JP2583533B2 - Manufacturing method of oxide superconducting material - Google Patents

Manufacturing method of oxide superconducting material

Info

Publication number
JP2583533B2
JP2583533B2 JP62265919A JP26591987A JP2583533B2 JP 2583533 B2 JP2583533 B2 JP 2583533B2 JP 62265919 A JP62265919 A JP 62265919A JP 26591987 A JP26591987 A JP 26591987A JP 2583533 B2 JP2583533 B2 JP 2583533B2
Authority
JP
Japan
Prior art keywords
powder
container
superconducting material
precursor
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62265919A
Other languages
Japanese (ja)
Other versions
JPH01108157A (en
Inventor
伸行 定方
宰 河野
義光 池野
優 杉本
伸哉 青木
俊雄 臼井
三紀夫 中川
篤 久米
謙次 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62265919A priority Critical patent/JP2583533B2/en
Publication of JPH01108157A publication Critical patent/JPH01108157A/en
Application granted granted Critical
Publication of JP2583533B2 publication Critical patent/JP2583533B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気浮上列車、核融合炉、単結晶引上装
置、磁気分離装置、医療装置、磁気推進船等に用いられ
る超電導マグネット用材料、または、ジョセフソン素
子、SQUID(Superconducting Quantum Interference De
vice)等の薄膜超電導材料の作製用スパッタリングター
ゲット、プリント基板配線用材料等に用いられる酸化物
超電導材料の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a material for a superconducting magnet used in a magnetic levitation train, a fusion reactor, a single crystal pulling device, a magnetic separation device, a medical device, a magnetic propulsion ship, etc. , Or Josephson element, SQUID (Superconducting Quantum Interference Deference)
vice) and a method for producing an oxide superconducting material used as a sputtering target for producing a thin film superconducting material, a printed wiring board material, and the like.

〔従来の技術〕[Conventional technology]

最近に至り、液体窒素温度を超える高温で超電導状態
を維持することができる新規な超電導材料として酸化物
系の超電導材料が発見されている。この種の酸化物超電
導材料は、一般式A−B−Cu−O(ただしAはY,Sc,La,
Ce,Yb,Ho,Er,Dyなどの周期律表III a族元素の1種以上
を示し、BはMg,Ca,Sr,Baなどの周期律表II a族元素の
1種以上を示す)で示される酸化物である。
Recently, an oxide-based superconducting material has been discovered as a novel superconducting material capable of maintaining a superconducting state at a temperature higher than the temperature of liquid nitrogen. This kind of oxide superconducting material has a general formula AB-Cu-O (where A is Y, Sc, La,
(C) represents at least one kind of group IIIa element of the periodic table III such as Ce, Yb, Ho, Er, Dy, and B represents at least one kind of group IIa element of the periodic table II such as Mg, Ca, Sr, Ba) Is an oxide represented by

そして、この種の超電導材料を製造する方法の一例と
して、前記A元素を含む粉末と前記B元素を含む粉末と
酸化銅粉末を所定の成分比になるように混合して混合粉
末を作成し、この混合粉末を直接熱処理するか、あるい
は、混合粉末を圧粉して形成した成形体に熱処理を施し
て焼結体を得、この焼結体を粉砕して超電導材料を得る
方法が知られている。また、前記A元素とB元素を含む
溶液から共沈法、ゾルゲル法などの化学的方法により得
られる硝酸塩等を粉末化した後に、熱処理により分解、
反応させて酸化物超電導体とする方法が知られている。
Then, as an example of a method for producing this kind of superconducting material, a powder containing the element A, a powder containing the element B, and a copper oxide powder are mixed so as to have a predetermined component ratio to prepare a mixed powder, There is known a method of directly heat-treating this mixed powder or heat-treating a formed body formed by compacting the mixed powder to obtain a sintered body and pulverizing the sintered body to obtain a superconducting material. I have. In addition, after nitrating the nitrate obtained by a chemical method such as a co-precipitation method or a sol-gel method from a solution containing the A element and the B element, the powder is decomposed by heat treatment,
There is known a method of causing an oxide superconductor to react.

なお、前述の製造方法で得られた超電導材料におい
て、例えば、Y:Ba:Cu=1:2:3の割合で混合したY−Ba−
Cu−O系のものにおいて、臨界温度が90K程度を示すこ
とが知られている。
In the superconducting material obtained by the above-described manufacturing method, for example, Y: Ba: Cu mixed at a ratio of 1: 2: 3 is used.
It is known that the critical temperature of Cu-O-based materials is about 90K.

また、前記Y−Ba−Cu−O系の超電導材料は、酸素欠
損型ペロブスカイト構造を示し、特に結晶格子の特定の
位置に酸素原子が位置した斜方晶となっている構造のも
のの特性が優れているので、前記超電導材料を生成させ
る際の熱処理雰囲気は酸素ガスを含む雰囲気を選択し、
熱処理時に十分な酸素を供給できるようにすることで特
性の優れた超電導材料を安定製造できることが知られて
いる。
In addition, the Y-Ba-Cu-O-based superconducting material exhibits an oxygen-deficient perovskite structure, and particularly has an excellent characteristic of an orthorhombic structure in which an oxygen atom is located at a specific position in a crystal lattice. Therefore, the heat treatment atmosphere for generating the superconducting material is selected to include an atmosphere containing oxygen gas,
It is known that superconducting materials having excellent characteristics can be stably manufactured by supplying sufficient oxygen during heat treatment.

ところで、従来、前記混合粉末あるいは成形体を熱処
理する際に行っている方法は、第4図と第5図に示すよ
うに、原料粉末あるいは成形体などの前駆体1をボート
状の容器2に収納し、容器2を加熱炉3に入れ、加熱炉
3の内部に酸素ガスを吹き込んで加熱するといった方法
が一般的である。
By the way, conventionally, when performing the heat treatment of the mixed powder or the molded body, as shown in FIGS. 4 and 5, a precursor 1 such as a raw material powder or a molded body is placed in a boat-shaped container 2. Generally, a method of storing the container, putting the container 2 into the heating furnace 3 and blowing oxygen gas into the inside of the heating furnace 3 for heating is used.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところが、このような方法で熱処理を行った場合、酸
素ガスは前駆体1の間の空隙を通過するよりも容器2と
加熱炉3の炉壁間の空間を通過する方が流動抵抗が小さ
いために、加熱炉の内部で第5図の矢印に示すように主
として容器2の周囲を流れて排出されてしまい、前駆体
1…の間の空隙を十分に流れないことがわかっている。
従って前駆体1の焼結反応に寄与する酸素量が不足して
特性の優れた超電導体を生成できないばかりか、酸素の
供給量によっては生成された超電導体の特性が部分的に
異なり、製品の品質が低下する問題があった。
However, when heat treatment is performed by such a method, the flow resistance of the oxygen gas is smaller when passing through the space between the vessel 2 and the furnace wall of the heating furnace 3 than when passing through the gap between the precursors 1. In addition, it is known that the gas flows mainly around the container 2 and is discharged inside the heating furnace as shown by the arrow in FIG. 5, and does not sufficiently flow through the gaps between the precursors 1.
Therefore, not only the amount of oxygen contributing to the sintering reaction of the precursor 1 is insufficient, so that a superconductor having excellent characteristics cannot be produced, but also the characteristics of the produced superconductor partially vary depending on the supply amount of oxygen, and the product has There was a problem that the quality deteriorated.

また、前記反応に寄与する酸素を増加させるために加
熱炉3に供給する酸素ガスの流量を増加すると、酸素ガ
スの消費が増加するだけでなく酸素ガスが加熱炉3の内
部の熱を外部に排出してしまうために、加熱炉の熱効率
を低下して燃料コストが上昇する欠点がある。更に、酸
素ガスが前駆体1の間の空隙を通過しやすいように前駆
体1を粗粉砕して粉砕粒子間の空隙を大きくした場合で
あっても、酸素ガスの大部分は容器2と加熱炉3の炉壁
の間を通過して流れてしまうことがわかっている。
In addition, when the flow rate of the oxygen gas supplied to the heating furnace 3 is increased in order to increase the oxygen contributing to the reaction, not only the consumption of the oxygen gas increases, but also the oxygen gas transfers the heat inside the heating furnace 3 to the outside. Since the fuel is discharged, there is a disadvantage that the thermal efficiency of the heating furnace is reduced and the fuel cost is increased. Furthermore, even when the precursor 1 is coarsely pulverized so that the oxygen gas easily passes through the gap between the precursors 1 and the gap between the pulverized particles is enlarged, most of the oxygen gas is heated by the container 2. It is known that the gas flows between the furnace walls of the furnace 3.

本発明は、前記問題点を解決するために、A−B−Cu
−O(ただしAはSc,Y,Ce,Yb,Er,Ho,Dyなどの周期律表I
II a族元素の1種以上を示し、BはCa,Sr,Baなどの周期
律表II a族元素の1種以上を示す)で示される酸化物超
電導体を構成する元素を含み、熱処理を施すことにより
酸化物超電導体となる粉末状または粒状または塊状の前
駆体を用意するとともに、気体の送入口と排出口を備え
た中空の容器に前駆体を充填し、前記送入口から酸素を
含むガスを容器内に送入し容器内部の前駆体の間の空隙
を通過させた後に排出口から排出させるとともに容器内
部を加熱して前駆体を熱処理するものである。
The present invention provides an AB-Cu
-O (where A is the periodic table I such as Sc, Y, Ce, Yb, Er, Ho, Dy)
B represents one or more elements of Group IIa elements, and B represents one or more elements of Group IIa elements of the periodic table such as Ca, Sr, and Ba). Prepare a powdery or granular or massive precursor to be an oxide superconductor by applying, fill the precursor into a hollow container provided with a gas inlet and an outlet, and include oxygen from the inlet. The gas is fed into the container, passed through the gap between the precursors inside the container, discharged from the outlet, and heated inside the container to heat-treat the precursor.

〔作 用〕(Operation)

中空容器の内部に前駆体を充填し、容器内部に酸素を
含むガスを通過させるので前駆体の間の空隙を酸素ガス
が確実に通過する。このため熱処理時に前駆体に酸素が
均一に十分供給されて品質の安定した超電導材料が生成
される。
The precursor is filled inside the hollow container, and a gas containing oxygen is allowed to pass through the inside of the container, so that the oxygen gas surely passes through the gap between the precursors. Therefore, oxygen is sufficiently and uniformly supplied to the precursor during the heat treatment, and a superconducting material having stable quality is generated.

以下に本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.

本発明方法を適用して酸化物超電導材料を製造するに
は、最初に原料粉末を調整する。この原料粉末として
は、酸化物超電導材料を構成する元素を含むものなどが
用いられ、具体的には周期律表III a族元素を含む粉末
と周期律表II a族元素を含む粉末と酸化銅粉末などから
なる混合粉末、あるいは、この混合粉末を仮焼した粉末
などが用いられる。
In order to manufacture an oxide superconducting material by applying the method of the present invention, first, a raw material powder is prepared. As the raw material powder, one containing an element constituting the oxide superconducting material is used, and specifically, a powder containing a Group IIIa element of the Periodic Table, a powder containing a Group IIa element of the Periodic Table II, and copper oxide A mixed powder composed of a powder or the like, or a powder obtained by calcining the mixed powder is used.

ここで用いる周期律表III a族元素粉末としては、Sc,
Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luの各
元素の炭酸塩粉末、酸化物粉末、塩化物粉末、硫化物粉
末、フッ化物粉末などの化合物粉末あるいは合金粉末な
どであり、周期律表II a族元素粉末としては、Be,Ca,M
g,Bg,Srの各元素の炭酸塩粉末、酸化物粉末、塩化物粉
末、硫化物粉末、フッ化物粉末などの化合物粉末あるい
は合金粉末などである。また、前記酸化銅粉末として
は、CuO,Cu2O,Cu2O3,Cu4O3粉末などの酸化銅の粉末が用
いられる。
The Periodic Table III Group a element powder used herein includes Sc,
Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu Carbonate powder, oxide powder, chloride powder, sulfide powder of each element , Fluoride powder and other compound powders, alloy powders, and the like.
Compound powders such as carbonate powder, oxide powder, chloride powder, sulfide powder, and fluoride powder of each element of g, Bg, and Sr, or alloy powders. Further, as the copper oxide powder, CuO, Cu 2 O, Cu 2 O 3, powder of copper oxide such as Cu 4 O 3 powder is used.

そしてこれらの粉末を用いて原料粉末を調製するが、
この原料粉末を調製するにあたっては、周期律表III a
族元素粉末と周期律表II a族元素粉末から各々1種類選
択しても差し支えないし、2種類以上選択しても差し支
えない。また、このような原料粉末は共沈法、ゾルゲル
法などの方法により精製されても良い。
And raw material powder is prepared using these powders,
In preparing this raw material powder, the periodic table IIIa
One kind may be selected from the group-element powder and the periodic table IIa-group element powder, or two or more kinds may be selected. Further, such a raw material powder may be purified by a method such as a coprecipitation method or a sol-gel method.

なお、これらの原料粉末中に炭酸塩もしくは炭素分が
含まれている場合には、この原料粉末に仮焼処理を施
す。この仮焼処理は、前記原料粉末中の炭酸塩もしくは
炭素分を熱分解して酸化物とするために行なわれ、通常
750〜950℃の温度に1〜100時間程度加熱する処理を必
要回数行うことが好ましい。
When carbonate or carbon is contained in these raw material powders, the raw material powder is subjected to a calcination treatment. This calcination treatment is performed to thermally decompose the carbonate or carbon content in the raw material powder to an oxide, and is usually performed.
It is preferable to perform the required number of treatments of heating to a temperature of 750 to 950 ° C. for about 1 to 100 hours.

次に、このようにして、得られた原料粉末を静水圧加
圧などの加圧手段により成形した後に、この成形体を粗
粉砕して粒径数mm程度の粗粒状の第1図に示すような前
駆体10を得る。次にこの前駆体10を第1図に示す容器11
に充填する。
Next, the raw material powder thus obtained is molded by a pressurizing means such as hydrostatic pressure, and then the molded body is coarsely pulverized and a coarse particle having a particle size of about several mm is shown in FIG. The precursor 10 is obtained. Next, this precursor 10 was placed in a container 11 shown in FIG.
Fill.

この容器11は、高純度アルミナなどの耐熱材料から構
成された筒状のもので、その底部に前記前駆体10の粒径
より小さな網目の網体12を装着できるようになってい
る。なお、容器11の上部と下部は開口されていて、下部
開口が気体の送入口11aに上部開口が排気口11bになって
いる。
The container 11 is a cylindrical member made of a heat-resistant material such as high-purity alumina, and has a mesh portion 12 having a mesh smaller than the particle size of the precursor 10 at the bottom thereof. The upper and lower portions of the container 11 are open, with the lower opening serving as a gas inlet 11a and the upper opening serving as an exhaust port 11b.

この容器11の底部に網体12を装着したならば、網体12
の上方に前記前駆体10を充填する。
If the net 12 is attached to the bottom of the container 11, the net 12
Is filled with the precursor 10 above.

次いでこの容器11を縦型に加熱炉に装入する。 Next, the container 11 is charged into a heating furnace in a vertical shape.

そして、容器11の送入口11aから酸素ガスを容器11の
内部に強制的に吹き込み、前駆体10…の間の空隙を介し
酸素ガスを通過させて排気口11bから排出するととも
に、縦型炉により容器11内部の前駆体10…を、850〜110
0℃に1〜100時間程度加熱するとともに、加熱処理が終
了したならば、前駆体10を室温まで徐冷する。以上の処
理によって前駆体10の内部の各元素が拡散反応して酸化
物超電導体が生成される。
Then, oxygen gas is forcibly blown into the interior of the container 11 from the inlet 11a of the container 11, and the oxygen gas passes through the gap between the precursors 10 and is discharged from the exhaust port 11b, and is also discharged by the vertical furnace. The precursors 10 in the container 11 are 850-110
The precursor 10 is heated to 0 ° C. for about 1 to 100 hours, and when the heat treatment is completed, the precursor 10 is gradually cooled to room temperature. Through the above processing, the elements inside the precursor 10 undergo a diffusion reaction to generate an oxide superconductor.

前述の熱処理工程においては、容器11の内部に吹き込
まれた酸素ガスが網体12を通過した後に前駆体10の間の
空隙を通過し、次いで排気口11bから排出されるため
に、前駆体10…の間の空隙を酸素ガスが確実に通過する
ことになり前駆体10は十分な量の酸素の元で反応するこ
とになる。このため超電導体の生成効率が向上して均一
な品質の超電導材料を得ることができるとともに、熱処
理に要する時間を短縮することが可能になって製造コス
トを削減できる効果がある。また、このように効率良く
超電導体を生成できるために、従来の横型炉を用いた場
合に比較して酸素ガスの流量を少なくすることができ、
高価な酸素ガスの使用量が少なくなるために製造コスト
を削減できる効果がある。また、酸素ガスの流量を少な
くできるために、酸素ガスが加熱炉から奪う熱量を減少
させることができ、加熱炉の熱効率が向上する。なお、
送入口11aと排気口11bの位置は逆でも良く、酸素を下向
きに流しても良い。
In the above-described heat treatment step, the oxygen gas blown into the container 11 passes through the gap between the precursors 10 after passing through the mesh body 12, and then is discharged from the exhaust port 11b. , The oxygen gas surely passes through the voids, and the precursor 10 reacts with a sufficient amount of oxygen. For this reason, the generation efficiency of the superconductor is improved, a superconducting material of uniform quality can be obtained, and the time required for the heat treatment can be shortened, so that the production cost can be reduced. In addition, since the superconductor can be efficiently generated in this manner, the flow rate of the oxygen gas can be reduced as compared with the case where a conventional horizontal furnace is used,
Since the amount of expensive oxygen gas used is reduced, there is an effect that manufacturing costs can be reduced. Further, since the flow rate of the oxygen gas can be reduced, the amount of heat that the oxygen gas takes from the heating furnace can be reduced, and the thermal efficiency of the heating furnace is improved. In addition,
The positions of the inlet 11a and the outlet 11b may be reversed, and oxygen may flow downward.

以上のように製造された酸化物超電材料は、金属管の
内部に充填されて超電導線の製造のために、あるいは、
超電導材料を圧粉し更に熱処理するなどの手段を行って
超電導薄膜形成用のスパッタリングターゲット製造用な
どのために、あるいは、超電導粉末をベヒクル中に分散
させて形成した超電導ペーストを基板などにスクリーン
印刷して形成される超電導基板用などのために使用され
る。
The oxide superconducting material produced as described above is filled into the inside of a metal tube for the production of a superconducting wire, or
Screen printing of superconducting paste formed by dispersing superconducting powder in a vehicle, etc. for manufacturing a sputtering target for superconducting thin film formation by performing means such as compacting and further heat treating the superconducting material. It is used for, for example, a superconducting substrate formed.

なお、前述の例においては、前駆体10を充填する容器
として筒状のものを用いたが、容器11の形状は筒状に限
るものではなく、気体の送入口11aと排気口11bを備え、
前駆体10を充填可能な形状であるならばその形状は問わ
ないものとする。
In the above-described example, a cylindrical container is used as a container for filling the precursor 10.However, the shape of the container 11 is not limited to a cylindrical shape, and includes a gas inlet 11a and an exhaust port 11b.
The shape is not limited as long as the shape can be filled with the precursor 10.

〔実施例1〕 Y2O3粉末と、BaCO3粉末と、CuO粉末をY:Ba:Cu=1:2:3
の比率になるように混合し、この混合粉末を925℃で12
時間加熱する仮焼処理を施した後に、静水圧加圧法によ
り成形した。次にこの成形体を粒径が2〜5mmになるよ
うに粗粉砕して粗粒とした後に、内径100mmのアルミナ
製の磁器製の管体容器に充填した。この際、管体容器の
底部には、白金製の網体を取り付け、この網体で前記粗
粒保持できるようにした。次に前記網体が下部側に来る
ように管体容器を立設した状態で縦型の電気炉に挿入
し、電気炉内に毎分5の割合で酸素ガスを送り込み、
950℃で24時間加熱する熱処理を行った。加熱終了後、2
0時間かけて徐冷して酸化物超電導材料を得た。
And Example 1 Y 2 O 3 powder, a BaCO 3 powder, the CuO powder Y: Ba: Cu = 1: 2: 3
At 925 ° C.
After being subjected to a calcination treatment in which heating was performed for an hour, molding was performed by a hydrostatic pressure method. Next, the formed body was coarsely pulverized so that the particle diameter became 2 to 5 mm to obtain coarse particles, and then filled into an alumina porcelain tube container having an inner diameter of 100 mm. At this time, a platinum net was attached to the bottom of the tubular container so that the coarse particles could be held by the net. Next, the tube is inserted into a vertical electric furnace in a state where the tube body is erected so that the net comes to the lower side, and oxygen gas is fed into the electric furnace at a rate of 5 per minute,
A heat treatment of heating at 950 ° C. for 24 hours was performed. After heating, 2
The mixture was gradually cooled over 0 hours to obtain an oxide superconducting material.

この酸化物超電導材料の臨界温度特性を電気抵抗法で
測定したところ、第2図の曲線Aで示すように93Kで電
気抵抗がゼロになった。なお、前記前駆体と同等の組成
の前駆体を用い、従来の横型炉でボート状の容器に収納
し、熱処理して得られた酸化物超電導材料は、第2図の
破線Bで示す臨界温度特性を示した。
When the critical temperature characteristic of this oxide superconducting material was measured by an electric resistance method, the electric resistance became zero at 93 K as shown by a curve A in FIG. The oxide superconducting material obtained by using a precursor having the same composition as that of the above precursor, storing it in a boat-shaped vessel in a conventional horizontal furnace, and heat-treating the material has a critical temperature indicated by a dashed line B in FIG. The characteristics were shown.

両者の比較で明らかなように、本発明方法で製造され
た超電導材料は、従来方法で製造された超電導材料に比
較して遷移温度幅が狭く、均質で高特性の超電導材料で
あることが明らかとなった。また、前述の酸化物超電導
材料の臨界温度特性を交流インダクタンス法で測定した
ところ、第3図の曲線Cに示す結果が得られ、通常の横
型炉で同じ熱処理条件で得られた超電導材料の特性を示
す破線Dに比較して遷移温度幅の狭い結果が得られ、均
質で高特性の超電導材料が得られたことが判明した。
As is apparent from the comparison between the two, the superconducting material manufactured by the method of the present invention has a narrower transition temperature width as compared with the superconducting material manufactured by the conventional method, and is a superconducting material having a uniform and high characteristic. It became. When the critical temperature characteristics of the above-mentioned oxide superconducting material were measured by the AC inductance method, the results shown in a curve C in FIG. 3 were obtained, and the characteristics of the superconducting material obtained under the same heat treatment conditions in a normal horizontal furnace were obtained. As a result, a narrower transition temperature range was obtained as compared with the broken line D indicating that a superconducting material having uniform and high characteristics was obtained.

〔実施例2〕 共沈法で作成した超電導体の前駆体粉末を大気中にお
いて550℃で仮焼し、更に粉砕し静水圧成形後に再び粗
粉砕して粒径2〜5mmの粒体を得た。この粒体を実施例
1で使用した縦型炉と同じ縦型炉に入れて毎分1の割
合で酸素を流しつつ950℃で20時間加熱する熱処理を行
い、その後20時間かけて冷却して超電導材料を得た。
[Example 2] A precursor powder of a superconductor prepared by a coprecipitation method was calcined at 550 ° C in the air, further pulverized, isostatically pressed, and then coarsely pulverized again to obtain particles having a particle size of 2 to 5 mm. Was. The granules were placed in the same vertical furnace as the vertical furnace used in Example 1, and heat-treated at 950 ° C. for 20 hours while flowing oxygen at a rate of 1 / min, and then cooled over 20 hours. A superconducting material was obtained.

得られた超電導材料は、臨界温度として93Kを示し
た。なお、この臨界温度は、前記と同等の前駆体を従来
の横型炉で毎分5の酸素を流しつつ同じ条件で熱処理
して得られた超電導材料の臨界温度と同じ値である。従
って本発明方法を実施することにより、熱処理時に供給
する酸素ガスの量を少なくすることができることが判明
した。
The obtained superconducting material showed a critical temperature of 93K. The critical temperature is the same as the critical temperature of a superconducting material obtained by heat-treating a precursor equivalent to that described above in a conventional horizontal furnace while flowing oxygen at 5 per minute under the same conditions. Therefore, it was found that the amount of oxygen gas supplied during the heat treatment can be reduced by implementing the method of the present invention.

〔実施例3〕 Y2O3粉末と、BaCO3粉末と、CuO粉末をY:Ba:Cu=1:2:3
の割合で混合した粉末を静水圧成形し、粗粉砕して2〜
5mmの粗粒を得た。この粗粒を実施例1と同じ縦型炉に
入れ、毎分2の酸素を流しつつ950℃で24時間加熱す
る熱処理を施し、20時間かけて冷却し、酸化物超電導材
料を得た。
And Example 3 Y 2 O 3 powder, a BaCO 3 powder, the CuO powder Y: Ba: Cu = 1: 2: 3
The powder mixed in the proportion of
A coarse grain of 5 mm was obtained. The coarse particles were placed in the same vertical furnace as in Example 1, subjected to a heat treatment of heating at 950 ° C. for 24 hours while flowing 2 oxygen per minute, and cooled over 20 hours to obtain an oxide superconducting material.

この例で製造された酸化物超電導材料は、従来の横型
炉で同等の熱処理を3回繰り返して製造された超電導材
料と同等の臨界温度特性を示した。
The oxide superconducting material manufactured in this example showed critical temperature characteristics equivalent to those of a superconducting material manufactured by repeating the same heat treatment three times in a conventional horizontal furnace.

即ち本発明の方法を実施することにより、従来方法に
比較して効率良く超電導材料を製造できることが明らか
になった。
That is, it has been clarified that the superconducting material can be manufactured more efficiently by implementing the method of the present invention as compared with the conventional method.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、酸化物超電導体の粉末
状または粒状または塊状の前駆体を中空容器に充填し、
容器の送入口から酸素を含むガスを送入して前駆体の間
の空隙を通過させつつ熱処理する方法であるために、十
分な量の酸素のもので前駆体内部の元素を効率良く反応
させることができ、均質な酸化物超電導材料を製造でき
る効果がある。また、前駆体の間の空隙に酸素を含むガ
スを強制的に通過させるために、従来の方法に比較する
と、熱処理時に使用する酸素量を少なくすることができ
るとともに熱処理時間も短縮することができ、酸化物超
電導材料の製造コストを削減できる効果がある。
As described above, the present invention fills a powdery or granular or massive precursor of an oxide superconductor in a hollow container,
Since the gas containing oxygen is fed from the inlet of the container and heat-treated while passing through the gap between the precursors, the element inside the precursor is efficiently reacted with a sufficient amount of oxygen. This has the effect of producing a homogeneous oxide superconducting material. Further, in order to force the gas containing oxygen to pass through the voids between the precursors, the amount of oxygen used during the heat treatment can be reduced and the heat treatment time can be reduced as compared with the conventional method. This has the effect of reducing the manufacturing cost of the oxide superconducting material.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明を実施するために使用する容器の一例を
示す断面図、第2図は実施例1で製造された酸化物超電
導材料の電気抵抗法による臨界温度特性を示す線図、第
3図は実施例1で製造された酸化物超電導材料のインダ
クタンス法による臨界温度特性を示す図、第4図と第5
図は従来方法において加熱炉の内部に前駆体を設置した
状態を示すもので、第4図は横断面図、第5図は縦断面
図である。 10……前駆体、11……容器、 11a……送入口、11b……排出口、 12……網体。
FIG. 1 is a sectional view showing an example of a container used for carrying out the present invention, FIG. 2 is a diagram showing a critical temperature characteristic of the oxide superconducting material manufactured in Example 1 by an electric resistance method, FIG. FIG. 3 is a diagram showing a critical temperature characteristic of the oxide superconducting material manufactured in Example 1 by an inductance method, and FIGS.
FIG. 4 shows a state in which a precursor is installed inside a heating furnace in a conventional method. FIG. 4 is a transverse sectional view, and FIG. 5 is a longitudinal sectional view. 10 ... precursor, 11 ... container, 11a ... inlet, 11b ... outlet, 12 ... mesh.

フロントページの続き (72)発明者 杉本 優 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (72)発明者 青木 伸哉 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (72)発明者 臼井 俊雄 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (72)発明者 中川 三紀夫 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (72)発明者 久米 篤 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (72)発明者 後藤 謙次 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (56)参考文献 実開 昭53−60549(JP,U)Continued on the front page (72) Inventor: Yu Sugimoto, Fujikura Electric Wire Co., Ltd., 1-5-1, Kiba, Koto-ku, Tokyo (72) Inventor: Shinya Aoki In Fujikura Electric Wire Co., Ltd., 1-1-1, Kiba, Koto-ku, Tokyo (72) Inventor Toshio Usui 1-5-1, Kiba, Koto-ku, Tokyo Inside Fujikura Electric Wire Co., Ltd. (72) Inventor Mikio Nakagawa 1-5-1, Kiba, Koto-ku, Tokyo Fujikura Electric Wire Co., Ltd. (72) Invention Person Atsushi Kume 1-5-1 Kiba, Koto-ku, Tokyo Inside Fujikura Electric Cable Co., Ltd. (72) Inventor Kenji Goto 1-1-5-1 Kiba, Koto-ku, Tokyo Inside Fujikura Electric Wire Co., Ltd. (56) References Akira Kaikai 53-60549 (JP, U)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】A−B−Cu−O(ただしAはSc,Y,Ce,Yb,E
r,Ho,Dyなどの周期律表III a族元素の1種以上を示し、
BはCa,Sr,Baなどの周期律表II a族元素の1種以上を示
す)で示される酸化物超電導体を構成する元素を含み、
熱処理を施すことにより酸化物超電導体となる粉末状ま
たは粒状または塊状の前駆体を用意するとともに、気体
の送入口と排出口を備えた中空の容器に前駆体を充填
し、前記送入口から酸素を含むガスを容器内に送入し容
器内部の前駆体の間の空隙を通過させた後に排出口から
排出させるとともに容器内部を加熱して前駆体を熱処理
することを特徴とする酸化物超電導材料の製造方法。
(1) AB-Cu-O (where A is Sc, Y, Ce, Yb, E
r, Ho, Dy, etc., which represents one or more elements of group IIIa of the periodic table,
B represents one or more elements of Group IIa of the Periodic Table II, such as Ca, Sr, and Ba), and comprises an element constituting an oxide superconductor;
A powdery, granular, or massive precursor that becomes an oxide superconductor by performing heat treatment is prepared, and the precursor is filled in a hollow container having an inlet and an outlet for gas, and oxygen is supplied from the inlet. An oxide superconducting material characterized in that a gas containing is introduced into a container, passes through a gap between precursors inside the container, and then is discharged from an outlet, and the precursor is heat-treated by heating the inside of the container. Manufacturing method.
JP62265919A 1987-10-21 1987-10-21 Manufacturing method of oxide superconducting material Expired - Lifetime JP2583533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62265919A JP2583533B2 (en) 1987-10-21 1987-10-21 Manufacturing method of oxide superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62265919A JP2583533B2 (en) 1987-10-21 1987-10-21 Manufacturing method of oxide superconducting material

Publications (2)

Publication Number Publication Date
JPH01108157A JPH01108157A (en) 1989-04-25
JP2583533B2 true JP2583533B2 (en) 1997-02-19

Family

ID=17423918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62265919A Expired - Lifetime JP2583533B2 (en) 1987-10-21 1987-10-21 Manufacturing method of oxide superconducting material

Country Status (1)

Country Link
JP (1) JP2583533B2 (en)

Also Published As

Publication number Publication date
JPH01108157A (en) 1989-04-25

Similar Documents

Publication Publication Date Title
Rao Chemical synthesis of solid inorganic materials
WO1988010235A1 (en) Improved process for making 90 k superconductors
US5510323A (en) Tl1 (Ba1-x Sr8)2 Ca2 Cu3 Oy oxide superconductor and method of producing the same
HUT52645A (en) Method for making super-conducting substance with critical temperature of 90 kelvin grades
JP2583533B2 (en) Manufacturing method of oxide superconducting material
US5140000A (en) Metal oxide 247 superconducting materials
JPH03164427A (en) Rbco 124 superconducting material and its manufacture
Mao et al. Coprecipitation-based micro-reactor process to synthesize soft-agglomerated ultrafine BiPbSrCaCuO powder with low carbon content
US4952390A (en) Superconductive oxide crystal and a production process thereof
EP1204600A1 (en) A Pb-Bi-Sr-Ca-Cu-OXIDE POWDER MIX WITH ENHANCED REACTIVITY AND PROCESS FOR ITS MANUFACTURE
EP0366721A4 (en) Improved process for making 90 k superconductors
JP2539451B2 (en) Method for manufacturing oxide superconductor
JP3330962B2 (en) Manufacturing method of oxide superconductor
Kamat et al. Preparation of high grade YBCO powders and pellets through the glycerol route
JPS63285812A (en) Manufacture of oxide superconductive wire material
JP2563352B2 (en) Manufacturing method of composite superconductor
US5371066A (en) Method for oxidizing precursor compounds of superconducting oxides
JP2557062B2 (en) Method for manufacturing oxide superconductor
JP2002255561A (en) CoSb3-BASED COMPOUND HAVING FILLED SKUTTERUDITE STRUCTURE, METHOD FOR PRODUCING THE SAME AND THERMOELECTRIC CONVERSION MATERIAL CONTAINING Co-Sb3- BASED COMPOUND
JPH0524828A (en) Rare earth-based oxide superconductor, production thereof and raw material mixed powder
Ravichandran et al. Synthesis and irreversibility of oxygen weight loss in 80 K YBa2Cu4O8 superconductor
JPH02120234A (en) Production of oxide superconductor
JPH07157311A (en) Production of oxide superconductor
JPS63274027A (en) Manufacture of superconductive material
Vajpei et al. Preparation of Powders

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term