal distortion may occur.
There are various problems.

他方,焼結粉砕工程を省力化した水熱合成法およびア
ルコキシド法が考案されてはいるが,水熱合成法により
製造する場合には,およそ数10気圧,200℃以上の反応条
件を必要とするため,装置が複雑になり実用的ではな
い。またアルコキシド法は,共沈澱法の一種類と考えら
れ,近年電子材料の分野における微細加工技術の面で注
目され研究が行なわれているが、この方法により製造す
る場合には,生成される粒子の大きさが極めて小さく,
二次凝集を起こし易いために取り扱いが複雑になり,さ
らに各構成元素をアルコキシドとする必要があるので,
その製造が容易ではなく,かつ高価となるため実用的で
はない。
On the other hand, although hydrothermal synthesis and alkoxide methods have been devised in which the sintering and pulverization process is labor-saving, the reaction conditions of about several tens of atmospheres and 200 ° C or more are required when manufacturing by hydrothermal synthesis. Therefore, the device becomes complicated and impractical. The alkoxide method is considered to be a type of coprecipitation method. Recently, attention has been paid to microfabrication technology in the field of electronic materials, and research has been carried out. Is extremely small,
Since secondary agglomeration is likely to occur, handling becomes complicated, and each constituent element must be alkoxide.
Its manufacture is not easy and it is not practical because it is expensive.

(発明が解決しようとする課題) 本発明は,上記の種々な欠点を改良し,焼結および粉
砕工程を経由せず,ペロブスカイト型複合酸化物粉末を
製造する方法を提供するものである。
(Problems to be Solved by the Invention) The present invention improves the above-mentioned various drawbacks and provides a method for producing a perovskite-type composite oxide powder without going through sintering and pulverization steps.

これまでにも焼結および粉砕工程,特に粉砕工程を省
力化するために,下記のような試みあるいは焼結粉砕工
程を経由しない製造方法の検討が行なわれてきた。前者
の焼結工程は経由するが,粉砕工程を省力化する試みは
以下のようである。すなわち焼結による粒成長を抑制す
るために焼結抑制剤を添加したり,焼結も仮焼程度に
し,粒成長が進行する前に止めておく方法が取られてい
た。しかしながら焼結抑制剤を添加する方法は,抑制剤
の種類によっては誘電特性に影響し,不純物が混入する
おそれもあるため使用目的が限定される。さらに仮焼程
度に留める場合も,誘電体材料として大切な誘電率が低
くなるため,使用に際して高温で再度焼結を行なう必要
があり,工程省力化になるとは限らない。
Until now, in order to save labor in the sintering and pulverizing steps, particularly in the pulverizing step, the following attempts or production methods that do not go through the sintering and pulverizing step have been studied. Although the former sintering process is performed, attempts to save labor in the pulverizing process are as follows. That is, in order to suppress grain growth due to sintering, a method of adding a sintering inhibitor or sintering to a degree of calcination and stopping the grain growth before progress has been adopted. However, the method of adding the sintering inhibitor limits the purpose of use because the dielectric characteristics may be affected depending on the type of the inhibitor and impurities may be mixed. Further, even when the temperature is kept to the degree of calcination, the dielectric constant important as a dielectric material is lowered, so that it is necessary to perform sintering again at a high temperature when used, which does not necessarily save the process.

一方後者のアルコキシド法や水熱合成法による製造方
法の検討も行なわれてはいるが,設備およびコスト面に
おいて実用的ではない。
On the other hand, although the production method by the latter alkoxide method or hydrothermal synthesis method has been studied, it is not practical in terms of equipment and cost.

上記のような問題点,すなわち焼結粉砕工程を簡素化
し,省エネルギー化をはかり,さらには結晶性良好なペ
ロブスカイト型複合酸化物粉末の製造方法を提供するこ
とを目的とする。
It is an object of the present invention to provide a method for producing a perovskite-type composite oxide powder having the above problems, that is, simplifying a sintering and pulverization process, saving energy, and having good crystallinity.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段〕 本発明は、A元素としてMg、Ca、Sr、Ba、Mn、Fe、C
o、Ni、Cu、Pbの中から選ばれた1種または2種以上の
元素と、Tiとを構成元素とする複合塩もしくはその水和
物、又は上記A元素およびTiの水酸化物、無機酸塩もし
くは有機酸塩の混合物を熱プラズマ中に供給することを
特徴とする、一般式[1]ATiO3で表されるペロブスカ
イト型複合酸化物粉末を製造する方法に関する。
(Means for Solving the Problems) The present invention relates to a method for producing Mg, Ca, Sr, Ba, Mn, Fe, C
o, one or more elements selected from Ni, Cu, and Pb, and a composite salt or a hydrate thereof containing Ti as a constituent element, or a hydroxide or an inorganic element of the above element A and Ti The present invention relates to a method for producing a perovskite-type composite oxide powder represented by the general formula [1] ATiO 3 , wherein a mixture of an acid salt or an organic acid salt is supplied into thermal plasma.

A元素の中から選ばれた一種または二種以上の元素
と,B元素の中から選ばれた一種または二種以上の元素と
を構成元素とする複合塩,すなわちペロブスカイト型複
合酸化物の前駆体であるような水和物,無機酸塩および
有機酸塩等の複合塩あるいはそれぞれの元素の塩の混合
物等何れでも良いが,好ましくは水和物としては水酸化
物,無機酸塩としては硝酸塩,炭酸塩,リン酸塩,硫酸
塩,有機酸塩としてはシュウ酸塩,クエン酸塩,酢酸
塩,蟻酸塩,酒石酸塩,安息香酸塩等を挙げることがで
きるが,これのみに限定されるものではない。さらに好
ましくは,シュウ酸塩,クエン酸塩,酒石酸塩を挙げる
ことができる。
Complex salts containing one or more elements selected from element A and one or more elements selected from element B, that is, precursors of perovskite-type composite oxide Any of hydrates, complex salts such as inorganic acid salts and organic acid salts, or a mixture of salts of the respective elements may be used. Preferably, the hydrate is hydroxide and the inorganic acid salt is nitrate. , Carbonates, phosphates, sulfates, and organic salts include, but are not limited to, oxalates, citrates, acetates, formates, tartrates, and benzoates Not something. More preferably, oxalate, citrate and tartrate can be mentioned.

複合塩の例として,ビス(シュウ酸)酸化チタン(I
V)バリウム,ビス(シュウ酸)酸化チタン(IV)スト
ロンチウム,ビス(シュウ酸)酸化チタン(IV)マグネ
シウム,ビス(シュウ酸)酸化チタン(IV)カルシウ
ム,クエン酸酸化チタン(IV)バリウム,クエン酸酸化
チタン(IV)ストロンチウム,クエン酸酸化チタン(I
V)カルシウム,クエン酸酸化チタン(IV)マグネシウ
ム,酒石酸酸化チタン(IV)バリウム,酒石酸酸化チタ
ン(IV)ストロンチウム,酒石酸酸化チタン(IV)カル
シウム,酒石酸酸化チタン(IV)マグネシウム等を挙げ
ることができるが,これのみに限定されるものではな
い。
Examples of complex salts include bis (oxalic acid) titanium oxide (I
V) Barium, bis (oxalic acid) titanium oxide (IV) strontium, bis (oxalic acid) titanium oxide (IV) magnesium, bis (oxalic acid) titanium oxide (IV) calcium, titanium citrate oxide (IV) barium, citric acid Titanium oxide (IV) strontium, titanium citrate (I
V) Calcium, titanium citrate (IV) magnesium, titanium tartrate (IV) barium, titanium tartrate (IV) strontium, titanium tartrate (IV) calcium, titanium (IV) magnesium tartrate, etc. However, the present invention is not limited to this.

それぞれの元素の塩としては,シュウ酸バリウム,シ
ュウ酸ストロンチウム,シュウ酸カルシウム,シュウ酸
マグネシウム,水酸化バリウム,水酸化ストロンチウ
ム,水酸化カルシウム,水酸化マグネシウム,シュウ酸
チタン酸カリウム等を挙げることができるが,これのみ
に限定されるものではない。
Examples of salts of each element include barium oxalate, strontium oxalate, calcium oxalate, magnesium oxalate, barium hydroxide, strontium hydroxide, calcium hydroxide, magnesium hydroxide, potassium titanate, and the like. Yes, but not limited to.

上記複合塩は複合塩製造時に,A元素またはTiと置換可
能な元素からなる化合物を添加し,複合塩中一部が置換
された複合塩でもよい。
The composite salt may be a composite salt in which a compound composed of an element A or an element which can be substituted for Ti is added during the production of the composite salt and a part of the composite salt is substituted.

また,上記複合塩あるいはそれぞれの塩に,さらに各
種金属酸化物,あるいはガラスを添加配合してもよい。
In addition, various metal oxides or glass may be further added to the above-mentioned composite salt or each salt.

A元素の中から選ばれた一種または二種以上の元素
と,Tiとを構成元素とする複合塩,あるいはそれぞれの
元素の塩の混合物等を熱プラズマ中に導入することによ
り,一般式[1]ATiO3で表わされる高い結晶性を有す
るペロブスカイト型複合酸化物粉末を得ることができ
る。
The compound represented by the general formula [1] is introduced by introducing into the thermal plasma a complex salt containing one or more elements selected from the element A and Ti as a constituent element, or a salt mixture of each element. A perovskite-type composite oxide powder having high crystallinity represented by ATiO 3 can be obtained.

用いる熱プラズマは,好ましくは,直流アークプラズ
マあるいは高周波誘導プラズマのどちらでも良いが,こ
れに限定されるものではない。
The thermal plasma used is preferably either a DC arc plasma or a high-frequency induction plasma, but is not limited thereto.

一般式[1]ATiO3に示したペロブスカイト型複合酸
化物あるいは従来の製造方法により仮焼程度に止めてお
いたペロブスカイト型複合酸化物を熱プラズマ炎中に供
給した場合には,結晶性が低い粉末しか得られず,誘電
特性向上は期待できない。一方本発明の如く,熱プラズ
マ炎中への供給原料として水和物,無機酸塩,有機酸塩
等の複合塩あるいはそれぞれの塩の混合物等を用いた場
合には,実施例に示したように,結晶性が高い粉末が得
られる。
When a perovskite-type composite oxide represented by the general formula [1] ATiO 3 or a perovskite-type composite oxide kept to a degree of calcination by a conventional manufacturing method is supplied into a thermal plasma flame, the crystallinity is low. Only powder is obtained, and no improvement in dielectric properties can be expected. On the other hand, as in the present invention, when a hydrate, an inorganic acid salt, an organic acid salt or the like, or a mixture of the respective salts is used as a feedstock into the thermal plasma flame, as shown in the examples. In addition, a powder having high crystallinity can be obtained.

本発明の如く,熱プラズマ炎中への供給原料として,
ペロブスカイト型複合酸化物の前駆体であるような水和
物,無機酸塩,有機酸塩等の複合塩あるいはそれぞれの
塩の混合物例えば水酸化物,硝酸塩,炭酸塩,リン酸
塩,硫酸塩,シュウ酸塩,クエン酸塩,酢酸塩,蟻酸
塩,酒石酸塩,安息香酸塩等を使用する場合には,熱プ
ラズマ炎中で超高温が加わると,それらの塩の熱分解に
より,ペロブスカイト型複合酸化物が製造される。さら
に熱プラズマ炎によりペロブスカイト型複合酸化物に超
高温が加わると構造変化を起こすような分解あるいはガ
ラス化が生起されると考えられる。熱プラズマ炎中では
塩の熱分解反応と生成されるペロブスカイト型複合酸化
物の分解あるいはガラス化反応とが競争的に起こるが,
塩の熱分解反応が遅いためかあるいは塩自体の分解によ
り熱プラズマによる超高温からある程度ペロブスカイト
型複合酸化物が保護されるために,結晶性良好な粉末
が,製造される。一方ペロブスカイト型複合酸化物粉末
あるいはその仮焼物を供給原料とした場合には構造変化
やガラス化が熱プラズマ炎中への原料供給と同時に生起
し始め,結果として結晶性が良好なペロブスカイト型複
合酸化物粉末は得られない。
As in the present invention, as a feedstock into a thermal plasma flame,
Hydrates, precursors of perovskite-type composite oxides, such as hydrates, inorganic acid salts and organic acid salts, or mixtures of the respective salts, such as hydroxides, nitrates, carbonates, phosphates, sulfates, When oxalate, citrate, acetate, formate, tartrate, benzoate, etc. are used, the perovskite-type composite is formed by the thermal decomposition of these salts when an ultra-high temperature is applied in a thermal plasma flame. An oxide is produced. Further, when an ultra-high temperature is applied to the perovskite-type composite oxide due to the thermal plasma flame, it is considered that decomposition or vitrification that causes a structural change occurs. In the thermal plasma flame, the thermal decomposition of the salt and the decomposition or vitrification of the generated perovskite-type composite oxide occur competitively.
A powder with good crystallinity is produced because the thermal decomposition reaction of the salt is slow or the perovskite-type composite oxide is protected to some extent from the ultra-high temperature by the thermal plasma due to the decomposition of the salt itself. On the other hand, when the perovskite-type composite oxide powder or its calcined product is used as a feedstock, structural changes and vitrification begin to occur at the same time as the supply of the raw material into the thermal plasma flame, and as a result, the perovskite-type composite oxide with good crystallinity is obtained. No product powder is obtained.

(実施例) 以下実施例により本発明をさらに詳細に説明する。た
だし,本発明の範囲は,下記実施例により何等限定され
るものではない。以下の実施例において,各原料の使用
量は,純分量を示す。
(Examples) Hereinafter, the present invention will be described in more detail with reference to Examples. However, the scope of the present invention is not limited at all by the following examples. In the following examples, the used amount of each raw material indicates a pure amount.

実施例 1 撹拌機および滴下器を備えた11フラスコに,純水300g
を仕込み,30〜35℃に保持し,よく撹拌させながら四塩
化チタン150gを1時間かけて滴下した後,30分間撹拌を
継続した。フラスコ中の溶液を取り出し,これを,シュ
ウ酸320g,純水680gを仕込み,撹拌し,65℃に保持させて
いる51フラスコ中に1時間かけて滴下した。滴下後,こ
のフラスコ中に、予め塩化バリウム215gを純水450gに溶
解させておいた溶液を1時間かけて滴下し,沈殿を生成
させた。反応により生成した沈殿物であるビス(シュウ
酸)酸化チタン(IV)バリウム(以下シュウ酸チタバリ
と記す),をろ別後洗浄し,真空乾燥した。さらに篩分
けを行ない,粒径63〜90μmの粉末を得た。次にアルゴ
ンガス流量を61/分とし,80A,10kWの入力を印加して直流
アークプラズマを発生させ,このプラズマ炎に先に篩分
けした粉末を20g/分にて供給し,ペロブスカイト型複合
酸化物粉末を得た。さらにこのペロブスカイト型複合酸
化物粉末を下記の理由によりX線回折実験を行なった。
Example 1 300 g of pure water was placed in an 11 flask equipped with a stirrer and a dropper.
The mixture was kept at 30 to 35 ° C., 150 g of titanium tetrachloride was added dropwise over 1 hour while stirring well, and then stirring was continued for 30 minutes. The solution in the flask was taken out, 320 g of oxalic acid and 680 g of pure water were charged, stirred, and added dropwise to the 51 flask maintained at 65 ° C. over 1 hour. After the dropping, a solution in which 215 g of barium chloride was previously dissolved in 450 g of pure water was dropped into the flask over 1 hour to form a precipitate. The precipitate formed by the reaction, barium bis (oxalate) titanium (IV) oxide (hereinafter referred to as titanium oxalate), was filtered, washed, and dried under vacuum. Further sieving was performed to obtain a powder having a particle size of 63 to 90 μm. Next, an argon gas flow rate of 61 / min was applied, an input of 80 A and 10 kW was applied to generate a DC arc plasma, and the previously sieved powder was supplied at 20 g / min to the plasma flame to obtain a perovskite-type composite oxidation. Product powder was obtained. Further, an X-ray diffraction experiment was performed on the perovskite-type composite oxide powder for the following reason.

ペロブスカイト型複合酸化物粉末自体の誘電特性を測
定することは粉末の誘電特性を測定することであり,測
定技術上大変困難である。しかも測定された誘電特性の
信頼性は乏しい。一般的に知られているように,ペロブ
スカイト型複合酸化物においては高結晶性すなわち結晶
中にペロブスカイト型誘電性結晶相を多く含有するもの
は高誘電性であるため,調製したペロブスカイト型複合
酸化物粉末を,X線回折実験により,回折パターンを観測
し,その結晶性を,2θ=10〜40度の間で式[2]により
結晶性の度合である結晶化度として見積り,従来法によ
り製造したペロブスカイト型複合酸化物粉末と比較し
た。
Measuring the dielectric properties of the perovskite-type composite oxide powder itself is to measure the dielectric properties of the powder, which is very difficult in terms of measurement technology. Moreover, the reliability of the measured dielectric properties is poor. As is generally known, perovskite-type composite oxides have high crystallinity, that is, those containing a large amount of perovskite-type dielectric crystal phase in the crystal have high dielectric properties. The diffraction pattern of the powder is observed by an X-ray diffraction experiment, and the crystallinity is estimated as the degree of crystallinity, which is the degree of crystallinity, according to equation [2] between 2θ = 10 to 40 degrees, and manufactured by the conventional method. And a perovskite-type composite oxide powder.

式[2]結晶化度=(X/(X+Y))*100 X;結晶質積分強度 Y;非晶質積分強度 式[2]において結晶質積分強度はX線回折パターン
のシャープピークの面積積分であり,非晶質積分強度は
X線回折パターンのブロードピークの面積積分である。
測定したX線回折パターンからシャープピークと,ブロ
ードピークを分離し,式[2]を用いて計算される結晶
化度を表1に示す。
Formula [2] crystallinity = (X / (X + Y)) * 100 X; crystalline integrated intensity Y; amorphous integrated intensity In formula [2], the crystalline integrated intensity is the area integral of the sharp peak of the X-ray diffraction pattern. And the amorphous integrated intensity is the area integral of the broad peak of the X-ray diffraction pattern.
Table 1 shows the crystallinity calculated by using Equation [2] by separating a sharp peak and a broad peak from the measured X-ray diffraction pattern.

実施例 2 実施例1の塩化バリウム水溶液滴下の際,塩化バリウ
ム水溶液の代わりに,バリウムとストロンチウムのモル
比が9:1であるような塩化バリウムと塩化ストロンチウ
ム混合水溶液を滴下し,シュウ酸塩を調製し,篩分けを
行ない,粒径63〜90μmの粉末を得た。この粉末を実施
例1に示した同一条件の直流アークプラズマ中に供給し
てペロブスカイト型複合酸化物粉末を得た。
Example 2 In the dropping of the aqueous barium chloride solution in Example 1, instead of the aqueous barium chloride solution, a mixed aqueous solution of barium chloride and strontium chloride such that the molar ratio of barium and strontium was 9: 1 was dropped, and oxalate was added. It was prepared and sieved to obtain a powder having a particle size of 63 to 90 μm. This powder was supplied into the DC arc plasma under the same conditions as in Example 1 to obtain a perovskite-type composite oxide powder.

このペロブスカイト型複合酸化物粉末のX線回折実験
を実施例1と同様に行ない式[2]から計算される結晶
化度を表1に示す。
An X-ray diffraction experiment of this perovskite-type composite oxide powder was performed in the same manner as in Example 1, and the crystallinity calculated from the formula [2] is shown in Table 1.

実施例 3 シュウ酸バリウム500gとシュウ酸チタンカリウム728g
を混合器にて撹拌混合後,篩わけを行い,粒径63〜90μ
mの粉末を得た。この粉末を実施例1に示した同一条件
の直流アークプラズマ中に供給してペロブスカイト型複
合酸化物粉末を得た。
Example 3 500 g of barium oxalate and 728 g of titanium potassium oxalate
After mixing with a mixer, sieving is performed, and the particle size is 63-90μ.
m were obtained. This powder was supplied into the DC arc plasma under the same conditions as in Example 1 to obtain a perovskite-type composite oxide powder.

このペロブスカイト型複合酸化物粉末のX線回折実験
を実施例1と同様に行ない式[2]から計算される結晶
化度を表1に示す。
An X-ray diffraction experiment of this perovskite-type composite oxide powder was performed in the same manner as in Example 1, and the crystallinity calculated from the formula [2] is shown in Table 1.

実施例 4 シュウ酸バリウム450gとシュウ酸ストロンチウム40g
およびシュウ酸チタンカリウム728gとを混合器にて撹拌
混合後,篩わけを行い,粒径63〜90μmの粉末を得た。
この粉末を実施例1に示した同一条件の直流アークプラ
ズマ中に供給してペロブスカイト型複合酸化物粉末を得
た。
Example 4 450 g of barium oxalate and 40 g of strontium oxalate
After mixing with 728 g of potassium potassium oxalate in a mixer, the mixture was sieved to obtain a powder having a particle size of 63 to 90 μm.
This powder was supplied into the DC arc plasma under the same conditions as in Example 1 to obtain a perovskite-type composite oxide powder.

このペロブスカイト型複合酸化物粉末のX線回折実験
を実施例1と同様に行ない式[2]から計算される結晶
化度を表1に示す。
An X-ray diffraction experiment of this perovskite-type composite oxide powder was performed in the same manner as in Example 1, and the crystallinity calculated from the formula [2] is shown in Table 1.

比較例 1 実施例1で得られたシュウ酸チタバリ(粒径,63〜90
μm)を,800℃で1時間電気炉により仮焼後,比較例1
の試料を得た。
Comparative Example 1 The titanium oxalate (particle size, 63 to 90) obtained in Example 1
μm) was calcined in an electric furnace at 800 ° C. for 1 hour.
Sample was obtained.

このペロブスカイト型複合酸化物粉末のX線回折実験
を実施例1と同様に行ない式[2]から計算される結晶
化度を表1に示す。
An X-ray diffraction experiment of this perovskite-type composite oxide powder was performed in the same manner as in Example 1, and the crystallinity calculated from the formula [2] is shown in Table 1.

比較例 2 実施例1で得られたシュウ酸チタバリ(粒径,63〜90
μm)を,1300℃で1時間電気炉により焼結し,さらに
ボールミルに仕込み,アセトン溶媒中で混合粉砕した
後,アセトンを留去乾燥し,100メッシュアンダーに篩分
けし,比較例2の試料を得た。
Comparative Example 2 The titanium oxalate obtained in Example 1 (particle size, 63 to 90
was sintered in an electric furnace at 1300 ° C for 1 hour, further charged in a ball mill, mixed and pulverized in an acetone solvent, acetone was distilled off, dried and sieved to 100 mesh under. I got

このペロブスカイト型複合酸化物粉末のX線回折実験
を実施例1と同様に行ない式[2]から計算される結晶
化度を表1に示す。
An X-ray diffraction experiment of this perovskite-type composite oxide powder was performed in the same manner as in Example 1, and the crystallinity calculated from the formula [2] is shown in Table 1.

比較例 3 実施例2で得られたストロンチウムを混合したシュウ
酸塩(粒径,63〜90μm)を,800℃1時間電気炉により
仮焼し,比較例3の試料を得た。このペロブスカイト型
複合酸化物粉末のX線回折実験を実施例と同様に行ない
式[2]から計算される結晶化度を表1に示す。
Comparative Example 3 The oxalate mixed with the strontium obtained in Example 2 (particle size, 63 to 90 μm) was calcined in an electric furnace at 800 ° C. for 1 hour to obtain a sample of Comparative Example 3. An X-ray diffraction experiment of this perovskite-type composite oxide powder was performed in the same manner as in the example, and the crystallinity calculated from the formula [2] is shown in Table 1.

比較例 4 実施例2で得られたストロンチウムを混合したシュウ
酸塩(粒径,63〜90μm)を,1300℃1時間電気炉により
焼結し,さらにボールミルに仕込み,アセトン溶媒中で
混合粉砕した後,アセトンを留去乾燥し,100メッシュア
ンダーに篩分けし,比較例4の試料を得た。
Comparative Example 4 The oxalate mixed with strontium obtained in Example 2 (particle size, 63 to 90 μm) was sintered in an electric furnace at 1300 ° C. for 1 hour, further charged in a ball mill, and mixed and ground in an acetone solvent. Thereafter, acetone was distilled off and dried, and the mixture was sieved to 100 mesh under to obtain a sample of Comparative Example 4.

このペロブスカイト型複合酸化物粉末のX線回折実験
を実施例1と同様に行ない式[2]から計算される結晶
化度を表1に示す。
An X-ray diffraction experiment of this perovskite-type composite oxide powder was performed in the same manner as in Example 1, and the crystallinity calculated from the formula [2] is shown in Table 1.

比較例 5 実施例3で篩分けを行った粉末(粒径,63〜90μm)
を,800℃1時間電気炉により仮焼後,比較例5の試料を
得た。
Comparative Example 5 Powder Sieved in Example 3 (Particle Size, 63-90 μm)
Was calcined in an electric furnace at 800 ° C. for 1 hour to obtain a sample of Comparative Example 5.

このペロブスカイト型複合酸化物粉末のX線回折実験
を実施例1と同様に行ない式[2]から計算される結晶
化度を表1に示す。
An X-ray diffraction experiment of this perovskite-type composite oxide powder was performed in the same manner as in Example 1, and the crystallinity calculated from the formula [2] is shown in Table 1.

比較例 6 実施例3で篩分けを行った粉末(粒径,63〜90μm)
を,1300℃1時間電気炉により焼結し,さらにボールミ
ルに仕込み,アセトン溶媒中で混合粉砕した後,アセト
ンを留去乾燥し,100メッシュアンダーに篩分けし,比較
例6の試料を得た。
Comparative Example 6 Powder Sieved in Example 3 (Particle Size, 63-90 μm)
Was sintered in an electric furnace at 1300 ° C. for 1 hour, further charged in a ball mill, mixed and pulverized in an acetone solvent, acetone was distilled off, dried and sieved to 100 mesh under to obtain a sample of Comparative Example 6. .

このペロブスカイト型複合酸化物粉末のX線回折実験
を実施例1と同様に行ない式[2]から計算される結晶
化度を表1に示す。
An X-ray diffraction experiment of this perovskite-type composite oxide powder was performed in the same manner as in Example 1, and the crystallinity calculated from the formula [2] is shown in Table 1.

比較例 7 実施例4で篩分けを行った粉末(粒径,63〜90μm)
を,800℃1時間電気炉により仮焼後,比較例7の試料を
得た。
Comparative Example 7 Powder Sieved in Example 4 (Particle Size, 63-90 μm)
Was calcined in an electric furnace at 800 ° C. for 1 hour to obtain a sample of Comparative Example 7.

このペロブスカイト型複合酸化物粉末のX線回折実験
を実施例1と同様に行ない式[2]から計算される結晶
化度を表1に示す。
An X-ray diffraction experiment of this perovskite-type composite oxide powder was performed in the same manner as in Example 1, and the crystallinity calculated from the formula [2] is shown in Table 1.

比較例 8 実施例4で篩分けを行った粉末(粒径,63〜90μm)
を,1300℃1時間電気炉により焼結し,さらにボールミ
ルに仕込み,アセトン溶媒中で混合粉砕した後,アセト
ンを留去乾燥し,100メッシュアンダーに篩分けし,比較
例8の試料を得た。
Comparative Example 8 Powder Sieved in Example 4 (Particle Size, 63-90 μm)
Was sintered in an electric furnace at 1300 ° C. for 1 hour, further charged in a ball mill, mixed and pulverized in an acetone solvent, acetone was distilled off, dried and sieved to 100 mesh under to obtain a sample of Comparative Example 8. .

このペロブスカイト型複合酸化物粉末のX線回折実験
を実施例1と同様に行ない式[2]から計算される結晶
化度を表1に示す。
An X-ray diffraction experiment of this perovskite-type composite oxide powder was performed in the same manner as in Example 1, and the crystallinity calculated from the formula [2] is shown in Table 1.

[発明の効果] 本発明によれば,従来行なわれてきた,焼結および粉
砕工程を経由する方法と同程度の結晶性を有するすなわ
ちペロブスカイト型誘電性結晶相を多く含有するペロブ
スカイト型複合酸化物粉末を製造することができ,省力
化および省エネルギー化を推進することができた。
[Effects of the Invention] According to the present invention, a perovskite-type composite oxide having the same degree of crystallinity as that of a conventional method involving a sintering and pulverization step, that is, containing a large amount of a perovskite-type dielectric crystal phase Powder could be manufactured, and labor and energy savings were promoted.

前記実施例の結果をまとめた表1から明らかな如く,
ペロブスカイト型複合酸化物の前駆体である水和物,無
機酸塩,有機酸塩等の複合塩,例えば水酸化物,硝酸
塩,炭酸塩,リン酸塩,硫酸塩,シュウ酸塩,クエン酸
塩,酢酸塩,蟻酸塩,酒石酸塩,安息香酸塩等を熱プラ
ズマ中に供給すれば,結晶化度が95%以上の結晶性の良
好な粉末が得られた。このように,本発明により,熱プ
ラズマ装置を使用して,直接的にしかも連続的にペロブ
スカイト型複合酸化物粉末を製造することが出来るよう
になったことは安価な誘電体粉末を提供するものであ
り,その産業的意義は極めて多大である。
As is clear from Table 1 that summarizes the results of the above example,
Complex salts such as hydrates, inorganic acid salts, and organic acid salts which are precursors of perovskite-type composite oxides, such as hydroxides, nitrates, carbonates, phosphates, sulfates, oxalates, and citrates When acetic acid, formate, formate, tartrate, benzoate, etc. were supplied into the thermal plasma, a powder having good crystallinity with a crystallinity of 95% or more was obtained. As described above, according to the present invention, a perovskite-type composite oxide powder can be directly and continuously produced using a thermal plasma apparatus, which provides an inexpensive dielectric powder. And its industrial significance is enormous.

フロントページの続き (56)参考文献 特開 昭63−270450(JP,A) 特開 昭63−244526(JP,A) 特開 平1−317122(JP,A) 特開 平2−57686(JP,A) 特開 平2−157123(JP,A)Continuation of front page (56) References JP-A-63-270450 (JP, A) JP-A-63-244526 (JP, A) JP-A-1-317122 (JP, A) JP-A-2-57686 (JP) , A) JP-A-2-157123 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】A元素としてMg、Ca、Sr、Ba、Mn、Fe、C
o、Ni、Cu、Pbの中から選ばれた1種または2種以上の
元素と、Tiとを構成元素とする複合塩もしくはその水和
物、又は上記A元素およびTiの水酸化物、無機酸塩もし
くは有機酸塩の混合物を熱プラズマ中に供給することを
特徴とする、一般式[1]ATiO3で表されるペロブスカ
イト型複合酸化物粉末を製造する方法。
1. The element A is Mg, Ca, Sr, Ba, Mn, Fe, C
o, one or more elements selected from Ni, Cu, and Pb, and a composite salt or a hydrate thereof containing Ti as a constituent element, or a hydroxide or an inorganic element of the above element A and Ti A method for producing a perovskite-type composite oxide powder represented by the general formula [1] ATiO 3 , wherein a mixture of an acid salt or an organic acid salt is supplied into thermal plasma.
【請求項2】無機酸塩が硝酸塩、炭酸塩、リン酸塩、硫
酸塩から選ばれた少なくとも一種である請求項1記載の
ペロブスカイト型複合酸化物粉末を製造する方法。
2. The method according to claim 1, wherein the inorganic acid salt is at least one selected from a nitrate, a carbonate, a phosphate, and a sulfate.
【請求項3】有機酸塩がシュウ酸塩、クエン酸塩、酢酸
塩、蟻酸塩、酒石酸塩、安息香酸塩から選ばれた少なく
とも一種である請求項1記載のペロブスカイト型複合酸
化物粉末を製造する方法。
3. The perovskite-type composite oxide powder according to claim 1, wherein the organic acid salt is at least one selected from oxalate, citrate, acetate, formate, tartrate, and benzoate. how to.
【請求項4】熱プラズマ源として直流アークプラズマま
たは高周波誘導プラズマを用いることを特徴とする請求
項1記載のペロブスカイト型複合酸化物粉末を製造する
方法。
4. The method for producing a perovskite-type composite oxide powder according to claim 1, wherein a DC arc plasma or a high-frequency induction plasma is used as the thermal plasma source.
JP1343367A 1989-12-29 1989-12-29 Method for producing perovskite-type composite oxide powder Expired - Lifetime JP2584519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1343367A JP2584519B2 (en) 1989-12-29 1989-12-29 Method for producing perovskite-type composite oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1343367A JP2584519B2 (en) 1989-12-29 1989-12-29 Method for producing perovskite-type composite oxide powder

Publications (2)

Publication Number Publication Date
JPH03205316A JPH03205316A (en) 1991-09-06
JP2584519B2 true JP2584519B2 (en) 1997-02-26

Family

ID=18360970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1343367A Expired - Lifetime JP2584519B2 (en) 1989-12-29 1989-12-29 Method for producing perovskite-type composite oxide powder

Country Status (1)

Country Link
JP (1) JP2584519B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660935B2 (en) * 2001-02-05 2011-03-30 株式会社村田製作所 Method for producing barium titanate-based ceramic powder having tetragonal perovskite structure
JP4697836B2 (en) * 2001-07-10 2011-06-08 国立大学法人山梨大学 Method for producing barium titanate
CN110171966B (en) * 2019-05-30 2020-10-27 广东三宝新材料科技股份有限公司 Preparation method of barium titanate-artificially synthesized fluorophlogopite composite material
KR102543704B1 (en) * 2021-01-15 2023-06-14 울산과학기술원 Modified perovskites compound comprising formate anion and Film and Photoelectric device comprising the modified perovskites compound and method of manufacturing the modified perovskites compound and the film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63244526A (en) * 1987-03-31 1988-10-12 Toshiba Corp Manufacture of compound superconductive wire
JPH0733567B2 (en) * 1987-04-24 1995-04-12 松下電器産業株式会社 Method for manufacturing thick film oxide superconductor
JPH01317122A (en) * 1988-06-15 1989-12-21 Matsushita Electric Ind Co Ltd Superconductor and production thereof
JP2506978B2 (en) * 1988-08-22 1996-06-12 松下電器産業株式会社 Method for producing lead titanate thin film
JPH075310B2 (en) * 1988-12-08 1995-01-25 松下電器産業株式会社 Method for producing barium titanate thin film

Also Published As

Publication number Publication date
JPH03205316A (en) 1991-09-06

Similar Documents

Publication Publication Date Title
KR20070051935A (en) Fine-particle alkaline-earth titanates and method for the production thereof using titanium oxide particles
JP2003252623A (en) Method of manufacturing composite oxide powder and composite oxide powder
Inada et al. Facile synthesis of nanorods of tetragonal barium titanate using ethylene glycol
JPS61275108A (en) Preparation of powder of dielectric substance
JP4240190B2 (en) Spherical barium titanate particle powder and production method thereof
Takahashi et al. Occurrence of Dielectric 1: 1: 4 Compound in the Ternary System BaO—Ln2O3—TiO2 (Ln= La, Nd, and Sm): I, An Improved Coprecipitation Method for Preparing a Single‐Phase Powder of Ternary Compound in the BaO—La2O3—TiO2 System
JP3713758B2 (en) Method for producing iron-containing composite oxide powder
Lee et al. Effect of molar ratio of KOH to Ti-isopropoxide on the formation of BaTiO3 powders by hydrothermal method
Ahmad et al. Synthesis of nanometer-sized particles of barium orthotitanate prepared through a modified reverse micellar route: Structural characterization, phase stability and dielectric properties
JP2584519B2 (en) Method for producing perovskite-type composite oxide powder
Bel-Hadj-Tahar et al. Structural development and kinetic analysis of PbTiO3 powders processed at low-temperature via new sol-gel approach
JP5410124B2 (en) Method for manufacturing dielectric material
JPH0648734A (en) Production of crystalline titanic acid based perovskite-type fine particle
JPH06144837A (en) Synthesis of columbite-type niobic acid salt and synthesis of perovskite-type compound using the salt
JPH05269372A (en) Production of ceramic powder
Srisombat et al. Chemical synthesis of magnesium niobate powders
JP4638766B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JP6573653B2 (en) Method for producing perovskite-type barium titanate powder
JPH07277710A (en) Production of perovskite-type multiple oxide powder
JPH0769645A (en) Production of lead-containing multiple oxide
JP5147573B2 (en) Method for producing perovskite complex oxide
KR101751070B1 (en) Method of preparing barium titanate using acid-base reaction
JP7438867B2 (en) Me element-substituted organic acid barium titanyl, method for producing the same, and method for producing titanium-based perovskite ceramic raw material powder
US20230212023A1 (en) Method for producing perovskite compound, and perovskite compound
WO2021010368A1 (en) Me ELEMENT-SUBSTITUTED ORGANIC ACID TITANYL BARIUM, METHOD FOR PRODUCING SAME, AND METHOD FOR PRODUCING TITANIUM-BASED PEROVSKITE-TYPE CERAMIC RAW MATERIAL POWDER