JP2577542B2 - Semiconductor crystal growth equipment - Google Patents

Semiconductor crystal growth equipment

Info

Publication number
JP2577542B2
JP2577542B2 JP59153974A JP15397484A JP2577542B2 JP 2577542 B2 JP2577542 B2 JP 2577542B2 JP 59153974 A JP59153974 A JP 59153974A JP 15397484 A JP15397484 A JP 15397484A JP 2577542 B2 JP2577542 B2 JP 2577542B2
Authority
JP
Japan
Prior art keywords
single crystal
semiconductor single
growth
valve
crystal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59153974A
Other languages
Japanese (ja)
Other versions
JPS6134924A (en
Inventor
潤一 西澤
仁志 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINGIJUTSU JIGYODAN
Oki Electric Industry Co Ltd
Original Assignee
SHINGIJUTSU JIGYODAN
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINGIJUTSU JIGYODAN, Oki Electric Industry Co Ltd filed Critical SHINGIJUTSU JIGYODAN
Priority to JP59153974A priority Critical patent/JP2577542B2/en
Priority to GB8518842A priority patent/GB2162207B/en
Priority to DE19853526888 priority patent/DE3526888A1/en
Priority to FR858511516A priority patent/FR2582149B1/en
Publication of JPS6134924A publication Critical patent/JPS6134924A/en
Priority to GB8718943A priority patent/GB2200138B/en
Priority to GB8718942A priority patent/GB2200137B/en
Priority to US07/357,695 priority patent/US4975252A/en
Priority to US08/212,551 priority patent/US5443033A/en
Priority to US08/396,589 priority patent/US6464793B1/en
Application granted granted Critical
Publication of JP2577542B2 publication Critical patent/JP2577542B2/en
Priority to US08/904,347 priority patent/US20010001952A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は半導体の単結晶成長層を単分子層単位でエピ
タキシャル形成するのに好適な半導体結晶成長装置に関
する。
Description: TECHNICAL FIELD [0001] The present invention relates to a semiconductor crystal growth apparatus suitable for epitaxially forming a single crystal growth layer of a semiconductor in monomolecular layer units.

[先行技術とその問題点] 従来から半導体の薄膜結晶を得るための気相エピタキ
シー技術として、有機金属気相成長法(以下、MO−CVD
法と呼ぶ)、分子線エピタキシー法(以下、MBE法と呼
ぶ)、原子層エピタキシー法(以下、ALE法と呼ぶ)な
どが知られている。しかし、MO−CVD法はソースとしてI
II族,V族元素を水素ガス等をキャリアとして、同時に反
応室へ導入し、熱分解によって成長させるため、成長層
の品質が悪い。また、単分子層オーダーの制御が困難で
ある等の欠点がある。
[Prior art and its problems] Conventionally, metal-organic vapor phase epitaxy (hereinafter, MO-CVD) has been used as a vapor phase epitaxy technique for obtaining semiconductor thin film crystals.
Method, a molecular beam epitaxy method (hereinafter, referred to as MBE method), an atomic layer epitaxy method (hereinafter, referred to as ALE method), and the like. However, the MO-CVD method uses I
Since the group II and group V elements are simultaneously introduced into the reaction chamber using hydrogen gas or the like as a carrier and grown by thermal decomposition, the quality of the grown layer is poor. In addition, there is a disadvantage that it is difficult to control the order of the monolayer.

一方、超高真空を利用した結晶成長法としてよく知ら
れるMBE法は、物理吸着を第一段階とするために、結晶
の品質は化学反応を利用した気相成長法に劣る。GaAsの
ようなIII−V族間の化合物半導体を成長する時には、I
II族,V族元素をソースとして用い、ソース源自体を成長
室の中に設置している。このため、ソース源を加熱して
得られる放出ガスと蒸発量の制御、および、ソースの補
給が困難であり、成長速度を長時間一定に保つことが困
難である。また、蒸発物の排気など真空装置が複雑にな
る。更には、化合物半導体の化学量論的組成(ストイキ
オメトリー)を精密に制御することが困難で、結局、高
品質の結晶を得ることができない欠点がある。
On the other hand, the MBE method, which is well known as a crystal growth method using an ultra-high vacuum, uses physical adsorption as a first step, and thus has a lower crystal quality than a vapor phase growth method using a chemical reaction. When growing a III-V compound semiconductor such as GaAs,
Group II and V elements are used as sources, and the source itself is placed in the growth chamber. For this reason, it is difficult to control the released gas obtained by heating the source source and the amount of evaporation, and to replenish the source, and it is difficult to keep the growth rate constant for a long time. In addition, a vacuum device such as evacuation of evaporant is complicated. Furthermore, it is difficult to precisely control the stoichiometric composition (stoichiometry) of the compound semiconductor, and as a result, high quality crystals cannot be obtained.

更にALE法は、T.Suntola(ツオモ・サントラ)らがU.
S.P.No.4058430(1977)(特開昭51−77589号公報)で
説明しているように、MBE法を改良し半導体元素のそれ
ぞれをパルス状に交互に供給し、単原子層を基板に交互
に付着させ、成長させるもので、高精度で膜厚を制御で
きる利点があるが、MBE法の延長でありMBEと同様に結晶
性が良くない。また成長した薄膜もCdTe、ZnTe等のII−
IV族化合物半導体の多結晶やアモルファス等に限られ、
現在超LSI等の半導体装置の主力であるSiやGaAsの単結
晶成長に関しては成功していない。特にU.S.P.No.40584
30に記載されているようにA−B結合からなる異なる元
素の結合はALE法で実現できても、B−B結合からなるS
iのような単元素半導体は原理的に成長不可能である欠
点があった。ALEを改良して分子層を吸着し、表面での
化学反応を利用した成長も試みられてはいるがZnSの多
結晶やTa2O5のアモルファスの薄膜の成長であり単結晶
成長技術とはなっていない。また1サイクル当りの成長
膜厚も1/3分子層以下といった1分子層膜厚よりかなり
小さな値であり、単分子層単位となっていない欠点があ
った。またIII−V族化合物半導体のようにIII族元素を
含む化合物ガスの蒸気圧がV族元素を含む化合物ガスの
蒸気圧に比して小さい場合は、ALE法では成長できない
欠点があった。さらにALE法では、特開昭55−130896号
公報に記載のようにキャリヤガス等の成長表面に関して
不活性なガスを用いてガス相拡散バリヤを形成し、蒸気
の同時干渉を防止しないと、交換表面反応の反応工程の
分離ができない欠点があった。
Furthermore, T.Suntola (tuomo soundtrack) et al.
As described in SP No. 4058430 (1977) (JP-A-51-77589), the MBE method is improved to alternately supply each of the semiconductor elements in a pulsed manner, and to alternate the monoatomic layer on the substrate. Although it is deposited and grown, it has the advantage of being able to control the film thickness with high precision, but is an extension of the MBE method and has poor crystallinity like MBE. In addition, the grown thin film was made of II- such as CdTe and ZnTe.
Limited to polycrystalline or amorphous group IV compound semiconductors,
Currently, single crystal growth of Si or GaAs, which is the mainstay of semiconductor devices such as VLSI, has not been successful. Especially USP No. 40584
As described in 30, the bonding of different elements consisting of AB bonds can be realized by the ALE method,
Single element semiconductors such as i have the disadvantage that they cannot be grown in principle. Attempts have been made to improve the ALE by adsorbing the molecular layer and using a chemical reaction on the surface, but the growth of ZnS polycrystal or Ta 2 O 5 amorphous thin film is a single crystal growth technology. is not. Further, the growth film thickness per cycle is much smaller than the film thickness of one molecular layer such as 1/3 molecular layer or less, and there is a drawback that the film is not formed in a single molecular layer unit. When the vapor pressure of a compound gas containing a group III element such as a III-V compound semiconductor is smaller than the vapor pressure of a compound gas containing a group V element, there is a disadvantage that the growth cannot be performed by the ALE method. Further, in the ALE method, as described in JP-A-55-130896, a gas-phase diffusion barrier is formed using a gas that is inert with respect to a growth surface such as a carrier gas, and exchange is performed unless simultaneous interference of vapor is prevented. There was a disadvantage that the reaction process of the surface reaction could not be separated.

このように従来の結晶成長法では、いずれも高品質の
結晶膜を得ることが困難な上、その膜厚を所望の分子層
数に制御することは容易なことではなかった。
As described above, in any of the conventional crystal growth methods, it is difficult to obtain a high-quality crystal film, and it is not easy to control the film thickness to a desired number of molecular layers.

[発明の目的] 本発明は上記従来の欠点を除き、結晶成長層の品質を
改善すると共に、単分子層単位の精度で所望膜厚の結晶
成長層を形成することのできる半導体結晶成長装置を提
供することを目的とする。
[Object of the Invention] The present invention is directed to a semiconductor crystal growth apparatus capable of improving the quality of a crystal growth layer and forming a crystal growth layer having a desired film thickness with a precision of a single molecular layer. The purpose is to provide.

[発明の概要] このため、本発明は超高真空に排気した成長槽内で基
板を加熱し、その基板上に成長させたい成分元素を含む
原料ガスをノズルを用いて所定の条件で交互に導入し、
ノズルに配設されたガス導入用バルブの開閉と、真空排
気のみにより原料ガスの交換表面反応を実現し単分子層
ずつエピタキシャル成長させると共に、その成長回数を
制御することにより単分子単位で所定分子層数の結晶層
が形成できるようにしたものである。
[Summary of the Invention] For this reason, the present invention heats a substrate in a growth tank evacuated to an ultra-high vacuum, and alternately feeds a source gas containing a component element to be grown on the substrate under a predetermined condition using a nozzle. Introduce,
Opening / closing of the gas introduction valve provided in the nozzle and realizing an exchange surface reaction of the raw material gas only by vacuum evacuation and epitaxially growing single molecular layers, and controlling the number of times of growth to control the predetermined molecular layers in single molecular units The number of crystal layers can be formed.

[発明の実施例] 第1図は本発明の一実施例に係る半導体結晶成長装置
の構成図を示したもので、1は成長槽で材質はステンレ
ス等の金属、2はゲートバルブ等のバルブ、3は成長槽
1内を超高真空に排気するための排気装置、4,5はIII−
V族化合物半導体のIII族,V族の成分元素の化合物から
なる原料ガスを導入するノズル,6,7はノズル4,5を開閉
するガス導入用バルブ、8はIII族の成分元素を含む化
合物からなる原料ガス、9はV族の成分元素を含む化合
物からなる原料ガス、10は基板支持台で基板加熱用のヒ
ーターを兼ねており石英ガラスに封入したタングステン
(W)線であり、電線等は図示省略している。11は測温
用の熱電対、12は半導体の基板、13は成長槽内の真空度
を測るための圧力計である。ノズル4,5の先端部は基板
表面方向を向いており、また先端部は基板に近く配置さ
れている。また、14は光源、15は光源からの光を基板12
に導くための窓である。更に16,17は前記ガス導入用バ
ルブ6,7を開閉する圧縮空気の流れを制御する電磁弁,18
はその電磁弁16,17をON,OFF制御するマイコン使用の制
御装置、19はバルブ開閉数を表示する表示装置である。
[Embodiment of the Invention] FIG. 1 shows a configuration diagram of a semiconductor crystal growth apparatus according to an embodiment of the present invention, wherein 1 is a growth tank, which is made of metal such as stainless steel, and 2 is a valve such as a gate valve. Reference numeral 3 denotes an exhaust device for evacuating the inside of the growth tank 1 to an ultra-high vacuum.
Nozzles for introducing source gases consisting of compounds of Group III and Group V component elements of Group V compound semiconductors, 6, 7 are gas introduction valves for opening and closing nozzles 4, 5 and 8 are compounds containing Group III component elements 9 is a source gas composed of a compound containing a group V component element, 10 is a tungsten (W) wire enclosed in quartz glass which also serves as a substrate heating heater and serves as a substrate heater, and an electric wire or the like. Are not shown. 11 is a thermocouple for temperature measurement, 12 is a semiconductor substrate, and 13 is a pressure gauge for measuring the degree of vacuum in the growth tank. The tips of the nozzles 4 and 5 face toward the substrate surface, and the tips are arranged close to the substrate. 14 is a light source, 15 is light from the light source
It is a window to lead to. Further, 16 and 17 are solenoid valves for controlling the flow of compressed air for opening and closing the gas introduction valves 6 and 7,
Is a control device using a microcomputer for controlling ON / OFF of the electromagnetic valves 16 and 17, and 19 is a display device for displaying the number of opening and closing valves.

以上の構成で、GaAsの分子量を一層ずつ基板12上にエ
ピタキシャル成長させる方法は、以下のように実施す
る。即ち、ゲートバルブ2を開けて超高真空排気装置3
により、成長槽1内を10-7〜10-8Pascal(以下、Paと略
す)程度に排出する。次に、GaAs基板12を例えば300〜8
00℃程度ヒーター10により加熱し、Gaを含む原料ガスと
してTMG(トリメチルガリウム)8を成長槽内の圧力
が、10-1〜10-7Paになる範囲で、0.5〜10秒間ガス導入
用バルブ6を開けて導入する。その後、ガス導入用バル
ブ6を閉じて成長槽1内のガスを排出後、今度はAsを含
む原料ガスとしてAsH39を成長槽1内の圧力が10-1〜10
-7Paとなる範囲で2〜200秒間ガス導入用バルブ7を開
けて導入する。このガス導入1サイクルに伴う、交換表
面反応でGaAsの結晶が少なく共1分子層成長できる。少
なく共というのは交換表面反応1サイクルに付き2分子
層成長、3分子層成長も可能ということである。
With the above configuration, a method of epitaxially growing the molecular weight of GaAs one by one on the substrate 12 is performed as follows. That is, the gate valve 2 is opened and the ultra-high vacuum evacuation device 3 is opened.
By this, the inside of the growth tank 1 is discharged to about 10 −7 to 10 −8 Pascal (hereinafter abbreviated as Pa). Next, the GaAs substrate 12 is
Heated by a heater 10 at about 00 ° C., a TMG (trimethylgallium) 8 as a source gas containing Ga is used for a gas introduction valve for 0.5 to 10 seconds in a range where the pressure in the growth tank becomes 10 −1 to 10 −7 Pa. Open 6 and introduce. Then, after exhausting the gas in the growth chamber 1 to close the gas inlet valve 6, AsH 3 9 the pressure in the growth chamber 1 is 10 -1 to 10 as a material gas containing As is now
The gas is introduced by opening the gas introduction valve 7 for 2 to 200 seconds within the range of -7 Pa. A single monolayer can be grown with less GaAs crystals due to the exchange surface reaction associated with one cycle of this gas introduction. At least, it means that bilayer growth and trilayer growth are possible per exchange surface reaction cycle.

この場合、基板12の加熱と共に、光源14から紫外線を
基板12に照射するようにすれば、基板の加熱温度を400
℃以下に低く設定しても結晶成長させることができると
共に、結晶品質が改善される。
In this case, by irradiating the substrate 12 with ultraviolet light from the light source 14 together with the heating of the substrate 12, the substrate heating temperature can be increased to 400 ° C.
Even if the temperature is set to a low temperature of not more than ℃, the crystal can be grown and the crystal quality is improved.

このように、成長槽1内の圧力、基板12の温度、光源
14の強度、ガス導入用バルブ6,7の開閉時間を所定の値
に設定して、エピタキシャル成長動作させれば、常にGa
As結晶1分子層がガス導入1サイクルに伴う交換表面反
応で形成できる。従って、その動作回数を監視し、所定
回数単分子層を繰り返し成長させれば、所望分子槽数の
GaAsのエピタキシャル成長層を単分子層の単位で成長さ
せれることができる。
Thus, the pressure in the growth tank 1, the temperature of the substrate 12, the light source
If the strength of 14 and the opening and closing time of the gas introduction valves 6 and 7 are set to predetermined values and the epitaxial growth operation is performed, Ga
One molecular layer of As crystal can be formed by an exchange surface reaction accompanying one cycle of gas introduction. Therefore, if the number of operations is monitored and the monomolecular layer is repeatedly grown a predetermined number of times, the desired number of molecular tanks can be obtained.
GaAs epitaxial growth layers can be grown in monolayer units.

第2図はその実施例を示したもので、導入ガスとし
て、TMGとAsH3を用いた時の成長温度600℃でのTMGとAsH
3を交互に導入する回数と、GaAsエピタキシャル成長層
の膜厚の関係図である。ガス8,9を400回、2000回および
4000回交互に導入した場合の成長層の膜厚を示してい
る。このように、ガス導入回数即ちバルブ開閉回数と成
長膜厚との関係は非常によい直線性を示す。従って、バ
ルブ開閉回数を制御することにより、成長層膜厚を分子
層単位で制御することができることが確認できた。
FIG. 2 shows an embodiment of the present invention, in which TMG and AsH at a growth temperature of 600 ° C. when TMG and AsH 3 are used as introduced gases.
FIG. 4 is a diagram showing the relationship between the number of times 3 is alternately introduced and the film thickness of a GaAs epitaxial growth layer. Gas 8,9 400 times, 2000 times and
It shows the thickness of the grown layer when introduced alternately 4000 times. As described above, the relationship between the number of times of gas introduction, that is, the number of times of valve opening / closing, and the growth film thickness shows very good linearity. Therefore, it was confirmed that by controlling the number of opening and closing of the valves, the thickness of the grown layer can be controlled in units of molecular layers.

第1図の電磁弁16,17および制御装置18はガス導入用
バルブ6,7の開閉回数を制御することにより、成長層膜
厚を制御するためのものである。制御装置18には成長さ
せたい膜厚に応じてガス導入用バルブ6,7の開閉回数No
と、開閉時間即ちガス8導入時間τ1、ガス8排気時間
τ2、ガス9導入時間τ3、ガス9排気時間τ4を予めセ
ットしておく。
The electromagnetic valves 16 and 17 and the controller 18 in FIG. 1 are for controlling the number of times of opening and closing of the gas introduction valves 6 and 7 to control the thickness of the grown layer. The number of times of opening and closing of the gas introduction valves 6 and 7 according to the film thickness to be grown is stored in the controller 18.
And the opening / closing time, that is, gas 8 introduction time τ 1 , gas 8 exhaust time τ 2 , gas 9 introduction time τ 3 , and gas 9 exhaust time τ 4 are set in advance.

制御装置18は、クロックパルス発生器、各種カウンタ
機能、レジスタ機能を備え、制御動作を開始させると、
第3図に示す処理手順に従って、第4図に示すタイミン
グでガス導入用バルブ6,7を開閉制御する。
The control device 18 has a clock pulse generator, various counter functions, and a register function, and when a control operation is started,
According to the processing procedure shown in FIG. 3, the gas introduction valves 6, 7 are controlled to open and close at the timing shown in FIG.

即ち、第3図に示すように、制御装置18は内部の各種
カウンタ、レジスタ類を初期化したのち(100)、第4
図に示すように時刻t1にてON信号を電磁弁16に与え、ガ
ス導入用バルブ6をONする。また、時計カウンタ(τ)
を一旦リセットしたのち、再び時計カウント動作を開始
させる(101)。これにより、基板12上にはガス8が導
入される。その導入時間即ち時計カウンタのカウント値
τがτ1に達したとき(102)、時刻t2にてバルブ6をOF
Fし、成長槽1に導入されたガス8を排気する。また、
計数カウンタ(τ)を一旦リセットしたのち、再びカウ
ンタ動作を開始させる(103)。排気時間τ2経過後(10
4)、時刻t3にてガス導入用バルブ7をONする。また、
上記同様にして時計カウンタを再スタートさせる(10
5)。これにより、今度はガス9が基板12上に導入され
る。その導入時間τがτ3に達したとき(106)、時刻t4
にてガス導入用バルブ7をOFFし、成長槽1内のガスを
排気する。また、時計カウンタを再スタートさせる(10
7)。排気時間τ4経過後(108)、開閉カウンタの値N
を+1してガス導入用バルブ6,7の開閉数をカウントす
る(109)。制御装置18の以上の動作によって基板12上
には前述したようにGaAs1分子層が形成されることにな
る。続いて、そのカウント値Nが規定回数Noに達したか
否かを判断し(110)、まだ規定回数に達していなけれ
ば、上記一連の動作を繰り返し、GaAsの2層目を形成す
る。このような動作を繰り返し、基板12上にGaAsが1分
子層づつ形成され、規定回数の分子層が形成されれば、
成長動作を終了する。これにより、基板12上には所望の
厚さのGaAsが単分子層の単位で自動的に形成される、ま
た、制御装置18は上記一連の制御動作を行っている際中
に、バルブ開閉数Nを刻々表示装置19上に表示する。従
って、半導体製作技術者は、この表示を見て結晶成長の
進行状態を把握することができる。
That is, as shown in FIG. 3, the control device 18 initializes various internal counters and registers (100),
Giving an ON signal to the solenoid valve 16 at time t 1 as shown in FIG, turning ON the gas inlet valve 6. Also, a clock counter (τ)
Is reset once, and the clock counting operation is started again (101). Thereby, the gas 8 is introduced onto the substrate 12. When the introduction time That the count value of the time counter tau reaches τ 1 (102), at time t 2 the valve 6 OF
Then, the gas 8 introduced into the growth tank 1 is exhausted. Also,
After once resetting the count counter (τ), the counter operation is started again (103). After elapse of exhaust time τ 2 (10
4), turning ON the gas inlet valve 7 at time t 3. Also,
Restart the clock counter in the same way as above (10
Five). Thereby, the gas 9 is introduced onto the substrate 12 this time. When the introduction time τ reaches τ 3 (106), the time t 4
, The gas introduction valve 7 is turned off, and the gas in the growth tank 1 is exhausted. Also restart the clock counter (10
7). After the elapse of the exhaust time τ 4 (108), the value N of the open / close counter
Is incremented by 1, and the number of opening and closing of the gas introduction valves 6 and 7 is counted (109). By the above operation of the control device 18, a GaAs monolayer is formed on the substrate 12 as described above. Subsequently, it is determined whether or not the count value N has reached the specified number of times (110). If the count value has not yet reached the specified number, the above series of operations is repeated to form the second layer of GaAs. By repeating such an operation, GaAs is formed on the substrate 12 one by one molecular layer, and when a specified number of molecular layers are formed,
The growth operation ends. As a result, GaAs having a desired thickness is automatically formed on the substrate 12 in a unit of a monolayer, and the controller 18 controls the valve opening / closing number during the above-described series of control operations. N is displayed on the display device 19 every moment. Therefore, the semiconductor manufacturing engineer can grasp the progress of crystal growth by looking at this display.

尚、Gaを含む原料ガスとしてはTEG、DEGaCl、GaBr3
GaI3、GaCl3のようなものでもよい。光照射は成長中連
続して行ってもよいし、断続的でもよい。光源は高圧水
銀ランプ、キセノンランプのようなランプに限らずエキ
シマレーザーのようなレーザーでもよい。
The source gas containing Ga includes TEG, DEGaCl, GaBr 3 ,
GaI 3 or GaCl 3 may be used. Light irradiation may be performed continuously during growth or may be intermittent. The light source is not limited to a lamp such as a high-pressure mercury lamp or a xenon lamp, and may be a laser such as an excimer laser.

また、上記実施例においては、結晶成長させる半導体
はGaAsの場合を例にとり説明してきたが、本発明はこれ
に限らず、InP、AlP、GaP等、他のIII−V族化合物、あ
るいはII−VI族化合物でも同様にして実施し得ることは
言う迄もない。更には、Ga1-xAlxAs、Ga1-xAlxAs1-yPy
等の混晶でもよい。また、基板もGaAsに限らず、他の化
合物基板に成長させるヘテロエピタキシャル成長等でも
よい。また更に、半導体はIV族のような元素半導体でも
よい。この元素半導体がSiの場合は原料ガスとしてSiH2
Cl2のような塩化物とH2ガスの組み合わせで、Si基板を7
50℃〜900℃に加熱することによって結晶成長を行うこ
とができる。
Further, in the above embodiment, the case where the semiconductor to be crystal-grown is GaAs has been described as an example, but the present invention is not limited to this, and other III-V group compounds such as InP, AlP, GaP, or II- It goes without saying that it can be carried out in the same manner with a group VI compound. Further, Ga 1-x Al x As, Ga 1-x Al x As 1-y P y
And the like. Further, the substrate is not limited to GaAs, but may be heteroepitaxial growth or the like grown on another compound substrate. Still further, the semiconductor may be an elemental semiconductor such as Group IV. If this elemental semiconductor is Si, SiH 2
A combination of a chloride such as Cl 2 and H 2 gas,
Crystal growth can be performed by heating to 50 ° C to 900 ° C.

また、上記実施例では基板12の加熱源を成長槽1内部
に設けた例について示したが、加熱源として赤外線ラン
プ等を用い成長槽1の外部に設置し、光学窓を通して基
板12に熱線を照射し加熱するようにしてもよい。
Further, in the above embodiment, the example in which the heating source for the substrate 12 is provided inside the growth tank 1 is shown. However, the heating source is installed outside the growth tank 1 using an infrared lamp or the like as a heating source, and heat rays are applied to the substrate 12 through an optical window. Irradiation and heating may be performed.

[発明の効果] 以上のような本発明によれば、ガス導入用ノズルの先
端部が基板の表面方向を向いており、しかも基板近傍に
配置されているので、導入された原料ガスが基板以外の
ところに廻り込んだり、成長槽の壁面に吸着されるよう
なことがなく、ガス導入用バルブ開閉と排気装置による
真空排気のみにより交換表面反応が実現できる。したが
ってALE法のように不活性ガスを導入してガス相拡散バ
リヤを形成する必要もなく、装置の構成が簡単となる。
またALE法では導入できなかった蒸気圧の低いGaCl3やTM
GといったIII族元素を含む化合物のガスを導入できるの
でIII−V族化合物半導体の成長も可能となる。本発明
によれば1分子吸着層形成による成長機構を用いている
ので、原料ガスの分子数を1分子吸着層形成に必要な数
よりも十分多くしておけば原料ガス導入量、原料ガス導
入圧力、基板温度等多少変動しても、ガス導入1サイク
ルに付き1分子層厚みに自動的に半導体単結晶が形成さ
れる。したがって、バルブ開閉回数を数えるだけで、分
子層単位の成長が実現できる。また、本発明によれば、
一分子層ずつ成長できること、化学量論的組成を満たす
ことが容易で良質な結晶を得ることができること、不純
物の添加を一分子層ずつ行なうことができるので非常に
急峻な不純物密度分布を得ることができる。本発明によ
れば、ALE法で不可能であった単元素半導体のSi単結晶
の所望の厚さのエピタキシャル成長層を単分子層の単位
で得ることができることから、工業的な応用範囲も広く
高品質の半導体デバイスが自動的に製造できるようにな
る。さらに本発明によれば光照射により基板表面での表
面泳動等が促進されるので、結晶品質が改善される。
[Effects of the Invention] According to the present invention as described above, since the tip of the gas introduction nozzle is directed toward the surface of the substrate and is disposed near the substrate, the introduced source gas is not contained in the substrate. And the adsorption surface reaction can be realized only by opening and closing the gas introduction valve and evacuating by the exhaust device. Therefore, there is no need to introduce an inert gas to form a gas phase diffusion barrier as in the ALE method, and the configuration of the apparatus is simplified.
In addition, low vapor pressure GaCl 3 or TM that could not be introduced by the ALE method
Since a gas of a compound containing a group III element such as G can be introduced, it is possible to grow a group III-V compound semiconductor. According to the present invention, since the growth mechanism based on the formation of the single-molecule adsorption layer is used, if the number of molecules of the source gas is sufficiently larger than the number required for forming the single-molecule adsorption layer, the amount of the source gas introduced and the amount of the source gas Even if the pressure, the substrate temperature, and the like slightly change, a semiconductor single crystal is automatically formed to a thickness of one molecular layer per one cycle of gas introduction. Therefore, only by counting the number of times of opening and closing of the valve, the growth of the molecular layer unit can be realized. According to the present invention,
The ability to grow one molecular layer at a time, the ability to easily satisfy the stoichiometric composition and obtain good quality crystals, and the ability to add impurities one molecular layer at a time to obtain a very steep impurity density distribution Can be. According to the present invention, an epitaxially grown layer of a desired thickness of a single-element semiconductor Si single crystal, which was impossible with the ALE method, can be obtained in a unit of a single molecular layer. High quality semiconductor devices can be automatically manufactured. Further, according to the present invention, the surface migration or the like on the substrate surface is promoted by the light irradiation, so that the crystal quality is improved.

本発明によれば、ガス導入1サイクルで少なく共1分
子層成長するので、ALE法に比べて短時間で所望の膜厚
を得ることができる。
According to the present invention, since a single monolayer grows at least in one cycle of gas introduction, a desired film thickness can be obtained in a shorter time than in the ALE method.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例に係る半導体結晶成長装置の構
成図、第2図は第1図におけるバルブ回数と成長膜厚と
の関係図、第3図は第1図の制御装置の処理動作の流れ
図、第4図は第1図のガス導入タイミング図である。 1……成長槽、2……ゲートバルブ等のバルブ、3……
排気装置、4,5……ノズル、6,7……ガス導入用バルブ、
8,9……ガス状の化合物、10……基板支持台兼ヒータ
ー、11……熱電対、12……基板、13……圧力計、14……
光源、15……窓、16,17……電磁弁、18……制御装置、1
9……表示装置。
FIG. 1 is a configuration diagram of a semiconductor crystal growth apparatus according to an embodiment of the present invention, FIG. 2 is a diagram showing the relationship between the number of valves and the grown film thickness in FIG. 1, and FIG. FIG. 4 is a flow chart of the operation, and FIG. 4 is a gas introduction timing chart of FIG. 1 ... growth tank, 2 ... valves such as gate valves, 3 ...
Exhaust device, 4,5… Nozzle, 6,7 …… Gas introduction valve,
8, 9 gaseous compound, 10 substrate heater / heater, 11 thermocouple, 12 substrate, 13 pressure gauge, 14
Light source, 15 Window, 16, 17 Solenoid valve, 18 Control device, 1
9 Display device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西澤 潤一 仙台市米ヶ袋1丁目6番16号 (72)発明者 阿部 仁志 仙台市緑ヶ丘1丁目22番11号 (56)参考文献 特開 昭55−130896(JP,A) 特開 昭58−98917(JP,A) 特開 昭51−77589(JP,A) 「応用物理」,第53巻,第6号,社団 法人応用物理学会,1984年6月10日発 行,第516〜520頁 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Junichi Nishizawa 1-6-16 Yonegabukuro, Sendai City (72) Inventor Hitoshi Abe 1-22-11 Midorigaoka, Sendai City (56) References JP-A Sho55 -130896 (JP, A) JP-A-58-98917 (JP, A) JP-A-51-77589 (JP, A) "Applied Physics", Vol. 53, No. 6, Japan Society of Applied Physics, 1984 Published on June 10, pages 516-520

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】GaAs半導体単結晶基板をその上部に保持す
る基板支持台と、 前記基板支持台をその内部に配置した成長槽と、 前記成長槽に接続されたバルブと、 前記バルブに接続され前記成長槽を10-7Pa以下に排気す
る排気装置と、 前記成長槽の外部から内部に導入されて先端が前記GaAs
半導体単結晶基板表面方向に向いて形成配置された少な
く共2本のノズルと、 前記成長槽の外部において前記ノズルのそれぞれに配設
されたガス導入用バルブ及び前記バルブを制御する電磁
弁と、 前記GaAs半導体単結晶基板のみを300〜800℃に加熱する
加熱源と、 前記成長槽の上部に形成された窓を介して前記GaAs半導
体単結晶基板に紫外線を照射する紫外線照射機構と、 前記成長槽を10-7Pa以下に排気した後、前記GaAs半導体
単結晶基板のみを300〜800℃に加熱し、かつ、前記GaAs
半導体単結晶基板に紫外線を照射した状態で、マイコン
を使用して、0.5〜10秒間前記ガス導入用バルブの一方
を開き、前記成長槽内圧力が10-1〜10-7Paになる範囲で
Gaを含む原料ガスを前記ノズルを介して前記GaAs半導体
単結晶基板表面上に導入し、次ぎに所定時間排気後、2
〜200秒間前記ガス導入用バルブの他方を開き、前記成
長槽内圧力が10-1−10-7Paになる範囲でAsを含む原料ガ
スを前記ノズルを介して前記GaAs半導体単結晶基板表面
上に導入し、次ぎに所定時間排気するというサイクルを
予め設定された回数繰り返す制御装置と、 前記制御装置により繰り返される前記ガス導入用バルブ
の開閉回数を表示する表示装置とを備え、 前記表示装置付きのマイコン制御と前記紫外線照射機構
による光照射により所望の膜厚を有する高品質のGaAs半
導体単結晶を自動的に成長させることを特徴とするGaAs
半導体単結晶成長装置。
1. A substrate support for holding a GaAs semiconductor single crystal substrate thereon, a growth tank in which the substrate support is disposed, a valve connected to the growth tank, and a valve connected to the valve. An evacuation device for evacuating the growth tank to 10 −7 Pa or less;
At least two nozzles formed and arranged facing the surface direction of the semiconductor single crystal substrate, and a solenoid valve for controlling the gas introduction valve and the valve arranged at each of the nozzles outside the growth tank, A heating source for heating only the GaAs semiconductor single crystal substrate to 300 to 800 ° C., an ultraviolet irradiation mechanism for irradiating the GaAs semiconductor single crystal substrate with ultraviolet light through a window formed on an upper portion of the growth tank, After evacuating the tank to 10 -7 Pa or less, only the GaAs semiconductor single crystal substrate was heated to 300 to 800 ° C., and the GaAs
While irradiating the semiconductor single crystal substrate with ultraviolet rays, using a microcomputer, open one of the gas introduction valves for 0.5 to 10 seconds, and within a range where the pressure in the growth tank becomes 10 -1 to 10 -7 Pa.
A source gas containing Ga is introduced onto the surface of the GaAs semiconductor single crystal substrate through the nozzle, and then exhausted for a predetermined time.
Open the other of the gas introduction valves for ~ 200 seconds, and feed the source gas containing As onto the GaAs semiconductor single crystal substrate surface through the nozzle in a range where the pressure in the growth tank becomes 10 -1 -10 -7 Pa. And a display device for displaying the number of times the gas introduction valve is opened and closed repeatedly by the control device. Automatically growing a high-quality GaAs semiconductor single crystal having a desired film thickness by microcomputer control and light irradiation by the ultraviolet irradiation mechanism.
Semiconductor single crystal growth equipment.
JP59153974A 1984-07-26 1984-07-26 Semiconductor crystal growth equipment Expired - Fee Related JP2577542B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP59153974A JP2577542B2 (en) 1984-07-26 1984-07-26 Semiconductor crystal growth equipment
GB8518842A GB2162207B (en) 1984-07-26 1985-07-25 Semiconductor crystal growth apparatus
FR858511516A FR2582149B1 (en) 1984-07-26 1985-07-26 APPARATUS FOR GROWING A SEMICONDUCTOR CRYSTAL
DE19853526888 DE3526888A1 (en) 1984-07-26 1985-07-26 SEMICONDUCTOR CRYSTAL GROWING DEVICE
GB8718943A GB2200138B (en) 1984-07-26 1987-08-11 Semiconductor crystal growth apparatus
GB8718942A GB2200137B (en) 1984-07-26 1987-08-11 Semiconductor crystal growth apparatus
US07/357,695 US4975252A (en) 1984-07-26 1989-05-26 Semiconductor crystal growth apparatus
US08/212,551 US5443033A (en) 1984-07-26 1994-03-11 Semiconductor crystal growth method
US08/396,589 US6464793B1 (en) 1984-07-26 1995-03-01 Semiconductor crystal growth apparatus
US08/904,347 US20010001952A1 (en) 1984-07-26 1997-07-31 Semiconductor crystal growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59153974A JP2577542B2 (en) 1984-07-26 1984-07-26 Semiconductor crystal growth equipment

Publications (2)

Publication Number Publication Date
JPS6134924A JPS6134924A (en) 1986-02-19
JP2577542B2 true JP2577542B2 (en) 1997-02-05

Family

ID=15574144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59153974A Expired - Fee Related JP2577542B2 (en) 1984-07-26 1984-07-26 Semiconductor crystal growth equipment

Country Status (1)

Country Link
JP (1) JP2577542B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2652630B2 (en) * 1986-04-02 1997-09-10 理化学研究所 Crystal growth method
JPH078756B2 (en) * 1986-07-04 1995-02-01 日本電信電話株式会社 Compound semiconductor thin film formation method
JP2705726B2 (en) * 1988-01-28 1998-01-28 富士通株式会社 Atomic layer epitaxial growth method
JP2757407B2 (en) * 1988-12-20 1998-05-25 富士通株式会社 Compound semiconductor crystal growth method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI57975C (en) * 1979-02-28 1980-11-10 Lohja Ab Oy OVER ANCHORING VIDEO UPDATE FOR AVAILABILITY
JPS5898917A (en) * 1981-12-09 1983-06-13 Seiko Epson Corp Atomic layer epitaxial device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
「応用物理」,第53巻,第6号,社団法人応用物理学会,1984年6月10日発行,第516〜520頁

Also Published As

Publication number Publication date
JPS6134924A (en) 1986-02-19

Similar Documents

Publication Publication Date Title
US5250148A (en) Process for growing GaAs monocrystal film
US5294286A (en) Process for forming a thin film of silicon
US5705224A (en) Vapor depositing method
US6464793B1 (en) Semiconductor crystal growth apparatus
US5246536A (en) Method for growing single crystal thin films of element semiconductor
JPS6134929A (en) Growing device of semiconductor device
JPH0639357B2 (en) Method for growing element semiconductor single crystal thin film
JPH0766909B2 (en) Element semiconductor single crystal thin film growth method
JP2577542B2 (en) Semiconductor crystal growth equipment
JPH0782991B2 (en) Method of growing compound semiconductor single crystal thin film
JP3090232B2 (en) Compound semiconductor thin film formation method
JPS61260622A (en) Growth for gaas single crystal thin film
JP2736655B2 (en) Compound semiconductor crystal growth method
JP2821557B2 (en) Method for growing compound semiconductor single crystal thin film
JPH07120625B2 (en) Method for forming compound semiconductor single crystal thin film
JPH0787179B2 (en) Method for manufacturing superlattice semiconductor device
JP2577544B2 (en) Method for manufacturing semiconductor device
JP2567331B2 (en) Method of growing compound semiconductor single crystal thin film
JP2620578B2 (en) Method for producing compound semiconductor epitaxial layer
JPS6222423A (en) Forming device for deposited film
JPH07226380A (en) Atomic layer crystal growth method
JP2654608B2 (en) Method for manufacturing GaAs semiconductor diode
JP2759298B2 (en) Thin film formation method
JPH0532360B2 (en)
JPS6134987A (en) Manufacture of semiconductor laser

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees