JP2557588B2 - Method of forming high resistance powder thin film on anode mat of sodium-sulfur battery - Google Patents

Method of forming high resistance powder thin film on anode mat of sodium-sulfur battery

Info

Publication number
JP2557588B2
JP2557588B2 JP4009430A JP943092A JP2557588B2 JP 2557588 B2 JP2557588 B2 JP 2557588B2 JP 4009430 A JP4009430 A JP 4009430A JP 943092 A JP943092 A JP 943092A JP 2557588 B2 JP2557588 B2 JP 2557588B2
Authority
JP
Japan
Prior art keywords
powder
anode
thin film
mat
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4009430A
Other languages
Japanese (ja)
Other versions
JPH05192559A (en
Inventor
真澄 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP4009430A priority Critical patent/JP2557588B2/en
Publication of JPH05192559A publication Critical patent/JPH05192559A/en
Application granted granted Critical
Publication of JP2557588B2 publication Critical patent/JP2557588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ナトリウム−硫黄電池
における陽極マット上への高抵抗粉体薄膜の形成方法
関するものである。
The present invention relates to sodium - is relates <br/> method for forming the high-resistance powder thin films on the anode mat in sulfur battery.

【0002】[0002]

【従来の技術】従来、上記陽極マット上にα−アルミナ
粉末の薄膜層を均一に形成するため、ロール式の散布機
が知られている。すなわち、この散布機は粉体を貯溜す
るホッパーと、このホッパーの下部に回転可能に支持さ
れ、外周部に粉体を収容する収容溝を有する回転体と、
この回転体の外周面の近接位置に配置されて前記ホッパ
ー内の粉体の落下供給を規制するスクレーパとからなっ
ている。上記収容溝は断面V字状をなし、前記粉体を収
容、排出できるようにしている。
2. Description of the Related Art Heretofore, a roll type spraying machine has been known for uniformly forming a thin film layer of α-alumina powder on the anode mat. That is, this sprayer includes a hopper that stores powder, a rotating body that is rotatably supported on a lower portion of the hopper, and that has an accommodating groove for accommodating powder on an outer peripheral portion,
The scraper is arranged at a position close to the outer peripheral surface of the rotating body and regulates the falling supply of the powder in the hopper. The storage groove has a V-shaped cross section so that the powder can be stored and discharged.

【0003】そして、上記回転体の下方に陽極マット
配置され、回転体が回転されると、収容溝内及び回転体
とスクレーパの隙間の粉体はスクレーパを通過後、自重
により落下して陽極マット上に散布される。その結果、
この陽極マット上に粉体の薄膜が形成される。
When the anode mat is disposed below the rotating body and the rotating body is rotated, the powder in the accommodating groove and in the gap between the rotating body and the scraper passes through the scraper and then falls by its own weight to make the anode. Sprayed on the mat . as a result,
A thin film of powder is formed on this anode mat .

【0004】[0004]

【発明が解決しようとする課題】ところが、前記収容溝
の形状が断面V字状で底部が狭く、深いため、この部分
の粉体は収容溝内底部にはりついて目詰まりを起こしや
すく、自重によって落下しにくくなる。そのため、収容
溝内底部にはりついて詰まり状態となった粉体は、その
部分に付着したままの状態で一回転してしまう。従っ
て、その分粉体が陽極マット上に供給されず、陽極マッ
上に薄膜が均一厚さに形成されないという問題点があ
る。そして、この陽極マットを使用したナトリウム−硫
黄電池は、後述するように電池容量の平均値が小さくな
り、電池容量のばらつきが多く、電池特性が不安定にな
るという問題があることが実験により判明した。
However, since the shape of the accommodating groove is V-shaped in cross section and the bottom is narrow and deep, the powder in this part tends to cling to the inner bottom of the accommodating groove and cause clogging. It is hard to fall. Therefore, the powder stuck to the bottom of the accommodation groove and clogged will rotate once while being attached to that portion. Therefore, the minute powder is not supplied onto the anode mat its anode map
Thin film on a preparative is disadvantageously formed Lena Medical uniform thickness. Then, using this anode mat,
Yellow batteries have a small average battery capacity, as described later.
The battery capacity will vary and the battery characteristics will become unstable.
It turned out that there is a problem that

【0005】本発明は上記従来の問題点を解消するため
になされたものであって、その目的は、収容溝内の粉体
が確実に抜け出して陽極マット上に散布され、均一かつ
所要厚さの薄膜が形成できるナトリウム−硫黄電池にお
ける陽極マット上への高抵抗粉体薄膜の形成方法を提供
することにある。
The present invention has been made in order to solve the above-mentioned conventional problems, and its purpose is to ensure that the powder in the accommodating groove escapes and is scattered on the anode mat to obtain a uniform and required thickness. In a sodium-sulfur battery that can form a thin film of
( EN) A method for forming a high resistance powder thin film on an anode mat .

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、第1の発明では粉体を貯留するホッパーと、このホ
ッパーの下部に回転可能に支持され、外周部に粉体を収
容する収容溝を有する回転体と、この回転体の外周面の
近接位置に配置されて前記ホッパー内の粉体の落下供給
を規制するとともに、回転体の外周の粉体をスクレープ
するスクレーパとを備え、前記収容溝を底面ほぼ円弧状
又は底面の内角が90度以上の多角形状に形成した粉体
薄膜形成用装置を使用し、前記回転体を回転させるとと
もに、ナトリウム−硫黄電池の陽極マットを前記回転体
の軸線と直角方向に移動させて、該陽極マット上に収容
溝内の粉体を落下供給して均一厚さの粉体薄膜帯を形
するという手段をとっている。
In order to achieve the above object, according to the first aspect of the invention, a hopper for storing powder and a housing for rotatably supporting the lower part of the hopper and housing the powder on the outer peripheral portion thereof. A rotating body having a groove, and a scraper disposed at a position close to the outer peripheral surface of the rotating body to regulate the falling supply of the powder in the hopper, and a scraper for scraping the powder on the outer periphery of the rotating body, Using the powder thin film forming apparatus in which the receiving groove is formed into a substantially arcuate bottom surface or a polygonal shape having an inner angle of 90 degrees or more on the bottom surface, the rotating body is rotated, and the anode mat of the sodium-sulfur battery is installed on the rotating body. moving the the axis perpendicular direction, taking the means that form formed powder film band uniform thickness to fall supplying powder accommodated in the groove on the anode mat.

【0007】第2の発明では、第1の発明において前記
スクレーパと陽極マットとの間に介在された粉体分散用
の装置により粉体を分散させるという手段をとってい
る。第3の発明では、第1又は第2の発明において前記
収容溝を綾目状に形成するという手段をとっている。
In a second aspect of the invention, the means for dispersing the powder by the powder dispersing device interposed between the scraper and the anode mat in the first aspect is adopted . In a third invention, in the first or second invention,
The means for forming the accommodating groove in a twill shape is adopted.

【0008】[0008]

【作用】第1の発明では、ホッパー内下部の粉体が回転
体の収容溝に収容され、その状態で回転体の回転に伴っ
て回転する。そして、収容溝内の粉体はスクレーパを通
過した後、その自重によって収容溝から離脱し陽極マッ
上に散布される。このとき、収容溝が底面ほぼ円弧状
又は底面の内角が90度以上の多角形状に形成されてい
るため、収容溝内の粉体は溝内底部に付着することな
く、その自重によって容易に離脱して落下する。落下さ
れた粉体は陽極マット上に均一厚さの高抵抗粉体薄膜を
形成する。この結果ナトリウム−硫黄電池の固体電解質
管と接触する陽極マットの表面に前記薄膜による均一な
高抵抗層が形成されるため、電池容量の平均値が大きく
なり、電池容量のばらつきが少なく、電池特性が安定化
する。
In the first aspect of the invention, the powder in the lower part of the hopper is accommodated in the accommodating groove of the rotating body, and in that state, the powder rotates as the rotating body rotates. Then, after the powder in the accommodating groove passes through the scraper, it is separated from the accommodating groove by its own weight and is removed from the anode mat.
Be sprinkled on top. At this time, the accommodating groove is formed into a substantially arcuate bottom surface or a polygonal shape having an inner angle of 90 degrees or more on the bottom surface, so that the powder in the accommodating groove does not adhere to the inner bottom portion of the groove and is easily separated by its own weight. And fall. Dropped
The formed powder is a high resistance powder thin film of uniform thickness on the anode mat.
Form. The result is a solid electrolyte for sodium-sulfur batteries.
The surface of the anode mat in contact with the tube is uniformly coated with the thin film.
Since the high resistance layer is formed, the average battery capacity is large.
The battery characteristics are stable with less variation in battery capacity.
I do.

【0009】第2の発明では、収容溝内の粉体はスクレ
ーパを通過した後、その自重によって落下し、金網等の
粉体分散用の装置を介して陽極マット上に落ちる。この
とき、分散装置上に落下した粉体は分散装置が金網の場
合はその網目により分散されて陽極マット上に散布され
る。そのため、マット上に形成される粉体薄膜は、前記
分散装置がない場合に生じる回転体収容溝形状の転写と
いう現象が生じることなく、より均一な厚みとなる。
又、第3の発明では、回転体の収容溝が綾目状に形成さ
れているので、回転体の軸線方向と平行に収容溝を形成
した場合と比較して陽極マット上への粉体薄膜の厚さが
より均一となる。
In the second aspect of the invention, the powder in the storage groove passes through the scraper, and then falls by its own weight, and falls on the anode mat through a powder dispersing device such as a wire net. At this time, when the dispersing device is a wire mesh, the powder dropped on the dispersing device is dispersed by the mesh and is scattered on the anode mat . Therefore, the powder thin film formed on the mat has a more uniform thickness without the phenomenon of transfer of the shape of the rotary member accommodating groove which would occur without the dispersing device.
Further, in the third invention, the accommodation groove of the rotating body is formed in a twill shape.
Since it is installed, the accommodation groove is formed parallel to the axial direction of the rotating body.
The thickness of the powder thin film on the anode mat is
It will be more uniform.

【0010】[0010]

【実施例】以下に本発明を具体化した一実施例について
図1〜6に従って説明する。図1に示すように、α−ア
ルミナの粉体2が収容されたホッパー1の下部には回転
体としての回転ローラ3が図中時計方向に回転可能に支
持されている。この回転ローラ3の外周部には、図2
(a)に示すように、底面が断面円弧状をなす収容溝3
aが多数切欠き形成されている(この図は図2(b)の
A−A線断面図である)。図2(b)に示すように、こ
の収容溝3aは一定間隔をおいて綾目状に形成されてい
る。収容溝3aの形状は、この綾目状か又は回転ローラ
3の軸線に平行状に形成されていることが好ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment embodying the present invention will be described below with reference to FIGS. As shown in FIG. 1, a rotating roller 3 as a rotating body is supported at a lower portion of a hopper 1 containing α-alumina powder 2 so as to be rotatable clockwise in the figure. As shown in FIG.
As shown in (a), the housing groove 3 whose bottom surface has an arcuate cross section.
A large number of notches are formed (this figure is a sectional view taken along the line AA of FIG. 2B). As shown in FIG. 2B, the accommodation grooves 3a are formed in a twill shape at regular intervals. The shape of the accommodation groove 3a is preferably formed in a twill shape or parallel to the axis of the rotary roller 3.

【0011】この収容溝3aは、例えば粉体2の粒子径
が50〜150μmの場合には円弧の半径rが1mm、深
さhが 0.2mm、収容溝3a間の距離aが1〜2mmであ
り、このとき良好な性能が発揮される。これらの数値に
よって、収容溝3a内からの粉体2の離脱のしやすさ、
収容溝3a内の粉体2の収容量、粉体2の均一散布など
が影響されるが、ナトリウム−硫黄電池の場合は上記数
値が好ましい。
When the powder 2 has a particle diameter of 50 to 150 .mu.m, for example, the radius r of the arc is 1 mm, the depth h is 0.2 mm, and the distance a between the housing grooves 3a is 1 to 2 mm. Yes, good performance is exhibited at this time. With these numerical values, it is easy to remove the powder 2 from the storage groove 3a,
The amount of the powder 2 stored in the storage groove 3a, the uniform distribution of the powder 2 and the like are affected, but in the case of a sodium-sulfur battery, the above numerical value is preferable.

【0012】図1に示すように、回転ローラ3の近接位
置には、先端部が鋭った板状のスクレーパ4が配置さ
れ、ホッパー1内の粉体2が下方へ落下しないように規
制するとともに、回転ローラ3の外周面をスクレープし
て、粉体2が収容溝3a内で一定量になるようにしてい
る。回転ローラ3の下方位置において搬送ベルト7上に
は、粉体分散用の装置としての金網5を介してグラファ
イト製の陽極マット6が載置されている。この陽極マッ
ト6は図5(a)に示すように、板状をなし、搬送用ベ
ルト8によって左右に移動可能になっている。
As shown in FIG. 1, a plate-shaped scraper 4 having a sharp tip is arranged in the vicinity of the rotating roller 3 so as to prevent the powder 2 in the hopper 1 from falling downward. At the same time, the outer peripheral surface of the rotating roller 3 is scraped so that the powder 2 has a constant amount in the accommodation groove 3a. On the conveyor belt 7 at the lower position of the rotary roller 3, the anode mat 6 of grayed Lafayette <br/> Ltd. site through the wire mesh 5 of the apparatus for powder dispersion is placed. As shown in FIG. 5A, the anode mat 6 has a plate shape and can be moved left and right by a conveyor belt 8.

【0013】ここで、ナトリウム−硫黄電池の構成につ
いて説明すると、図3に示すように、有底円筒状をなす
陽極容器11の上端部にはα−アルミナ製の絶縁リング
12が固着されている。この絶縁リング12の下部内周
面にはβ−アルミナ製の固体電解質管13の上部外周面
が接合固定されている。この固体電解質管13の内側に
は陰極室14が区画形成され、外側には陽極室15が区
画形成されている。陰極室14には陰極活物質としての
ナトリウム(Na)が収容され、陽極室15には陽極活
物質としての硫黄(S)が含浸された前記陽極マット6
が収容されている。
Here, the structure of the sodium-sulfur battery will be described. As shown in FIG. 3, an insulating ring 12 made of α-alumina is fixed to the upper end of the anode container 11 having a bottomed cylindrical shape. . The upper outer peripheral surface of the solid electrolyte tube 13 made of β-alumina is joined and fixed to the lower inner peripheral surface of the insulating ring 12. A cathode chamber 14 is defined inside the solid electrolyte tube 13, and an anode chamber 15 is defined outside the solid electrolyte pipe 13. The cathode mat 14 contains sodium (Na) as a cathode active material, and the anode chamber 15 is impregnated with sulfur (S) as an anode active material.
Is housed.

【0014】なお、この陽極マット6はグラファイト製
の成形品であり、ナトリウム−硫黄電池の陽極部材とし
て使用される。また、この陽極マット6がナトリウム−
硫黄電池に組込まれたとき、β−アルミナ製の固体電解
質管13側となる面に前記粉体2が散布されて薄膜層が
形成され、さらにマット6全体に硫黄Sが含浸される。
そして、粉体2の薄膜層により陽極の固体電解質管13
表面に高抵抗層が形成され、ナトリウム−硫黄電池の充
電反応時にこの高抵抗層により固体電解質管13表面で
硫黄Sが生成析出することなく、充電反応が円滑に行わ
れるようになっている。
The anode mat 6 is a molded article made of graphite and is used as an anode member of a sodium-sulfur battery. The anode mat 6 is made of sodium-
When incorporated in a sulfur battery, the powder 2 is dispersed on the surface of the β-alumina solid electrolyte tube 13 side to form a thin film layer, and the entire mat 6 is impregnated with sulfur S.
Then, the solid electrolyte tube 13 of the anode is formed by the thin film layer of the powder 2.
A high resistance layer is formed on the surface, and during the charging reaction of the sodium-sulfur battery, the high resistance layer allows the charging reaction to be carried out smoothly without the generation and deposition of sulfur S on the surface of the solid electrolyte tube 13.

【0015】次に、この実施例の作用について説明す
る。図1に示すように、ホッパー1内にα−アルミナの
粉体2が収容されると、その下部においては粉体2が回
転ローラ3の各収容溝3aに収容される。この状態で、
回転ローラ3を一定の例えば40 rpmの速度にて図中時
計方向へ回転させると、粉体2が収容された収容溝3a
はスクレーパ4の先端位置を通過する。このとき、ホッ
パー1内の粉体2は、スクレーパ4の先端部が回転ロー
ラ3の近接位置に配置されているため、下方への落下が
規制されるとともに、収容溝3a内において一定量とな
るようにスクレープされる。粉体2が収容された収容溝
3aはスクレーパ4を通過後さらに回転されると、その
開口部が下方を向くようになるため、粉体2は自重によ
り収容溝3a内から離脱して下方へ落下する。この場
合、回転ローラ3に振動を与えると粉体2の落下はより
完璧に行われるので好ましい。
Next, the operation of this embodiment will be described. As shown in FIG. 1, when the powder 2 of α-alumina is stored in the hopper 1, the powder 2 is stored in each storage groove 3 a of the rotary roller 3 in the lower part thereof. In this state,
When the rotating roller 3 is rotated clockwise in the figure at a constant speed of, for example, 40 rpm, the containing groove 3a containing the powder 2 is contained.
Passes through the tip position of the scraper 4. At this time, since the tip end of the scraper 4 is arranged in the vicinity of the rotating roller 3, the powder 2 in the hopper 1 is prevented from falling downward and becomes a constant amount in the accommodation groove 3a. Is scraped like. When the storage groove 3a in which the powder 2 is stored is further rotated after passing through the scraper 4, the opening of the storage groove 3a faces downward, so that the powder 2 separates from the storage groove 3a by its own weight and moves downward. To fall. In this case, it is preferable to apply vibration to the rotating roller 3 because the powder 2 can be more completely dropped.

【0016】落下した粉体2は分散用の金網5に至り、
ここで金網5の網目によって分散される。分散状態の粉
体2は搬送用ベルト8上を所定速度で移動する陽極マッ
ト6上に散布される。この陽極マット6上に散布される
粉体2は、前記収容溝3aが断面円弧状に切欠き形成さ
れているため、この収容溝3a内の全ての粉体2がその
自重によって確実に落下する。また、各収容溝3aが互
いに所定の狭い間隔で設けられているため、粉体2はほ
ぼ連続的に落下する。しかも、落下した粉体2は分散用
の金網5により、拡散されてほぼ均一な状態で散布され
る。
The dropped powder 2 reaches the wire mesh 5 for dispersion,
Here, they are dispersed by the mesh of the wire net 5. The dispersed powder 2 is scattered on the anode mat 6 that moves on the conveyor belt 8 at a predetermined speed. As for the powder 2 scattered on the anode mat 6, the accommodating groove 3a is cut out in an arcuate cross section, so that all the powder 2 in the accommodating groove 3a surely falls due to its own weight. . Further, since the accommodation grooves 3a are provided at a predetermined narrow interval from each other, the powder 2 drops almost continuously. Moreover, the dropped powder 2 is diffused by the wire mesh 5 for dispersion and is sprayed in a substantially uniform state.

【0017】従って、図5(b)に示すように、陽極マ
ット6上には粉体2の均一な薄膜が形成される。そのた
め、各陽極マット6間における薄膜のばらつきが少なく
なる。この陽極マット6は、硫黄Sの含浸時に、図5
(c)に示すように、湾曲形状に成形されて陽極成形体
7を形成し、ナトリウム−硫黄電池の陽極室15内に収
容される。これら陽極成形体7上には各々同一重量の粉
体2による均一薄膜が形成されているため、ナトリウム
−硫黄電池に組込まれたとき、陽極成形体7の固体電解
質管13側に厚さ一定の均一な高抵抗層が形成されるこ
ととなる。これによってナトリウム−硫黄電池の作動時
においては、固体電解質管13の陽極側表面は均一な高
抵抗層により覆われており、充電時に部分的に固体電解
質管13表面で硫黄Sが析出することがなく、安定した
特性を発揮する。その結果、電池の充電効率が向上し、
ばらつきの少ない電池性能が発揮される。
Therefore, as shown in FIG. 5B, a uniform thin film of the powder 2 is formed on the anode mat 6. Therefore, variations in the thin film between the anode mats 6 are reduced. This anode mat 6 is formed as shown in FIG.
As shown in (c), the anode molded body 7 is formed into a curved shape to be housed in the anode chamber 15 of the sodium-sulfur battery. Since a uniform thin film made of the powder 2 having the same weight is formed on each of the anode molded bodies 7, when the anode molded body 7 is incorporated into a sodium-sulfur battery, the anode molded body 7 has a uniform thickness on the solid electrolyte tube 13 side. A uniform high resistance layer will be formed. As a result, during the operation of the sodium-sulfur battery, the surface of the solid electrolyte tube 13 on the anode side is covered with a uniform high resistance layer, and sulfur S may be partially deposited on the surface of the solid electrolyte tube 13 during charging. It has stable characteristics. As a result, the charging efficiency of the battery is improved,
Battery performance with little variation is demonstrated.

【0018】この電池効率を確認するために、この実施
例の装置によって得られた陽極マット6と従来のV字状
の溝を有する装置によって得られた陽極マットとをそれ
ぞれ組込んだ多数の電池について、電池容量を測定し
た。そして、その結果を電池容量とデータ数との関係の
グラフにして図6に示す。このグラフに示すように、実
施例の曲線Xは従来例の曲線Yに比べ、電池容量の平均
値が大きくなり(曲線のピーク位置が右へ移動)、しか
も電池容量のばらつきが少なく(曲線がシャープ)、電
池特性が安定している。
In order to confirm this battery efficiency, a large number of batteries each incorporating an anode mat 6 obtained by the device of this example and an anode mat obtained by a device having a conventional V-shaped groove were incorporated. For, the battery capacity was measured. The result is shown in FIG. 6 as a graph of the relationship between the battery capacity and the number of data. As shown in this graph, the curve X of the embodiment has a larger average value of the battery capacity (the peak position of the curve moves to the right) and the variation of the battery capacity is smaller (the curve is smaller than the curve Y of the conventional example). Sharp), battery characteristics are stable.

【0019】上述したようにこの実施例では、収容溝3
a内の粉体2が自重により収容溝3a内から確実に抜け
出して陽極マット6上に均一に散布される。従って、陽
極マット6上には均一でしかも所要厚さの薄膜が形成さ
れる。
As described above, in this embodiment, the receiving groove 3
The powder 2 in “a” surely comes out of the accommodation groove 3 a by its own weight and is evenly dispersed on the anode mat 6. Therefore, a thin film having a uniform and required thickness is formed on the anode mat 6.

【0020】この発明は上記実施例に限定されるもので
はなく、発明の趣旨を逸脱しない範囲で例えば次のよう
に構成してもよい。 (イ)図7に示すように、収容溝3aを逆台形状に切欠
き形成すること。また、六角形状、八角形状などの底面
の内角が90度以上の多角形状に切欠き形成すること。 (ロ)回転ローラ3と陽極マット6との間に介在される
分散用金網5を省略すること。
The present invention is not limited to the above embodiments, but may be configured as follows, for example, without departing from the spirit of the invention. (A) As shown in FIG. 7, the accommodation groove 3a should be formed in a reverse trapezoidal shape. In addition, a hexagonal shape, an octagonal shape, etc. should be formed as a notch in a polygonal shape with an inner angle of the bottom of 90 degrees or more. (B) Omitting the dispersing wire mesh 5 interposed between the rotating roller 3 and the anode mat 6.

【0021】[0021]

【発明の効果】以上詳述したように第1の発明によれ
ば、収容溝内の粉体が確実に離脱して陽極マット上に散
布され、均一かつ所要厚さの薄膜が形成され、このため
ナトリウム−硫黄電池の固体電解質管と接触する陽極マ
ットの表面に前記薄膜による均一な高抵抗層が形成さ
れ、電池容量の平均値が大きくなり、電池容量のばらつ
きが少なく、電池特性を安定化することができるという
優れた効果を奏する。
According to a first aspect of the present invention as described in detail above, according to the present invention, accommodate the powder in the groove is reliably disengaged sprayed on the anode mat, a thin film of uniform and desired thickness is formed, the For
Anode matrix in contact with solid electrolyte tube of sodium-sulfur battery
A uniform high resistance layer is formed by the thin film on the surface of the
The average value of the battery capacity increases, and the battery capacity varies.
Less can be demonstrates an excellent effect of Ru it is able to stabilize the battery properties.

【0022】第2及び第3の発明によれば、陽極マット
上に形成される粉体薄膜はより均一かつ所要厚さに形成
され、ナトリウム−硫黄電池の電池容量の平均値がさら
に大きくなり、電池容量のばらつきをさらに少なく、電
池特性を一層安定化することができるという優れた効果
を奏する。
According to the second and third inventions, the powder thin film formed on the anode mat is formed to be more uniform and have a required thickness, and the average value of the battery capacity of the sodium-sulfur battery is Furthermore
The battery capacity becomes even smaller, and the variation in battery capacity is further reduced.
An excellent effect that Ru can be further stabilized pond characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の形成方法に使用される装置を表す
概略断面図。
FIG. 1 is a schematic sectional view showing an apparatus used in a forming method of the present invention .

【図2】 (a)は回転ローラ外周の収容溝を示す部分
断面図であり、図2(b)のA−A線断面図、(b)は
回転ローラ外周の収容溝を平面的に示す図。
2A is a partial cross-sectional view showing a housing groove on the outer circumference of the rotating roller, FIG. 2B is a sectional view taken along the line AA of FIG. 2B, and FIG. 2B is a plan view showing the housing groove on the outer circumference of the rotating roller. Fig.

【図3】 ナトリウム−硫黄電池を示す断面図。 FIG. 3 is a cross-sectional view showing a sodium-sulfur battery .

【図4】 図3のB−B線断面図。 FIG. 4 is a sectional view taken along line BB of FIG.

【図5】 (a)〜(c)は陽極マットの成形工程を示
す斜視図。
5A to 5C are perspective views showing a forming process of an anode mat .

【図6】 ナトリウム−硫黄電池の特性を示すグラフ。 [6] Sodium - graph showing the characteristics of the sulfur battery.

【図7】 収容溝の別例を示す部分断面図。 FIG. 7 is a partial cross-sectional view showing another example of the accommodation groove .

【符号の説明】 1…ホッパー、2…粉体、3…回転体
としての回転ローラ、3a…収容溝、4…スクレーパ、
5…分散用の装置としての金網、6…陽極マット。
[Explanation of Codes] 1 ... Hopper, 2 ... Powder, 3 ... Rotating roller as a rotating body, 3a ... Storage groove, 4 ... Scraper,
5 ... wire mesh as a device for dispersion, 6 ... positive pole mat.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粉体を貯留するホッパーと、このホッパ
ーの下部に回転可能に支持され、外周部に粉体を収容す
る収容溝を有する回転体と、この回転体の外周面の近接
位置に配置されて前記ホッパー内の粉体の落下供給を規
制するとともに、回転体の外周の粉体をスクレープする
スクレーパとを備え、前記収容溝を底面ほぼ円弧状又は
底面の内角が90度以上の多角形状に形成した粉体薄膜
形成用装置を使用し、前記回転体を回転させるととも
に、ナトリウム−硫黄電池の陽極マットを前記回転体の
軸線と直角方向に移動させて、該陽極マット上に収容溝
内の粉体を落下供給して均一厚さの粉体薄膜帯を形成す
るナトリウム−硫黄電池の陽極マット上への高抵抗粉体
薄膜の形成方法。
1. A hopper for storing powder, a rotating body rotatably supported at a lower portion of the hopper, and having an accommodating groove for accommodating the powder in an outer peripheral portion, and a rotator near an outer peripheral surface of the rotating body. And a scraper for regulating the falling and feeding of the powder in the hopper and scraping the powder on the outer periphery of the rotating body. The storage groove has a substantially arcuate bottom surface or a polygonal shape in which the inner angle of the bottom surface is 90 degrees or more. Using the powder thin film forming device formed in a shape, while rotating the rotating body, the anode mat of the sodium-sulfur battery is moved in the direction perpendicular to the axis of the rotating body, and the accommodating groove is formed on the anode mat. method of forming a high-resistance powder thin film on the anode mat sulfur battery - sodium to powder form formed powder film band uniform thickness to fall supplying of the inner.
【請求項2】 前記スクレーパと陽極マットとの間に
在された粉体分散用の装置により粉体を分散させること
を特徴とする請求項1に記載のナトリウム−硫黄電池の
陽極マット上への高抵抗粉体薄膜の形成方法
2. An intermediary between the scraper and the anode mat.
The sodium-sulfur battery according to claim 1, wherein the powder is dispersed by an existing device for dispersing the powder .
A method for forming a high resistance powder thin film on an anode mat .
【請求項3】 前記収容溝は綾目状に形成されている請3. The contract in which the accommodation groove is formed in a twill shape.
求項1又は2に記載のナトリウム−硫黄電池の陽極マッThe anode mat of the sodium-sulfur battery according to claim 1 or 2.
ト上への高抵抗粉体薄膜の形成方法。A method for forming a high resistance powder thin film on a substrate.
JP4009430A 1992-01-22 1992-01-22 Method of forming high resistance powder thin film on anode mat of sodium-sulfur battery Expired - Fee Related JP2557588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4009430A JP2557588B2 (en) 1992-01-22 1992-01-22 Method of forming high resistance powder thin film on anode mat of sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4009430A JP2557588B2 (en) 1992-01-22 1992-01-22 Method of forming high resistance powder thin film on anode mat of sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPH05192559A JPH05192559A (en) 1993-08-03
JP2557588B2 true JP2557588B2 (en) 1996-11-27

Family

ID=11720121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4009430A Expired - Fee Related JP2557588B2 (en) 1992-01-22 1992-01-22 Method of forming high resistance powder thin film on anode mat of sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JP2557588B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101439596B1 (en) * 2012-04-09 2014-09-17 (주)엘지하우시스 Eva sheet for solar cell sealing and manufacturing appratus thereof
JP2024038861A (en) * 2022-09-08 2024-03-21 新東工業株式会社 Electrode formation system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59106537U (en) * 1983-01-08 1984-07-18 日立プラント建設株式会社 Solid-gas mixing chute
JPS6191326U (en) * 1984-11-21 1986-06-13
JPH067762B2 (en) * 1986-10-05 1994-02-02 井関農機株式会社 Granular material feeding device

Also Published As

Publication number Publication date
JPH05192559A (en) 1993-08-03

Similar Documents

Publication Publication Date Title
JP5114203B2 (en) Porous solid zinc electrode and method for producing the same
JP5738913B2 (en) Powder supply device and electrode manufacturing device
JP2016517139A (en) Apparatus for material spray deposition of high solids ratio slurry for battery active material production applications
KR101808204B1 (en) Spray deposition module for an in-line processing system
JP2557588B2 (en) Method of forming high resistance powder thin film on anode mat of sodium-sulfur battery
JP2009028719A (en) Coating apparatus
EP1656708A2 (en) Process for producing an electrode
US3900602A (en) Method and device for the manufacture of catalytic layers for electrodes in electrochemical cells, particularly fuel cells
JP2015176842A (en) Production apparatus of sheet for lithium ion secondary battery, production method of sheet for lithium ion secondary battery, and manufacturing method for lithium ion secondary battery
CN212650068U (en) Agricultural material&#39;s branch material wheel and feed divider
JPH07256199A (en) Formation of powder thin film
US5238028A (en) Method of simultaneously sizing and filling fibrous-structure electrode matrices for rechargeable batteries with an active compound paste
JP2663494B2 (en) Surface sampling equipment for metal materials
JP3344840B2 (en) Drug volume divider
CN1331499A (en) Basic layer material applicator of producing lithium ion polymer battery
JPS6111148Y2 (en)
JP2831698B2 (en) Dry sheet electrode manufacturing equipment
CN216468500U (en) Scatter device and unmanned aerial vehicle
JPH06171765A (en) Constant quantity feeder
JPS6346323Y2 (en)
JPH0798862A (en) Production of magnetic recording medium
KR102465814B1 (en) Powder coating apparatus
CN210765485U (en) Pan tray for electron beam evaporation
WO2009050724A1 (en) A device for dropping granular or powdery material on a substrate
CN221228657U (en) Candy wrapping device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees