JP2558722B2 - Electrode forming method for voltage non-linear resistor - Google Patents

Electrode forming method for voltage non-linear resistor

Info

Publication number
JP2558722B2
JP2558722B2 JP62195945A JP19594587A JP2558722B2 JP 2558722 B2 JP2558722 B2 JP 2558722B2 JP 62195945 A JP62195945 A JP 62195945A JP 19594587 A JP19594587 A JP 19594587A JP 2558722 B2 JP2558722 B2 JP 2558722B2
Authority
JP
Japan
Prior art keywords
alloy powder
sintering
ptag
voltage non
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62195945A
Other languages
Japanese (ja)
Other versions
JPS6439004A (en
Inventor
義和 小林
忠 小野美
純二 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62195945A priority Critical patent/JP2558722B2/en
Publication of JPS6439004A publication Critical patent/JPS6439004A/en
Application granted granted Critical
Publication of JP2558722B2 publication Critical patent/JP2558722B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、焼結体自体が電圧非直線性を有するような
添加物を加えた酸化亜鉛ZnOを主成分とする電圧非直線
抵抗器の電極形成方法に関するものである。
TECHNICAL FIELD The present invention relates to the formation of an electrode for a voltage non-linear resistor containing zinc oxide ZnO as a main component, to which an additive is added so that the sintered body itself has voltage non-linearity. It is about the method.

従来の技術 従来より、ZnOを主成分として、これにBi2O3,Co
2O3,Sb2O3,MnO2,Cr2O3,TiO2,Al2O3,SiO2などの金
属酸化物を添加成分として少量加え、高温度下で焼成す
ることによって得られる焼結体は、顕著な電圧非直線性
を示し、電圧安定化素子として、またサージ吸収素子と
して広く用いられている。
Conventional technology Conventionally, ZnO was the main component, and Bi 2 O 3 , Co
Firing obtained by adding a small amount of a metal oxide such as 2 O 3 , Sb 2 O 3 , MnO 2 , Cr 2 O 3 , TiO 2 , Al 2 O 3 and SiO 2 as an additive component and firing at high temperature The bonded body exhibits remarkable voltage non-linearity and is widely used as a voltage stabilizing element and a surge absorbing element.

従来、この種の電圧非直線抵抗器の製造方法は、主成
分のZnOに必要な添加物を加えて混合、成形し、その後
に高温度下で焼結し、しかる後に対向面上にAg粉末をペ
ースト状にして塗布し、500〜900℃程度にて焼付けを行
い、電極形成を行っていた。
Conventionally, this type of voltage non-linear resistor is manufactured by adding the necessary additives to the main component ZnO, mixing, molding, and then sintering at high temperature, and then Ag powder on the facing surface. Was applied in the form of paste and baked at about 500 to 900 ° C. to form electrodes.

発明が解決しようとする問題点 しかしながら、焼結体自体が電圧非直線性を有するよ
うな添加物(例えば、Bi2O3,Co2O3,MnO2,Sb2O3,Cr2
O3)を加えたZnOを主成分とする混合物を成形し、焼結
を開始すると、800℃付近まではZnOおよび各成分の固相
反応を中心に徐々に焼結が行われ、800〜900℃付近にな
るとBi2O3を中心にした液相反応が急激に開始され、100
0℃付近ではZnOを粒子に粒界層にはBi2O3の固溶成分が
形成され、液相焼結が終了する。しかし、一般的には粒
界密度の向上とZnO粒子の粒成長を促すために、1200〜1
300℃付近にまで焼結温度が上げられている。したがっ
て、1000℃以上になると必然的にBi2O3を中心にした固
溶成分が蒸発,飛散し易くなり、この現象は成形体形状
が小さくなればなる程、また電極対向面距離が小さくな
ればなる程、焼結体から見た場合、顕著になるものであ
る。
Problems to be Solved by the Invention However, additives (for example, Bi 2 O 3 , Co 2 O 3 , MnO 2 , Sb 2 O 3 , Cr 2) having a voltage non-linearity in the sintered body itself are used.
The O 3) was added ZnO by molding a mixture consisting mainly starts the sintering, up to about 800 ° C. is performed gradually sintered around a solid phase reaction of ZnO and each component 800 to 900 At around ℃, the liquid phase reaction centered on Bi 2 O 3 suddenly started,
At around 0 ° C, ZnO particles form a solid solution component of Bi 2 O 3 in the grain boundary layer, and the liquid phase sintering ends. However, in general, in order to improve the grain boundary density and promote the grain growth of ZnO grains,
The sintering temperature has been raised to around 300 ° C. Therefore, at 1000 ° C or higher, the solid solution components centering on Bi 2 O 3 tend to evaporate and scatter, and this phenomenon occurs as the shape of the compact becomes smaller and the distance between the electrodes facing each other becomes smaller. The higher the degree, the more remarkable it is when viewed from the sintered body.

このように従来の方法においては、固溶成分の蒸発,
飛散がし易いことから、焼結体の焼結密度が低下し、か
つ焼結体を作成した後に電極形成を行うために、作業性
の面で不利なものであった。
As described above, in the conventional method, evaporation of the solid solution component,
Since it is easy to scatter, the sintered density of the sintered body is lowered, and the electrode is formed after the sintered body is formed, which is disadvantageous in terms of workability.

また、従来ZnOを主成分とした電圧非直線抵抗器の焼
結密度を上げるために、静水圧プレスによる成形とか、
雰囲気焼成とか、あるいはホットプレスによる焼結とか
種々試みられているが、いずれも製造装置が大掛りとな
り、適用も複雑となるものであった。
Moreover, in order to increase the sintering density of the voltage nonlinear resistor whose main component is ZnO, molding by isostatic pressing,
Various attempts have been made, such as firing in an atmosphere and sintering by hot pressing, but all of them require large-scale production equipment and are complicated to apply.

本発明はこのような問題点を解決するものであり、電
圧非直線抵抗素子の焼結過程中に電極焼付けを行うよう
にし、かつ焼結過程中にBi2O3などの固溶成分の蒸発,
飛散を抑えることのできる電圧非直線抵抗器の電極形成
方法を提供することを目的とするものである。
The present invention is to solve such a problem, to perform electrode baking during the sintering process of the voltage nonlinear resistance element, and to evaporate solid solution components such as Bi 2 O 3 during the sintering process. ,
It is an object of the present invention to provide a method for forming electrodes of a voltage non-linear resistor capable of suppressing scattering.

問題点を解決するための手段 この問題点を解決するために本発明の電極形成方法
は、主成分としてのZnOと電圧非直線性を発現する添加
物とで構成される混合物を成形し、800〜1000℃の温度
で予備焼結し、その対向面上に原子比にしてPt/Ag=1
のPtAg合金粉末(以下、単にPtAg合金粉末という)をペ
ースト状にして塗布した後、上記予備焼結された成形体
の焼結過程中に上記PtAg合金粉末の焼付けを行い、電極
を形成するようにしたものである。また、好ましい実施
形態としては、PtAg合金粉末の平均粒子径を0.5〜0.7μ
mとした場合である。
Means for Solving the Problems In order to solve this problem, the electrode forming method of the present invention comprises forming a mixture composed of ZnO as a main component and an additive exhibiting voltage nonlinearity, Pre-sintered at a temperature of ~ 1000 ℃, and atomic ratio of Pt / Ag = 1 on the facing surface.
After applying PtAg alloy powder (hereinafter simply referred to as PtAg alloy powder) in the form of a paste, the PtAg alloy powder is baked during the sintering process of the presintered compact to form an electrode. It is the one. Further, as a preferred embodiment, the average particle diameter of the PtAg alloy powder is 0.5 to 0.7μ.
This is the case when m is set.

作用 この構成によれば、PtAg合金のもつ性質上きわめて他
の元素に対して不活性であり、電圧非直線抵抗器の焼結
体に影響を及ぼすことはなく、さらにPtAg合金粉末の粒
子径にも依存するが800〜1000℃でPtAg合金粉末が焼結
開始を行い、1200〜1300℃でその焼結が終了するため
に、電圧非直線抵抗素子の焼結過程中に発生するBi2O3
などの固溶成分の蒸発,飛散が物理的に抑えられること
になる。また、それと共にPtAg合金粉末の焼結過程中に
PtAg合金からO2を放出するがために、電圧非直線抵抗器
の焼結体内部にO2がある一定圧力下で拡散,保持される
ことからPtAg合金電極下の焼結体によりよい結果を導く
ことになる。これらのことから、電圧非直線抵抗器にお
ける焼結体の焼結密度を向上させることができることと
なる。そして、電極形成が焼結過程中に同時に行われる
ため、生産性の面で非常に有利なものとなる。
Action According to this structure, the properties of PtAg alloy are extremely inactive to other elements, do not affect the sintered body of the voltage nonlinear resistor, and further improve the particle size of PtAg alloy powder. The PtAg alloy powder starts to sinter at 800 to 1000 ° C, and finishes to sinter at 1200 to 1300 ° C. Therefore, Bi 2 O 3 generated during the sintering process of the voltage nonlinear resistance element
Evaporation and scattering of solid solution components such as are physically suppressed. Also, along with it, during the sintering process of PtAg alloy powder,
Since O 2 is released from the PtAg alloy, O 2 is diffused and held under a constant pressure inside the sintered body of the voltage nonlinear resistor, so a better result can be obtained for the sintered body under the PtAg alloy electrode. Will lead. From these facts, it is possible to improve the sintering density of the sintered body in the voltage nonlinear resistor. Further, since the electrodes are formed at the same time during the sintering process, it is very advantageous in terms of productivity.

実施例 以下、本発明の実施例について説明する。Examples Hereinafter, examples of the present invention will be described.

まず、最初にZnOを主成分とする混合物の混合成形、
予備焼結を述べると、ZnO粉末に合計量に対してBi2O3
0.5モル%,Co2O3を0.5モル%,MnO2を0.5モル%,Sb2O
3を1.0モル%,Cr2O3を0.5モル%の割合で加え、十分に
混合する。その後、少量のPVA(ポリビニルアルコー
ル)溶液を加え、混練,造粒作業を行い、32#(μm)
程度のフルイを通した後、17mmφ程度の金型に充填し、
成形加圧力400〜800kg/cm2で成形厚み1.0mm程度の成形
物を得て、空気中で下記の第1表に示すように種々条件
を変えて予備焼結を行った。また、その際におけるBi2O
3などの固溶成分の蒸発,飛散量(バインダー消失は削
除)を示差熱分析により調べた結果を第1表に示す。
First, mix molding of a mixture containing ZnO as the main component,
In terms of pre-sintering, ZnO powder is supplemented with Bi 2 O 3 based on the total amount.
0.5 mol%, Co 2 O 3 0.5 mol%, MnO 2 0.5 mol%, Sb 2 O
Add 3 at 1.0 mol% and Cr 2 O 3 at 0.5 mol% and mix well. After that, add a small amount of PVA (polyvinyl alcohol) solution, knead, and granulate to 32 # (μm)
After passing through a sieve of about 10 mm, fill a mold of about 17 mmφ,
A molding having a molding thickness of about 1.0 mm was obtained at a molding pressure of 400 to 800 kg / cm 2 , and pre-sintering was performed in air under various conditions as shown in Table 1 below. Also, at that time Bi 2 O
Table 1 shows the results of the differential thermal analysis of the evaporation and scattering amounts of solid solution components such as 3 (binder disappearance was deleted).

上記の第1表より、予備焼結の必要性を解くと次のよ
うになる。すなわち、第1表から明らかなように、予備
焼結温度と成形加圧力に対する成形体重量におけるBi2O
3などの蒸発,飛散量の関係を見ると、成形加圧力に関
係なく、予備焼結温度1000℃迄はほぼ無視できる範囲で
ある。しかし、700℃迄はほとんどZnOを主成分とし混合
物からなる成形体の焼結反応が行われず、後述するPtAg
合金粉末のペーストを塗布,乾燥した時に、成形体の保
形性が悪くなり、実用に向かない。また、予備焼結温度
が1100℃以上になると、上述したようにBi2O3を中心と
した固溶成分の蒸発,飛散量が無視できなくなる。した
がって、予備焼結温度は800〜1000℃の範囲とする必要
がある。
From Table 1 above, the need for pre-sintering is solved as follows. That is, as is clear from Table 1, Bi 2 O in the weight of the compact with respect to the pre-sintering temperature and the compacting pressure.
Looking at the relationship between the amount of evaporation and scattering such as 3 , the pre-sintering temperature up to 1000 ℃ is almost negligible regardless of the molding pressure. However, up to 700 ° C, the sintering reaction of the compact body composed mainly of ZnO did not take place, and PtAg described later
When the paste of alloy powder is applied and dried, the shape retention of the molded product deteriorates, which is not suitable for practical use. Further, when the pre-sintering temperature is 1100 ° C. or higher, the evaporation and scattering amount of the solid solution component centering on Bi 2 O 3 cannot be ignored as described above. Therefore, the pre-sintering temperature needs to be in the range of 800 to 1000 ° C.

次に、PtAg合金粉末のペースト作製、上記予備焼結さ
れた成形体の焼結および電極形成について説明する。ま
ず、PtAg合金粉末のペースト作製は、黒色微粉状のPtAg
合金粉末100wt%に対して、バインダーとしてポリビニ
ルブチラール樹脂3wt%,可塑剤としてジブチルフタレ
ート2.1wt%,溶剤として酢酸ブチル23wt%を加えて、
ライカイ機などで十分に混合、混練を行った後、3段ロ
ーラを使ってさらに混練効果を高め、ペースト状に作製
した。その後、上記の800〜1000℃の温度にて予備焼結
された成形体の対向面に対して、スクリーン印刷法にて
上記のPtAg合金粉末をペースト状に作製したものを所望
の電極径となるように塗布し、乾燥を行う。次いで、予
備焼結され、PtAg合金ペーストが塗布,乾燥された成形
体を1200〜1300℃で焼成する。これにより第1図および
第2図に示すように、焼結体1と、この焼結体1の両面
に焼結過程中に焼付けて形成されたPtAg合金電極2とよ
りなる電圧非直線抵抗器が得られる。
Next, the preparation of a PtAg alloy powder paste, the sintering of the pre-sintered compact, and the electrode formation will be described. First, the paste of PtAg alloy powder is made of black fine powder PtAg.
To 100 wt% of alloy powder, 3 wt% of polyvinyl butyral resin as a binder, 2.1 wt% of dibutyl phthalate as a plasticizer, and 23 wt% of butyl acetate as a solvent were added.
After sufficiently mixing and kneading with a liquor machine or the like, the kneading effect was further enhanced using a three-stage roller to prepare a paste. After that, the PtAg alloy powder prepared as a paste by a screen printing method has a desired electrode diameter on the facing surface of the molded body pre-sintered at the temperature of 800 to 1000 ° C. Coating and drying. Then, the pre-sintered, coated PtAg alloy paste and dried are fired at 1200 to 1300 ° C. As a result, as shown in FIGS. 1 and 2, a voltage non-linear resistor including a sintered body 1 and PtAg alloy electrodes 2 formed on both surfaces of the sintered body 1 by baking during the sintering process. Is obtained.

下記の第2表は、PtAg合金粉末の平均粒子径を0.4〜
1.0μmの範囲で変化させたPtAg合金ペーストを上記の8
00〜1000℃の温度で予備焼結させた成形体(成形加圧力
は400kg/cm2)に塗布し、乾燥させ、1300℃,1時間にて
焼結させた場合の電圧非直線抵抗器の焼結密度と、電圧
非直線抵抗器の性能である電圧非直線指数αを示す。こ
こで、焼結密度を測定する場合はPtAg合金電極を削除し
て行った。また、一般的に指数αは、 I=(V/C)α で現わされ、αの値が大きい程、電圧非直線抵抗器の性
能がよいものである。
Table 2 below shows the average particle size of PtAg alloy powder from 0.4 to 0.4.
The PtAg alloy paste changed in the range of 1.0 μm
The voltage non-linear resistor of a voltage non-linear resistor when applied to a molded body (molding pressure is 400 kg / cm 2 ) pre-sintered at a temperature of 100 to 1000 ℃, dried, and sintered at 1300 ℃ for 1 hour The sintering density and the voltage nonlinear index α, which is the performance of the voltage nonlinear resistor, are shown. Here, when measuring the sintered density, the PtAg alloy electrode was omitted. In general, the index α is I = (V / C) α The higher the value of α, the better the performance of the voltage nonlinear resistor.

この第2表の説明を加えると、焼結体密度,非直線指
数αは、予備焼結温度が800〜1000℃の範囲であればほ
とんど優劣の差はなく、むしろPtAg合金粉末の平均粒子
径に依存する。そして平均粒子径が0.4μm以下の場合
はペースト作製を行うと、粒子径が小さいために凝集が
起り易くペーストがゲル化し易く、実用的でない面が見
られる。一方、平均粒子径が0.5〜0.7μmの範囲である
と、ペースト作製が実用的でないといった面はなくな
り、焼結体密度および電圧非直線抵抗器の性能を現わす
非直線指数αが従来品に比較してきわめて大きくなって
いる。その理由としては、PtAg合金粉末の焼結開始温度
が800〜1000℃になり、1300℃,1時間の焼付程度で十分
にPtAg合金電極の緻密化が図られ、これによって焼結過
程中に発生するBi2O3などの固溶成分の蒸発,飛散が抑
えられるため、焼結体密度および非直線指数αが大きく
なっているものである。さらに、PtAg合金粉末の平均粒
子径が0.8μm以上になると、PtAg合金粉末の焼結開始
温度が1000℃以上になり、1300℃,1時間の焼付程度では
十分な焼結が図られないので、作業工数的には従来法よ
りも有利ではあるが、焼結体密度,非直線指数αは従来
品に比べて少しの向上にとどまっている。
If the explanation of Table 2 is added, there is almost no difference in the density of the sintered body and the non-linear index α when the pre-sintering temperature is in the range of 800 to 1000 ° C., rather, the average particle diameter of the PtAg alloy powder Depends on. When the average particle size is 0.4 μm or less, when the paste is prepared, the particle size is small, so that aggregation easily occurs and the paste is easily gelled, which is not practical. On the other hand, when the average particle size is in the range of 0.5 to 0.7 μm, there is no problem that the paste preparation is not practical, and the sintered body density and the nonlinear index α showing the performance of the voltage nonlinear resistor are the same as those of conventional products. It is extremely large in comparison. The reason for this is that the sintering start temperature of the PtAg alloy powder reaches 800 to 1000 ° C, and the PtAg alloy electrode is sufficiently densified by baking at 1300 ° C for 1 hour, which causes the occurrence of sintering during the sintering process. Since the evaporation and scattering of solid solution components such as Bi 2 O 3 are suppressed, the sintered body density and the nonlinear index α are increased. Furthermore, when the average particle diameter of the PtAg alloy powder is 0.8 μm or more, the sintering start temperature of the PtAg alloy powder becomes 1000 ° C. or more, and sufficient sintering cannot be achieved by baking at 1300 ° C. for 1 hour. Although it is more advantageous than the conventional method in terms of work man-hours, the sintered body density and the non-linear index α are only slightly improved as compared with the conventional method.

なお、上記の実施例においては、電圧非直線性を発現
させる添加物として、一部の種類とその組合せについて
のみ示したが、本発明の効果はZnOが主成分である非直
線抵抗器であれば適用し得るものであり、非直線性を発
現させる添加物の種類やその組合せによって制約を受け
るものではない。
In addition, in the above-mentioned examples, as an additive for expressing voltage non-linearity, only some kinds and combinations thereof are shown, but the effect of the present invention is not limited to a non-linear resistor whose main component is ZnO. However, it is applicable and is not limited by the type of additive that causes nonlinearity or the combination thereof.

発明の効果 以上のように本発明は構成されているものであり、Pt
Ag合金粉末がおよそ800〜1000℃で焼結開始を行い、120
0〜1300℃でその焼結が終了するために、電圧非直線抵
抗素子の焼結過程中に発生するBi2O3などの固溶成分の
蒸発,飛散が物理的に抑えられ、かつそれと共にPtAg合
金粉末の焼結過程中にPtAg合金からO2を放出するがため
に、電圧非直線抵抗器の焼結体内部にO2がある一定圧力
下で拡散,保持されることから、PtAg合金電極下の焼結
体により、よい結果を導くことになり、これらのことか
ら電圧非直線抵抗器における焼結体の焼結密度を向上さ
せることができる。また、焼結過程中に発生するBi2O3
などの固溶成分の蒸発,飛散が抑えられるために、電圧
非直線指数αを大きくすることもできる。そして、電極
形成が焼結過程中に同時に行われるため、生産性も大き
く、かつ製造装置も簡素でよいことから、少量多品種に
も無理なく適用できるという利点も有している。
EFFECTS OF THE INVENTION The present invention is configured as described above, and Pt
Ag alloy powder starts to sinter at about 800-1000 ℃, 120
Since the sintering is completed at 0 to 1300 ℃, evaporation and scattering of solid solution components such as Bi 2 O 3 that occur during the sintering process of the voltage nonlinear resistance element are physically suppressed, and at the same time, O 2 is released from the PtAg alloy during the sintering process of the PtAg alloy powder, so that O 2 is diffused and held under a constant pressure inside the sintered body of the voltage nonlinear resistor. The sintered body under the electrode leads to good results, and these can improve the sintered density of the sintered body in the voltage nonlinear resistor. In addition, Bi 2 O 3 generated during the sintering process
Since the evaporation and scattering of the solid solution components such as the above can be suppressed, the voltage nonlinear index α can be increased. Further, since the electrodes are formed simultaneously during the sintering process, the productivity is high and the manufacturing apparatus may be simple. Therefore, there is an advantage that it can be reasonably applied to a small amount and a wide variety of products.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法により得られた電圧非直線抵抗器を
示す上面図、第2図は同正面図である。 1……焼結体、2……PtAg合金電極。
FIG. 1 is a top view showing a voltage nonlinear resistor obtained by the method of the present invention, and FIG. 2 is a front view of the same. 1 ... Sintered body, 2 ... PtAg alloy electrode.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】主成分としてのZnOと電圧非直線性を発現
する添加物とで構成される混合物を成形し、800〜1000
℃の温度で予備焼結し、その対向面上に原子比にしてPt
/Ag=1のPtAg合金粉末をペースト状にして塗布した
後、上記予備焼結された成形体の焼結過程中に上記PtAg
合金粉末の焼付けを行い、電極を形成することを特徴と
する電圧非直線抵抗器の電極形成方法。
1. A mixture composed of ZnO as a main component and an additive exhibiting voltage non-linearity is molded to obtain 800-1000.
Pre-sintered at a temperature of ℃
After applying PtAg alloy powder of / Ag = 1 in the form of paste, the PtAg alloy powder is added during the sintering process of the presintered compact.
An electrode forming method of a voltage non-linear resistor, comprising baking an alloy powder to form an electrode.
【請求項2】PtAg合金粉末の平均粒子径が0.5〜0.7μm
であることを特徴とする特許請求の範囲第(1)項に記
載の電圧非直線抵抗器の電極形成方法。
2. The average particle size of PtAg alloy powder is 0.5 to 0.7 μm.
The method for forming an electrode of a voltage non-linear resistor according to claim (1), characterized in that
JP62195945A 1987-08-05 1987-08-05 Electrode forming method for voltage non-linear resistor Expired - Lifetime JP2558722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62195945A JP2558722B2 (en) 1987-08-05 1987-08-05 Electrode forming method for voltage non-linear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62195945A JP2558722B2 (en) 1987-08-05 1987-08-05 Electrode forming method for voltage non-linear resistor

Publications (2)

Publication Number Publication Date
JPS6439004A JPS6439004A (en) 1989-02-09
JP2558722B2 true JP2558722B2 (en) 1996-11-27

Family

ID=16349586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62195945A Expired - Lifetime JP2558722B2 (en) 1987-08-05 1987-08-05 Electrode forming method for voltage non-linear resistor

Country Status (1)

Country Link
JP (1) JP2558722B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9101284U1 (en) * 1991-02-05 1991-04-25 Wilhelm Ruf KG, 8000 München Electrical resistance
JP4788619B2 (en) * 2007-01-29 2011-10-05 Tdk株式会社 Varistor element

Also Published As

Publication number Publication date
JPS6439004A (en) 1989-02-09

Similar Documents

Publication Publication Date Title
US3682840A (en) Electrical resistor containing lead ruthenate
JPS5928962B2 (en) Manufacturing method of thick film varistor
JP3293403B2 (en) Lateral high resistance agent for zinc oxide varistor, zinc oxide varistor using the same, and method of manufacturing the same
JP2558722B2 (en) Electrode forming method for voltage non-linear resistor
JP2532493B2 (en) Electrode forming method for voltage non-linear resistor
JPS62101002A (en) Manufacture of nonlinear resistance element
JP3256366B2 (en) Method of manufacturing voltage non-linear resistor
JP2560851B2 (en) Voltage nonlinear resistor
JPS5832764B2 (en) Manufacturing method of voltage nonlinear resistor
JP3353015B2 (en) Method of manufacturing voltage non-linear resistor
JPH05258914A (en) Manufacture of voltage non-linear resistor
JPS6115303A (en) Method of producing oxide voltage nonlinear resistor
JPH02114603A (en) Manufacture of glaze varistor
JP2520699B2 (en) Method of manufacturing voltage-dependent nonlinear resistor
JPH10149905A (en) Manufacturing method of varistor
JPH07211519A (en) Voltage non-linear resistor
JPH0516641B2 (en)
JPS639646B2 (en)
JPS61258403A (en) Manufacture of non-linear resistor
JPS62237709A (en) Manufacture of voltage nonlinear resistance element
JPH05258915A (en) Manufacture of voltage non-linear resistor
JPH07109803B2 (en) Voltage nonlinear resistor and method of manufacturing the same
JPH05258918A (en) Electrode material for voltage non-linear resistor
JPS63146408A (en) Manufacture of voltage nonlinear resistor
JPS62254405A (en) Manufacture of voltage nonlinear resistance unit

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term