JP2539451B2 - Method for manufacturing oxide superconductor - Google Patents

Method for manufacturing oxide superconductor

Info

Publication number
JP2539451B2
JP2539451B2 JP62220907A JP22090787A JP2539451B2 JP 2539451 B2 JP2539451 B2 JP 2539451B2 JP 62220907 A JP62220907 A JP 62220907A JP 22090787 A JP22090787 A JP 22090787A JP 2539451 B2 JP2539451 B2 JP 2539451B2
Authority
JP
Japan
Prior art keywords
powder
oxide
oxide superconductor
mixed
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62220907A
Other languages
Japanese (ja)
Other versions
JPS6465060A (en
Inventor
義光 池野
宰 河野
伸行 定方
優 杉本
三紀夫 中川
伸哉 青木
俊雄 臼井
謙次 後藤
篤 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62220907A priority Critical patent/JP2539451B2/en
Publication of JPS6465060A publication Critical patent/JPS6465060A/en
Application granted granted Critical
Publication of JP2539451B2 publication Critical patent/JP2539451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えばジョセフソン素子、超電導記憶素
子等の超電導デバイス、超電導マグネット用コイルなど
として使用可能な酸化物超電導体の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing an oxide superconductor that can be used as a superconducting device such as a Josephson element or a superconducting memory element, a coil for a superconducting magnet, or the like.

〔従来技術とその問題点〕 近時、常電導状態から超電導状態に遷移する臨界温度
(Tc)が液体窒素温度以上の高い値を示す酸化物系の超
電導体が種々発見されつつある。そして、このような酸
化物超電導体は、冷却に液体ヘリウムを用いる必要のあ
る合金系あるいは金属間化合物系超電導体に比べて格段
に有利な冷却条件で使用できることから、実用上極めて
有望な超電導材料とされている。
[Prior Art and its Problems] Recently, various oxide-based superconductors have been discovered in which the critical temperature (Tc) at which a normal-conducting state transitions to a superconducting state is higher than liquid nitrogen temperature. Such oxide superconductors can be used under significantly more advantageous cooling conditions than alloy or intermetallic compound superconductors that require the use of liquid helium for cooling. It has been.

このような酸化物超電導体を製造するには、例えばY
−Ba−Cu−O系超電導体の場合、Y2O3粉末とBaCO3粉末
とCuO粉末とを所定の比率で混合し、この混合粉末に仮
焼、粉砕、圧粉、焼成等の一連の工程を施す方法などが
用いられる。
To manufacture such an oxide superconductor, for example, Y
In the case of a —Ba—Cu—O-based superconductor, Y 2 O 3 powder, BaCO 3 powder, and CuO powder are mixed at a predetermined ratio, and this mixed powder is subjected to a series of calcination, pulverization, compaction, firing, etc. A method of performing the steps is used.

ところが、このようにして得られた酸化物超電導体で
は、その組成中の酸素原子の量が不足気味となると、臨
界温度(Tc)や臨界電流密度(Jc)などの超電導特性が
低下する不都合が生じる。このような不都合を解消する
ために、上記の仮焼工程および焼成工程を酸素雰囲気中
で行なえば、酸化物超電導体の内部に酸素原子を十分に
供給できて超電導特性の向上が可能となる。
However, in the oxide superconductor thus obtained, when the amount of oxygen atoms in the composition becomes insufficient, the superconducting characteristics such as the critical temperature (Tc) and the critical current density (Jc) are deteriorated. Occurs. In order to eliminate such inconvenience, if the above-mentioned calcination step and firing step are carried out in an oxygen atmosphere, oxygen atoms can be sufficiently supplied inside the oxide superconductor and the superconducting characteristics can be improved.

そして、このようにして酸化物超電導体に必要量の酸
素原子を導入する技術は、酸化物超電導体を例えば線材
とする場合にも生かされる。すなわち、線材化する場合
には、例えば酸素透過性を有する銀等の貴金属パイプ内
に上記の混合粉末を充填したうえ、このパイプ全体を縮
径加工し、酸素雰囲気中で熱処理する方法などが用いら
れる。
The technique of introducing a required amount of oxygen atoms into the oxide superconductor in this way is also applied to the case where the oxide superconductor is used as a wire, for example. That is, in the case of forming a wire, for example, a method in which a pipe of noble metal such as silver having oxygen permeability is filled with the above-mentioned mixed powder, the entire pipe is reduced in diameter, and heat-treated in an oxygen atmosphere is used. To be

しかしながら、このような方法では、銀等の貴金属シ
ース(パイプを縮径した)を通して透過される酸素ガス
の透過量が酸化物超電導体にとって必要な量に満たない
ため、例えば臨界電流密度(Jc)などの超電導特性を良
好なものとすることが難しい問題がある。
However, in such a method, the permeation amount of oxygen gas permeated through a noble metal sheath such as silver (the diameter of the pipe is reduced) is less than that required for an oxide superconductor, so that, for example, the critical current density (Jc) It is difficult to improve the superconducting characteristics such as.

したがって、従来より、外部から酸素を供給せずと
も、良好な超電導特性を示す酸化物超電導体を製造でき
る方法の開発が望まれていた。
Therefore, conventionally, it has been desired to develop a method capable of producing an oxide superconductor having good superconducting properties without supplying oxygen from the outside.

〔問題点を解決するための手段〕[Means for solving problems]

この発明では、得られる酸化物超電導体を構成する元
素を含む材料粉末、この材料粉末の仮焼粉末、上記材料
粉末の焼成粉末、上記材料粉末と仮焼粉末と焼成粉末の
うち少なくとも2種以上混合してなる混合粉末のいずれ
かを出発物とし、この出発物に、銀、白金、金、亜鉛、
バナジウム、クロム、カドミウムの各酸化物粉末のうち
少なくとも1種を1〜30原子量%混合したのち、熱処理
を施すことをその解決手段とした。
In the present invention, at least two or more of the material powder containing the element constituting the obtained oxide superconductor, the calcined powder of the material powder, the calcined powder of the material powder, and the material powder, the calcined powder and the calcined powder are used. One of the mixed powders obtained by mixing is used as a starting material, and silver, platinum, gold, zinc,
The solution was to heat-treat at least one of the oxide powders of vanadium, chromium, and cadmium, which were mixed at 1 to 30 atomic% by weight.

以下、この発明を詳しく説明する。 Hereinafter, the present invention will be described in detail.

この例では、まず、出発物を調製する。この出発物と
しては、例えば酸化物超電導体を構成する元素を含む材
料粉末などが用いられる。
In this example, the starting material is first prepared. As the starting material, for example, a material powder containing an element forming the oxide superconductor is used.

上記の酸化物超電導体としては、A−B−C−D系
(ただし、AはY,Sc,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,H
o,Er,Tm,Yb,Luの周期律表第III a族元素のうち1種ある
いは2種以上を表し、BはSr,Ba,Ca,Be,Mg,Raの周期律
表第II a族元素のうち1種あるいは2種以上を表し、C
はCu,Ag,Auの周期律表第I b族元素のうちCuあるいはCu
を含む2種以上を表し、DはO,S,Se,Te,Poの周期律表第
VI b族元素およびF,Cl,Br,I,Atの周期律表第VII b族元
素のうちOあるいはOを含む2種以上を表す。)のもの
が用いられる。このような酸化物超電導体における各元
素の組成比は、使用元素、酸化物超電導体の種類などに
より異なるが、例えばY−Ba−Cu−O系超電導体では元
素重量比でY1,Ba2,Cu3,O(7−δ)とされ、δは0≦δ
≦5の範囲とされる。
As the above oxide superconductor, an ABCD system (where A is Y, Sc, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, H is used.
o, Er, Tm, Yb, Lu Periodic Table Group IIIa represents one or more elements, and B represents Sr, Ba, Ca, Be, Mg, Ra Group IIa group Represents one or more of the elements, C
Is Cu or Cu among the elements of Group Ib of the periodic table of Cu, Ag, and Au.
Represents two or more types, including D, and D is the periodic table of O, S, Se, Te, Po.
Group VIb and elements of Group VIIb of the periodic table of F, Cl, Br, I, At represent O or two or more containing O. ) Is used. The composition ratio of each element in such an oxide superconductor varies depending on the element used, the type of oxide superconductor, and the like. For example, in a Y-Ba-Cu-O-based superconductor, the element weight ratio is Y1, Ba2, Cu3. , O (7−δ), and δ is 0 ≦ δ
The range is ≦ 5.

ここでの材料粉末としては、上記の周期律表第III a
族元素のうち1種あるいは2種以上の元素粉末と、周期
律表第II a族元素のうち1種あるいは2種以上の元素粉
末と、周期律表第I b族元素のうちCuあるいはCuを含む
2種以上の元素粉末と、周期律表第VI b族元素および周
期律表第VII b族元素のうちOあるいはOを含む2種以
上の元素粉末とを混合してなる混合粉末、あるいは上記
各元素粉末の炭酸塩粉末、酸化物粉末、酸化物粉末、硫
化物粉末、フッ化物粉末等の化合物粉末などが用いられ
る。
As the material powder here, there are IIIa of the periodic table above.
1 or 2 or more element powders of group elements, 1 or 2 or more element powders of group IIa elements of the periodic table, and Cu or Cu of group Ib elements of the periodic table A mixed powder obtained by mixing two or more kinds of element powders containing, and two or more kinds of element powders containing O or O among elements of Group VIb of the Periodic Table and elements of Group VIIb of the Periodic Table, or the above. A compound powder such as a carbonate powder, an oxide powder, an oxide powder, a sulfide powder, or a fluoride powder of each element powder is used.

このような材料粉末を調製するには、通常、粉末法が
用いられているが、この方法に限定されることなく、例
えばシュウ酸共沈法、ゾルゲル法などの方法も用いるこ
とができる。シュウ酸共沈法の場合には、上記各元素粉
末などをシュウ酸塩として沈澱させ、その沈澱物を乾燥
させて粉末化するが、この方法によると、得られる粉末
の粒度を比較的均一なものとしやすく、また粉末中への
不純物の混入が少ないなどの効果もある。また、ゾルゲ
ル法の場合、上記各元素のアルコキシド化合物、オキシ
ケトン化合物、シクロペンタジエニル化合物、アセチル
アセトン化合物などを所定の比率で混合して混合液と
し、この混合液に十分な水を加えて加水分解するなどし
てゾルとし、次いでこのゾルを加熱してゲル化し、この
ゲルをさらに加熱して固相としたうえで粉砕して粉末化
する。このようなゾルゲル法によると、得られる粉末の
粒径を小さくでき、比較的低温で焼結できるとともに、
不純物の混入が少ないから、純粋な焼結体を得ることが
でき、良好な酸化物超電導体を得ることができる。
A powder method is usually used to prepare such a material powder, but the method is not limited to this method, and methods such as an oxalic acid coprecipitation method and a sol-gel method can also be used. In the case of the oxalic acid coprecipitation method, each of the above element powders and the like is precipitated as an oxalate salt, and the precipitate is dried and pulverized. According to this method, the particle size of the obtained powder is relatively uniform. It is also easy to obtain, and there is an effect that impurities are not mixed into the powder. In the case of the sol-gel method, alkoxide compounds, oxyketone compounds, cyclopentadienyl compounds, acetylacetone compounds, etc. of the above elements are mixed at a predetermined ratio to prepare a mixed solution, and sufficient water is added to this mixed solution for hydrolysis. Then, the sol is heated to form a gel, and the gel is further heated to form a solid phase, which is then ground and powdered. According to such a sol-gel method, it is possible to reduce the particle size of the obtained powder and to sinter at a relatively low temperature,
Since the amount of impurities is small, a pure sintered body can be obtained and a good oxide superconductor can be obtained.

次に、上記の材料粉末に特定の酸化物粉末を混合して
混合粉末を得る。ここでの特定の酸化物粉末は、後述す
る熱処理時の熱により容易に分解されて酸素を放出する
とともに、上記材料粉末中の各元素粉末と反応物を生成
しないものである。そして、このような酸化物粉末とし
ては、銀、白金、金、亜鉛、バナジウム、クロム、カド
ミウムの各酸化物粉末のうち少なくとも1種の粉末が選
ばれ、具体的に例えばAg2O,AgO,Ag2O3等の酸化銀粉末、
PtO2,PtO,Pt3O4等の酸化白金粉末、Au2O3,Au2O3等の酸
化金の粉末、ZnO等の酸化亜鉛粉末、V2O5,V2O3等の酸化
バナジウム粉末、Cr2O3,CrO等の酸化クロムの粉末、CdO
等の酸化カドミウム粉末などが用いられる。この酸化物
粉末の上記材料粉末中への混合割合は、得られる酸化物
超電導体の組成中への酸素原子の供給量、酸化物超電導
体および酸化物粉末の種類などを勘案して決められ、通
常は1〜30原子量%程度の範囲で定められる。
Next, a specific oxide powder is mixed with the above material powder to obtain a mixed powder. The specific oxide powder here is one that is easily decomposed by heat during heat treatment described later to release oxygen, and does not generate a reaction product with each element powder in the material powder. As such oxide powder, at least one kind of powder is selected from oxide powders of silver, platinum, gold, zinc, vanadium, chromium, and cadmium, and specifically, for example, Ag 2 O, AgO, Silver oxide powder such as Ag 2 O 3 ,
PtO 2 , PtO, Pt 3 O 4 etc. platinum oxide powder, Au 2 O 3 , Au 2 O 3 etc. gold oxide powder, ZnO etc. zinc oxide powder, V 2 O 5 , V 2 O 3 etc. oxidation Vanadium powder, Cr 2 O 3 , chromium oxide powder such as CrO, CdO
Cadmium oxide powder and the like are used. The mixing ratio of the oxide powder in the material powder is determined in consideration of the supply amount of oxygen atoms in the composition of the resulting oxide superconductor, the type of the oxide superconductor and the oxide powder, and the like. Usually, it is set in the range of about 1 to 30 atomic weight%.

次いで、上記の混合粉末に対して熱処理を施す。この
熱処理は、処理温度800〜1000℃、処理時間1〜数100時
間の条件で行なわれる。このような熱処理により、上記
混合粉末中の各構成元素同志が互いに十分に反応し合う
とともに、混合粉末中の特定の酸化物粉末が熱分解され
て酸素が放出される。これによって、得られる酸化物超
電導対は、その組成中に十分な量の酸素原子が導入さ
れ、良好な超電導特性を示すものとなる。なお、この熱
処理時の雰囲気は、通常は酸素ガス雰囲気とされるが、
この熱処理雰囲気には、S,Se等の周期律表第VI b族元素
のガスおよびF,Cl,Br等の周期律表第VII b族元素のガス
を含めることもできる。これらの元素ガスは、得られる
酸化物超電導体の構成元素の一部として超電導特性の向
上に寄与するものとなる。
Next, heat treatment is applied to the mixed powder. This heat treatment is performed under the conditions of a treatment temperature of 800 to 1000 ° C. and a treatment time of 1 to several hundred hours. By such heat treatment, the respective constituent elements in the mixed powder sufficiently react with each other, and the specific oxide powder in the mixed powder is thermally decomposed to release oxygen. As a result, the obtained oxide superconducting couple has a sufficient amount of oxygen atoms introduced into its composition, and exhibits excellent superconducting properties. The atmosphere during this heat treatment is usually an oxygen gas atmosphere,
The heat treatment atmosphere may include a gas of a Group VIb element of the periodic table such as S and Se and a gas of a Group VIIb element of the periodic table such as F, Cl and Br. These elemental gases contribute to the improvement of superconducting properties as a part of constituent elements of the obtained oxide superconductor.

このような製造方法によれば、酸化物超電導体を構成
する元素を含む材料粉末などからなる出発物に、銀、白
金、金、亜鉛、バナジウム、クロム、カドミウムの各酸
化物粉末のうち少なくとも1種を混合したのち、熱処理
を施すようにしたので、熱処理時に上記酸化物粉末が熱
分解されて酸素が放出され、この放出された酸素が得ら
れる酸化物超電導体の組成中に確実に導入されることか
ら、良好な超電導特性を示す酸化物超電導体を得ること
ができる。
According to such a manufacturing method, at least one of the oxide powders of silver, platinum, gold, zinc, vanadium, chromium, and cadmium is added to the starting material composed of the material powder containing the elements forming the oxide superconductor. Since the heat treatment is performed after mixing the seeds, the oxide powder is thermally decomposed during the heat treatment to release oxygen, and the released oxygen is reliably introduced into the composition of the oxide superconductor from which it is obtained. Therefore, an oxide superconductor having good superconducting properties can be obtained.

この例では、出発物として酸化物超電導体を構成する
元素を含む材料粉末を用いたが、出発物として前述の材
料粉末の仮焼粉末、上記材料粉末の焼成粉末、上記材料
粉末と仮焼粉末と焼成粉末のうち少なくとも2種以上混
合してなる混合粉末を用いてもよい。これらの場合、仮
焼、焼成した粉末を用いるので、熱処理における処理条
件を緩和でき、熱処理時間を短縮できるなどの効果を得
ることができる。
In this example, the material powder containing the elements constituting the oxide superconductor was used as the starting material, but as the starting material, the calcined powder of the material powder, the calcined powder of the material powder, the material powder and the calcined powder were used. You may use the mixed powder which mixes at least 2 or more types among these and baking powder. In these cases, since the powder that has been calcined and fired is used, the processing conditions in the heat treatment can be relaxed and the heat treatment time can be shortened.

なお、この発明の製造方法を例えば酸化物超電導線の
製造方法に適用することができる。この場合には、例え
ば銀、金、白金等の貴金属パイプ内に、上記出発物に上
記特定の酸化物粉末を混合してなる混合粉末を充填した
のち、パイプ全体を縮径加工し、熱処理することによっ
て酸化物超電導線を得ることができる。そして、この場
合には、上記混合粉末中に酸化物粉末が混入され、熱処
理時の熱で上記酸化物粉末の酸素が酸化物超電導体に導
入可能となるから、熱処理時の雰囲気を酸素雰囲気とす
る必要がない。したがって、このようにして得られた酸
化物超電導線は、パイプを縮径したシース内の酸化物超
電導体の組成中に必要量の酸素が導入されることから、
良好な超電導特性を示すものとなる。
The manufacturing method of the present invention can be applied to, for example, a method for manufacturing an oxide superconducting wire. In this case, for example, a noble metal pipe of silver, gold, platinum or the like is filled with a mixed powder obtained by mixing the above-mentioned starting material with the above-mentioned specific oxide powder, and then the entire pipe is subjected to diameter reduction processing and heat treatment. Thus, an oxide superconducting wire can be obtained. In this case, the oxide powder is mixed in the mixed powder, and the oxygen of the oxide powder can be introduced into the oxide superconductor by the heat during the heat treatment. You don't have to. Therefore, the oxide superconducting wire thus obtained has the necessary amount of oxygen introduced into the composition of the oxide superconductor in the sheath with the pipe diameter reduced,
It exhibits excellent superconducting properties.

以下、実施例を示す。 Examples will be shown below.

〔実施例〕〔Example〕

元素重量比でY:Ba:Cu:O=1:2:3:(7−δ)となるよ
うに、Y2O3粉末とBaCO3粉末とCuO粉末とを混合して出発
物とし、この出発物にZnO粉末を5原子量%添加混合し
て混合粉末を得た。次いで、この混合粉末に900℃、10
時間の熱処理を施して酸化物超電導体を得た。
Y 2 O 3 powder, BaCO 3 powder, and CuO powder were mixed as a starting material so that Y: Ba: Cu: O = 1: 2: 3: (7−δ) in terms of element weight ratio. ZnO powder was added to the starting material in an amount of 5 atomic% and mixed to obtain a mixed powder. Next, add 900 ° C to this mixed powder for 10
Heat treatment was performed for a time to obtain an oxide superconductor.

このようにして得た酸化物超電導体の臨界電流密度
(Jc)は、出発物にZnO粉末を添加せずに熱処理して得
た酸化物超電導体のJcに比べて約2倍であった。
The critical current density (Jc) of the oxide superconductor thus obtained was about twice that of the oxide superconductor obtained by heat treatment without adding ZnO powder to the starting material.

また、上記の混合粉末を銀パイプ内に充填したのち、
パイプ全体を縮径加工を施し、上記の条件と同条件で熱
処理して酸化物超電導線を得た。そして、この酸化物超
電導線のJcは、ZnO粉末を含まない混合粉末を用いて線
材化して得た酸化物超電導線のJcに比べてやはり約2倍
であった。
Also, after filling the above mixed powder in a silver pipe,
The entire pipe was subjected to diameter reduction processing and heat-treated under the same conditions as above to obtain an oxide superconducting wire. The Jc of the oxide superconducting wire was about twice as high as the Jc of the oxide superconducting wire obtained by forming a wire using a mixed powder containing no ZnO powder.

〔発明の効果〕〔The invention's effect〕

以上説明したように、この発明によれば、酸化物超電
導体を構成する元素を含む材料粉末などからなる出発物
に、銀、白金、金、亜鉛、バナジウム、クロム、カドミ
ウムの各酸化物粉末のうち少なくとも1種を1〜30原子
量%混合したのち、熱処理を施すようにしたので、熱処
理時に上記酸化物粉末が熱分解されて酸素が放出され、
この放出された酸素が得られる酸化物超電導体の組成中
に確実に導入されることから、良好な超電導特性を示す
酸化物超電導体を得ることができる。
As described above, according to the present invention, the starting material consisting of the material powder containing the elements constituting the oxide superconductor, silver, platinum, gold, zinc, vanadium, chromium, cadmium oxide powder of each At least one of them is mixed in an amount of 1 to 30 atomic% and then heat treated, so that the oxide powder is thermally decomposed and oxygen is released during the heat treatment.
Since the released oxygen is surely introduced into the composition of the obtained oxide superconductor, it is possible to obtain the oxide superconductor exhibiting excellent superconducting properties.

また、出発物として材料粉末の仮焼粉末、材料粉末の
焼成粉末、材料粉末と仮焼粉末と焼成粉末のうち少なく
とも2種以上混合してなる混合粉末を用いれば、熱処理
工程での処理条件を緩和でき、熱処理時間を短縮できる
などの効果を得ることができる。
Further, if a calcination powder of the material powder, a calcination powder of the material powder, or a mixed powder formed by mixing at least two kinds of the material powder, the calcination powder and the calcination powder is used as a starting material, the treatment conditions in the heat treatment step can be improved. It is possible to obtain effects such as relaxation and reduction of heat treatment time.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉本 優 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (72)発明者 中川 三紀夫 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (72)発明者 青木 伸哉 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (72)発明者 臼井 俊雄 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (72)発明者 後藤 謙次 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (72)発明者 久米 篤 東京都江東区木場1丁目5番1号 藤倉 電線株式会社内 (56)参考文献 特開 昭64−18968(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yu Sugimoto 1-5-1, Kiba, Koto-ku, Tokyo Fujikura Electric Wire Co., Ltd. (72) Inventor Mikio Nakagawa 1-1-5, Kiba, Koto-ku, Tokyo Fujikura Electric Wire (72) Inventor Shinya Aoki 1-5-1, Kiba, Koto-ku, Tokyo Fujikura Electric Cable Co., Ltd. (72) Inventor Toshio Usui 1-1-5, Kiba, Koto-ku, Tokyo Fujikura Electric Cable Co., Ltd. ( 72) Inventor Kenji Goto 1-5-1, Kiba, Koto-ku, Tokyo Within Fujikura Electric Cable Co., Ltd. (72) Inventor Atsushi Kume 1-5-1, Kiba, Koto-ku, Tokyo Within Fujikura Electric Wire Co., Ltd. (56) References JP-A-64-18968 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化物超電導体を構成する元素を含む材料
粉末、この材料粉末の仮焼粉末、上記材料粉末の焼成粉
末、上記材料粉末と仮焼粉末と焼成粉末のうち少なくと
も2種以上混合してなる混合粉末のいずれかを出発物と
し、この出発物に、銀、白金、金、亜鉛、バナジウム、
クロム、カドミウムの各酸化物粉末のうち少なくとも1
種を1〜30原子量%混合したのち、熱処理を施すことを
特徴とする酸化物超電導体の製造方法。
1. A material powder containing an element constituting an oxide superconductor, a calcined powder of the material powder, a calcined powder of the material powder, and a mixture of at least two or more of the material powder, the calcined powder and the calcined powder. The starting material is any one of the mixed powders, and silver, platinum, gold, zinc, vanadium,
At least 1 of each oxide powder of chromium and cadmium
A method for producing an oxide superconductor, which comprises mixing 1 to 30 atomic% of seeds and then performing heat treatment.
JP62220907A 1987-09-03 1987-09-03 Method for manufacturing oxide superconductor Expired - Fee Related JP2539451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62220907A JP2539451B2 (en) 1987-09-03 1987-09-03 Method for manufacturing oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62220907A JP2539451B2 (en) 1987-09-03 1987-09-03 Method for manufacturing oxide superconductor

Publications (2)

Publication Number Publication Date
JPS6465060A JPS6465060A (en) 1989-03-10
JP2539451B2 true JP2539451B2 (en) 1996-10-02

Family

ID=16758402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62220907A Expired - Fee Related JP2539451B2 (en) 1987-09-03 1987-09-03 Method for manufacturing oxide superconductor

Country Status (1)

Country Link
JP (1) JP2539451B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163922A (en) * 1987-09-14 1989-06-28 Sumitomo Electric Ind Ltd Manufacture of linear superconductive material
JPH01203256A (en) * 1988-02-09 1989-08-16 Mitsubishi Electric Corp Production of oxide superconductor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418968A (en) * 1987-07-10 1989-01-23 Semiconductor Energy Lab Production of oxide superconducting material

Also Published As

Publication number Publication date
JPS6465060A (en) 1989-03-10

Similar Documents

Publication Publication Date Title
WO1988008609A1 (en) Manufacture of high purity superconducting ceramic
JP2539451B2 (en) Method for manufacturing oxide superconductor
US5140000A (en) Metal oxide 247 superconducting materials
JP2821794B2 (en) Oxide superconductor and manufacturing method thereof
EP0394015A2 (en) Methods for producing high temperature superconducting materials
KR890700540A (en) Improvement of Superconductivity in Square-Plane Compounds
US4952390A (en) Superconductive oxide crystal and a production process thereof
WO2001012557A1 (en) A Pb-Bi-Sr-Ca-Cu-OXIDE POWDER MIX WITH ENHANCED REACTIVITY AND PROCESS FOR ITS MANUFACTURE
HUT52646A (en) Method for making super-conducting substance with critical temperature of 90 kelvin grades
JP2557062B2 (en) Method for manufacturing oxide superconductor
JPH06176637A (en) Manufacture of bi oxide superconductive wire
WO1995020063A1 (en) Preparation of superconductor precursor powders
JP2920001B2 (en) Method for producing rare earth oxide superconductor
JP2549669B2 (en) Oxide superconducting wire
JP2637622B2 (en) Manufacturing method of lead-based copper oxide superconductor
JP2679096B2 (en) Manufacturing method of superconducting spread
JPH0421521A (en) Production of bi-based superconductor having ni base material
JP2822559B2 (en) Method for producing thallium-based oxide superconducting wire
JP2583533B2 (en) Manufacturing method of oxide superconducting material
JPH04124032A (en) Superconductor and its synthesis
JP2515141B2 (en) Manufacturing method of oxide superconductor
JP2806071B2 (en) Manufacturing method of oxide superconductor
JP2709000B2 (en) Superconductor and method of manufacturing the same
JPH0238359A (en) Production of superconductor
JP2595309B2 (en) Manufacturing method of oxide superconducting wire

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees