JP2555333B2 - Conductive porous silicon carbide sintered body and method for producing the same - Google Patents

Conductive porous silicon carbide sintered body and method for producing the same

Info

Publication number
JP2555333B2
JP2555333B2 JP61310579A JP31057986A JP2555333B2 JP 2555333 B2 JP2555333 B2 JP 2555333B2 JP 61310579 A JP61310579 A JP 61310579A JP 31057986 A JP31057986 A JP 31057986A JP 2555333 B2 JP2555333 B2 JP 2555333B2
Authority
JP
Japan
Prior art keywords
sintered body
silicon carbide
porous silicon
carbide sintered
conductive porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61310579A
Other languages
Japanese (ja)
Other versions
JPS63162588A (en
Inventor
久好 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP61310579A priority Critical patent/JP2555333B2/en
Publication of JPS63162588A publication Critical patent/JPS63162588A/en
Application granted granted Critical
Publication of JP2555333B2 publication Critical patent/JP2555333B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、プラズマエッチング装置の電極等に好適に
用いられる新規な導電性多孔質の炭化珪素焼結体並びに
その有効な製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a novel conductive porous silicon carbide sintered body suitably used for an electrode of a plasma etching apparatus and an effective manufacturing method thereof.

(従来の技術) シリコンウエハー等の調製にあたってプラズマエッチ
ング法が採用されていることは周知の通りである。この
プラズマエツチング法は、Al若しくはSiO2膜を形成し且
つ非エッチング部位を樹脂マスクしたシリコンウエハー
をプラス極に置き、一方マイナス極にはパンチング加工
した多孔性の金属板を装着し、減圧下でマイナス側電極
板の上記パンチング孔より塩素若しくはフッ素ガスを供
給しながら両極間に電圧を印加させ、プラズマイオンに
て上記Al若しくはSiO2膜をエッチングせんとするもので
ある。
(Prior Art) It is well known that the plasma etching method is used for preparing a silicon wafer or the like. In this plasma etching method, a silicon wafer on which an Al or SiO 2 film is formed and the non-etched portion is resin masked is placed on the positive electrode, while a punched porous metal plate is attached to the negative electrode under reduced pressure. While supplying chlorine or fluorine gas from the punching hole of the minus side electrode plate, a voltage is applied between both electrodes to etch the Al or SiO 2 film with plasma ions.

(発明が解決しようとする問題点) 然し乍ら、上記プラズマエッチング法に於いて、プラ
ズマイオンは多孔性金属板のパンチング孔のみから放射
されることになる為、均一なエッチングがなされず、所
謂エッチングむらが生じることは不可避であった。そし
て益々高性能が要求されるシリコンウエハー等の電子部
品の調製に於いては、このようなエッチングむらは早急
に解決されなければならない問題として指摘されてい
た。
(Problems to be Solved by the Invention) However, in the above plasma etching method, since plasma ions are radiated only from the punching holes of the porous metal plate, uniform etching is not performed and so-called etching unevenness is caused. It was unavoidable that there would occur. In the preparation of electronic parts such as silicon wafers, which are required to have higher performance, it has been pointed out that such etching unevenness should be solved immediately.

一方、炭化珪素焼結体に導電性を付与する試みもなさ
れており、その一例としては炭化珪素原料に、助剤とし
てのアルミニウム化合物及びカーボン源を加え、これを
成形焼結したものが挙げられる。然し、この焼結体は緻
密であり上記プラズマエッチング装置の電極に用いるこ
とは不可であった。
On the other hand, attempts have been made to impart conductivity to a silicon carbide sintered body. One example thereof is a material obtained by adding an aluminum compound and a carbon source as an auxiliary agent to a silicon carbide raw material, and molding and sintering this. . However, this sintered body was so dense that it could not be used for the electrode of the plasma etching apparatus.

(発明の目的) 本発明は、上記に鑑みなされたもので、プラズマエッ
チング装置の電極に用いた時には均一なプラズマイオン
の放射を可能とする新規な炭化珪素焼結体並びにその有
効な製造方法を提供せんとするものである。
(Object of the Invention) The present invention has been made in view of the above, and provides a novel silicon carbide sintered body that enables uniform emission of plasma ions when used as an electrode of a plasma etching apparatus, and an effective manufacturing method thereof. It is intended to be provided.

(問題点を解決する為の手段) 上記目的を達成する為の本発明の構成を説明する。即
ち、本発明の特定発明は、内外に連通する多数の細孔を
有し、且つ有機炭化水素化合物の焼成分解による炭素を
焼結構造内の多数の細孔の壁面に担持させて、この炭素
により導電性を付与した導電性多孔質炭化珪素焼結体に
あり、亦、第2発明は、細粒状の炭化珪素原料を所望形
状に成形したものを焼成して多孔質の焼結体となし、こ
の焼結体に自己焼失性有機炭化水素化合物の溶液を含浸
せしめ且つ該有機炭化水素化合物の分解温度以上で焼成
して炭化珪素の焼結構造内の多数の細孔の壁面に上記有
機炭化水素の焼成分解による残留炭素を担持させこれに
より導電性を付与せしめるようにした導電性多孔質炭化
珪素焼結体の製造方法にある。
(Means for Solving Problems) A configuration of the present invention for achieving the above object will be described. That is, the specific invention of the present invention has a large number of pores communicating with the inside and the outside, and the carbon obtained by the firing decomposition of the organic hydrocarbon compound is supported on the wall surface of the numerous pores in the sintered structure, According to the second aspect of the present invention, a fine porous silicon carbide raw material formed into a desired shape is fired to form a porous sintered body. The sintered body is impregnated with a solution of a self-burning-out organic hydrocarbon compound and fired at a temperature equal to or higher than the decomposition temperature of the organic hydrocarbon compound to form the above-mentioned organic carbon on the wall surface of a large number of pores in the sintered structure of silicon carbide. This is a method for producing a conductive porous silicon carbide sintered body in which residual carbon is supported by firing decomposition of hydrogen to thereby impart conductivity.

便宜上特定発明と第2発明とを併せて説明する。本発
明の導電性多孔質炭化珪素焼結体は、孔径が1〜60μ
m、孔容量が0.1〜0.3cc/gで内外に連通する多数の細孔
を含む。この細孔は、平均粒径5〜200μmの炭化珪素
原料を約1900〜2200℃で焼結することにより形成され、
該細孔の存在により焼結体は通気性を保有する。この場
合、孔径が1μm未満で孔容量が0.1cc/g未満のときは
充分な通気性が得られず、一方孔径が60μm、孔容量が
0.3cc/gを超えると焼結体の強度が弱くなる。
For the sake of convenience, the specific invention and the second invention will be described together. The conductive porous silicon carbide sintered body of the present invention has a pore size of 1 to 60 μm.
m, with a pore volume of 0.1 to 0.3 cc / g and containing a large number of pores communicating with the inside and outside. The pores are formed by sintering a silicon carbide raw material having an average particle diameter of 5 to 200 μm at about 1900 to 2200 ° C.,
The presence of the pores allows the sintered body to have air permeability. In this case, when the pore size is less than 1 μm and the pore volume is less than 0.1 cc / g, sufficient air permeability cannot be obtained, while the pore size is 60 μm and the pore volume is
When it exceeds 0.3 cc / g, the strength of the sintered body becomes weak.

亦、本発明の焼結体の構造内の細孔の壁面には、有機
炭化水素の焼成分解による残留炭素が、焼結体100重量
部に対し1〜15重量部担持され、これにより焼結体の体
積固有抵抗値が0.05〜60Ω・cmとされる。この担持量が
1重量部未満の場合は焼結体に充分な導電性が付与され
ず、一方15重量部を超えて担持させても体積固有抵抗値
に大きな変化はみられない。この残留炭素の担持は、上
記細粒状炭化珪素原料を所望形状に成形焼結し、この焼
結体をフェノール樹脂、フルフリルアルコール、ポリフ
ェニレン、ジベッズアントラセン及びクリセン等の自己
消失性の有機炭化水素化合物の溶液に含浸させ、約2000
℃の温度で焼成することによりなされる。該有機炭化水
素化合物溶液の含浸量は、焼結体100重量部に対し4〜3
5重量部であり、この範囲外の場合には上記の如き残留
炭素の適正な担持量が得られなくなる。
Further, on the wall surface of the pores in the structure of the sintered body of the present invention, the residual carbon due to the firing decomposition of the organic hydrocarbon is carried by 1 to 15 parts by weight with respect to 100 parts by weight of the sintered body, thereby sintering. The volume resistivity of the body is 0.05 to 60 Ω · cm. When the supported amount is less than 1 part by weight, sufficient electrical conductivity is not imparted to the sintered body, while when the supported amount exceeds 15 parts by weight, the volume resistivity does not change significantly. To carry the residual carbon, the fine-grained silicon carbide raw material is formed and sintered into a desired shape, and the sintered body is subjected to self-destructing organic carbonization such as phenol resin, furfuryl alcohol, polyphenylene, dives anthracene and chrysene. Impregnated with a solution of hydrogen compound, about 2000
It is made by firing at a temperature of ° C. The amount of the organic hydrocarbon compound solution impregnated is 4 to 3 with respect to 100 parts by weight of the sintered body.
It is 5 parts by weight, and when the amount is out of this range, it becomes impossible to obtain an appropriate amount of residual carbon supported as described above.

(作用) 上記構成の本発明導電性多孔質炭化珪素焼結体は、細
粒状炭化珪素原料を所望形状に成形し且つ焼成して成る
もので、この細粒状原料を用いることにより焼結体内に
内外に連通し且つ均等に分散した多数の細孔を含有し、
この細孔を介して通気性を保有することとなる。亦、上
記焼結体の構造内の細孔の壁面には、自己焼失性有機炭
化水素の焼成分解による残留炭素が担持されており、上
記多数の細孔が内外に連通した通気路として機能すると
同時に細孔周りの壁面に固着した炭素の層が導電路して
機能するので、この残留炭素の存在により体積固有抵抗
値が小さくなり、導電性が付与される。従って、本発明
の焼結体を後記の実施例で示す如きプラズマエッチング
装置のプラス電極に用いた場合、電極として充分に機能
すると共に、細孔を通じてプラズマイオンが均一に放射
され、むらのないエッチングが確実になされる。
(Function) The conductive porous silicon carbide sintered body of the present invention having the above-mentioned structure is formed by molding a fine-grain silicon carbide raw material into a desired shape and firing it. Contains a large number of pores that are in communication with the inside and outside and are evenly dispersed,
Air permeability will be maintained through these pores. Further, on the wall surface of the pores in the structure of the sintered body, residual carbon due to the firing decomposition of the self-burning organic hydrocarbon is carried, and the large number of pores function as a ventilation passage communicating with the inside and outside. At the same time, since the carbon layer fixed to the wall surface around the pores functions as a conductive path, the presence of this residual carbon reduces the volume resistivity value and imparts conductivity. Therefore, when the sintered body of the present invention is used as a plus electrode of a plasma etching apparatus as shown in the examples described later, it functions sufficiently as an electrode, and plasma ions are uniformly radiated through the pores, so that even etching can be achieved. Is surely done.

(実施例) 以下に実施例を挙げ本発明に更に詳述する。(Examples) The present invention will be described in more detail below with reference to Examples.

(i)多孔質焼結体の調製; 平均粒径が下記第1表に示す如き炭化珪素原料を板状
に成形し、これを2000℃で焼結して多孔質の焼結体を得
た。この焼結体に形成された細孔の孔径、開孔率及び焼
結体の嵩比重を測定した。その結果を第1表に示す。
(I) Preparation of Porous Sintered Body; A silicon carbide raw material having an average particle size as shown in Table 1 below was formed into a plate shape and sintered at 2000 ° C. to obtain a porous sintered body. . The pore diameter of the pores formed in this sintered body, the open area ratio, and the bulk specific gravity of the sintered body were measured. The results are shown in Table 1.

但し、第1表の評価の欄は、主にプラズマエッチング
装置の電極として用いる場合に強度的に適切かどうかの
評価であり、○は良好、△はやや不適、×は不適を夫々
示す。
However, the evaluation column of Table 1 is an evaluation as to whether or not strength is appropriate mainly when it is used as an electrode of a plasma etching apparatus, and ◯ means good, Δ means slightly unsuitable, and x means unsuitable.

(ii)導電性の付与; 第1表のNo.3により得た多孔質焼結体サンプルにフェ
ノール樹脂溶液を含浸させ、非酸化雰囲気中で2000℃の
温度で焼成した。含浸樹脂溶液の量を種々変化させたも
のについて、その残留炭素量及び体積固有抵抗値を測定
した。その結果を第2表に示す。
(Ii) Addition of conductivity; The porous sintered body sample obtained in No. 3 of Table 1 was impregnated with the phenol resin solution and fired at a temperature of 2000 ° C in a non-oxidizing atmosphere. The residual carbon amount and the volume resistivity value were measured for various impregnated resin solutions. Table 2 shows the results.

但し、第2表におけるフェノール樹脂溶液の含浸量及
び残留炭素量の欄の数値は、上記多孔質焼結体(サンプ
ルNo.3)100重量部に対する重量部である。
However, the numerical values in the columns of the impregnated amount of the phenol resin solution and the residual carbon amount in Table 2 are parts by weight based on 100 parts by weight of the porous sintered body (Sample No. 3).

この第2表から残留炭素が焼結体の構造内に担持され
ると体積固有抵抗値が極端に低下し焼結体に導電性が付
与されることが理解される。また、フェノール樹脂溶液
の含浸量を調整することにより体積固有抵抗値を任意に
変えることが可能であることも推察される。
From Table 2, it is understood that when the residual carbon is carried in the structure of the sintered body, the volume resistivity value is extremely lowered and the sintered body is provided with conductivity. It is also presumed that the volume resistivity value can be arbitrarily changed by adjusting the impregnation amount of the phenol resin solution.

(iii)プラズマエッチング装置への適用; 第1図及び第2図は上記(i)(ii)の要領で得た導
電性多孔質炭化珪素焼結体をプラズマエッチング装置の
プラス極に適用した例を示す縦断面図である。
(Iii) Application to plasma etching apparatus: FIGS. 1 and 2 show an example in which the conductive porous silicon carbide sintered body obtained in the manner of (i) and (ii) above is applied to the positive electrode of the plasma etching apparatus. FIG.

第1図に於いて、真空ボックス1内にプラス・マイナ
スの電極3、2が対向関係で配置されており、断面略逆
T字型のマイナス極2はプラズマガスの供給管路21を含
み且つ該マイナス極3の下面略全面には該供給管路21に
連通するプラズマガスの放射域22が凹設されている。そ
して該放射域22を覆うように本発明の導電性多孔質炭化
珪素焼結板4が止着固定されている。一方プラス極3上
には、Al若しくはSiO2のコート膜51が被着され更に所望
パターンの印刷樹脂コート層52が形成されたシリコンウ
エハー5が載置されている。この状態で、真空ボックス
1内を減圧しながら(約0.8torr)、供給管路21より塩
素若しくはフッ素ガスを供給し、電極2、3間に電圧を
印加(300W、13.5MHz)させると、放射域22から焼結板
4の細孔を通って放出されたプラズマガスはイオン化さ
れ、プラス極3上に載置されたシリコンウエハー5のコ
ート膜51をエッチングする。この時、焼結板4からは均
一にプラズマイオンが放射されるので、コート膜51はむ
らなく均一にエッチングされる。
In FIG. 1, plus / minus electrodes 3 and 2 are arranged in a vacuum box 1 so as to face each other, and a minus electrode 2 having a substantially inverted T-shaped cross section includes a plasma gas supply pipe 21. A plasma gas radiation region 22 communicating with the supply pipe 21 is provided in a concave shape on substantially the entire lower surface of the negative electrode 3. Then, the conductive porous silicon carbide sintered plate 4 of the present invention is fixed and fixed so as to cover the radiation region 22. On the other hand, on the plus electrode 3, a silicon wafer 5 on which a coating film 51 of Al or SiO 2 is deposited and a printing resin coating layer 52 having a desired pattern is formed is placed. In this state, while decompressing the inside of the vacuum box 1 (about 0.8 torr), chlorine or fluorine gas is supplied from the supply line 21, and a voltage is applied between the electrodes 2 and 3 (300 W, 13.5 MHz). The plasma gas released from the area 22 through the pores of the sintered plate 4 is ionized and etches the coat film 51 of the silicon wafer 5 placed on the plus electrode 3. At this time, since the plasma ions are uniformly emitted from the sintered plate 4, the coat film 51 is uniformly etched.

第2図は、プラズマガスの放射域22を供給管路21より
稍大とした程度で、第1図の如く広い面積から放射され
るものとは異なる。しかしマイナス極2の下面略全面域
に止着固定された焼結板4からは、その全面域よりプラ
ズマイオンが放射される。即ち、供給管路21から焼結板
4に至ったプラズマガスは焼結板4内を面域方向に拡散
し、その全面略全面域から放射され、第1図の場合と同
様の機能を奏する。
FIG. 2 shows the extent to which the radiation area 22 of the plasma gas is made larger than the supply conduit 21, and is different from the radiation from a wide area as shown in FIG. However, from the sintered plate 4, which is fixed and fixed to the substantially entire surface of the lower surface of the negative electrode 2, plasma ions are emitted from the entire area. That is, the plasma gas that has reached the sintered plate 4 from the supply pipe 21 diffuses in the surface area of the sintered plate 4 and is radiated from the substantially entire surface of the sintered plate 4 to perform the same function as in the case of FIG. .

尚、上記実施例では本発明の焼結体をプラズマエッチ
ング装置に適用した例を示したが、導電性多孔質で且つ
セラミックスと云う特性を活かしてこれを他の分野にも
適用することは可能である。亦、残留炭素を焼結体の全
面域に担持させるだけでなく、例えば有機炭化水素溶液
を含浸させる際、部分的に含浸させるようにすれば焼結
体の所望域のみに導電性を付与させることも可能であ
る。
In addition, in the above-mentioned embodiment, an example in which the sintered body of the present invention is applied to a plasma etching apparatus is shown, but it is possible to apply this to other fields by taking advantage of the characteristic of being conductive porous and ceramics. Is. Further, not only the residual carbon is carried on the entire surface of the sintered body, but also when impregnated with, for example, an organic hydrocarbon solution, conductivity is imparted only to a desired area of the sintered body by partially impregnating it. It is also possible.

(発明の効果) 叙上の如く、本発明の導電性多孔質炭化珪素焼結体
は、多数の細孔により通気性を保有し、且つ残留炭素の
存在により導電性が付与されているから、これをプラズ
マエッチング装置にプラス極に用いればプラズマガスが
均一に放射され、むらのないエッチングが確実になされ
る。従って益々高性能が要求されるシリコンウエハー等
の調製に極めて好適であり、斯かる分野の技術的発展に
大きく寄与することとなる。また、この焼結体の製造方
法も、有機炭化水素を含浸焼成させる以外は従来の炭化
珪素の焼結技術がほぼ其の侭適用されるから、従来の設
備が使用出来且つ極めて簡易である。このように本発明
の有用性は頗る大である。
(Effects of the Invention) As described above, the conductive porous silicon carbide sintered body of the present invention has air permeability due to a large number of pores, and conductivity is imparted by the presence of residual carbon. If this is used as a positive electrode in a plasma etching apparatus, the plasma gas is uniformly radiated, and uniform etching is surely performed. Therefore, it is extremely suitable for the preparation of silicon wafers and the like, which are required to have higher performance, and will greatly contribute to the technical development in such a field. Also, in the manufacturing method of this sintered body, the conventional technology for sintering silicon carbide is applied except for impregnating and firing the organic hydrocarbon, so that conventional equipment can be used and it is extremely simple. Thus, the utility of the present invention is extremely large.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の導電性多孔質炭化珪素焼結体を応用し
たプラズマエツチング装置の一例を示す概略縦断面図、
第2図は同他の例を示す概略縦断面図である。 (符号の説明) 1……真空ボックス、2……マイナス極、21……プラズ
マガスの供給管路、22……プラズマガスの放射域、3…
…プラス極、4……導電性多孔質炭化珪素焼結板、5…
…シリコンウエハー、51……コート膜、52……印刷樹脂
膜。
FIG. 1 is a schematic vertical sectional view showing an example of a plasma etching apparatus to which a conductive porous silicon carbide sintered body of the present invention is applied,
FIG. 2 is a schematic vertical sectional view showing another example. (Explanation of symbols) 1 ... vacuum box, 2 ... minus electrode, 21 ... plasma gas supply pipe, 22 ... plasma gas emission region, 3 ...
… Positive electrode, 4… Conductive porous silicon carbide sintered plate, 5…
… Silicon wafer, 51 …… Coating film, 52 …… Printing resin film.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭化珪素焼結体に形成した内外に連通する
多数の細孔の壁面に炭素を担持させ、該炭素により導電
性を付与したことを特徴とする導電性多孔質炭化珪素焼
結体。
1. A conductive porous silicon carbide sintered body characterized in that carbon is supported on the wall surfaces of a large number of pores communicating with the inside and outside formed in a silicon carbide sintered body, and the carbon is made conductive. body.
【請求項2】細粒状の炭化珪素原料粉末を所望形状に成
形したものを焼成して多孔質の炭化珪素焼結体となし、
この焼結体に自己消失性の有機炭化水素化合物の溶液を
含浸せしめた後、該有機炭化水素化合物の分解温度以上
で焼成して細孔の壁面に上記有機炭化水素化合物の焼成
分解による炭素を担持させることを特徴とする導電性多
孔質炭化珪素焼結体の製造方法。
2. A fine silicon carbide raw material powder formed into a desired shape is fired to form a porous silicon carbide sintered body,
This sintered body is impregnated with a solution of a self-extinguishing organic hydrocarbon compound, which is then fired at a decomposition temperature of the organic hydrocarbon compound or higher to form carbon on the wall surface of the pores by the firing decomposition of the organic hydrocarbon compound. A method for producing a conductive porous silicon carbide sintered body, which comprises supporting the same.
JP61310579A 1986-12-25 1986-12-25 Conductive porous silicon carbide sintered body and method for producing the same Expired - Fee Related JP2555333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61310579A JP2555333B2 (en) 1986-12-25 1986-12-25 Conductive porous silicon carbide sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61310579A JP2555333B2 (en) 1986-12-25 1986-12-25 Conductive porous silicon carbide sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPS63162588A JPS63162588A (en) 1988-07-06
JP2555333B2 true JP2555333B2 (en) 1996-11-20

Family

ID=18006935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61310579A Expired - Fee Related JP2555333B2 (en) 1986-12-25 1986-12-25 Conductive porous silicon carbide sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2555333B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260233U (en) * 1988-10-27 1990-05-02
JPH03101126A (en) * 1989-09-13 1991-04-25 Eagle Ind Co Ltd Electrode for plasma etching apparatus use

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3305529A1 (en) * 1983-02-18 1984-08-23 Kernforschungsanlage Jülich GmbH, 5170 Jülich METHOD FOR PRODUCING POROESE, FLOW-THROUGH MOLDED BODIES FROM SILICON CARBIDE

Also Published As

Publication number Publication date
JPS63162588A (en) 1988-07-06

Similar Documents

Publication Publication Date Title
US4250428A (en) Bonded cathode and electrode structure with layered insulation, and method of manufacture
US5431971A (en) Plate including a coating of aluminium, within aluminium oxyde agglomerates for an electrode of an electrolytic condenser
US11075049B2 (en) Thermionic tungsten/scandate cathodes and method of making the same
JP4662916B2 (en) Method for producing metal molded body having ceramic layer, metal molded body and use thereof
CA2339649A1 (en) Silicon carbide sinter and process for producing the same
JP2555333B2 (en) Conductive porous silicon carbide sintered body and method for producing the same
KR20020027941A (en) Cathode for electron tube and preparing method therefor
JP5549834B2 (en) Thermal spray film and manufacturing method thereof
JP4641845B2 (en) Coated porous structure and method for producing coated porous structure
US4942844A (en) High penetration deposition process and apparatus
RU2149477C1 (en) Field-effect electron emitter
JP2825783B2 (en) Densification method of porous materials by plasma enhanced chemical vapor infiltration
JP4471431B2 (en) Method for producing cotton-like refractory metal material and cathode using the material
EP0967189B1 (en) A highly resistive recrystallized silicon carbide, an anti-corrosive member, a method for producing the highly resistive recrystallized silicon carbide, and a method for producing the anti-corrosive member
JP2686628B2 (en) Porous conductive material
US4894257A (en) Method of overcoating a high current density cathode with rhodium
JPH0560650B2 (en)
US4931306A (en) High penetration deposition process and apparatus
CA1150763A (en) Method of fabricating a dispenser cathode
US2175695A (en) Gettering
RU2159972C1 (en) Material possessing low field-emission threshold
JPH0243868Y2 (en)
US4911626A (en) Method of making a long life high current density cathode from tungsten and iridium powders using a mixture of barium peroxide and a coated emitter as the impregnant
US20210061722A1 (en) Infiltration of porous structures with particles
RU2278438C1 (en) Impregnated cathode manufacturing process

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees