JP2554235B2 - Tl-based oxide superconducting wire and method for producing the same - Google Patents

Tl-based oxide superconducting wire and method for producing the same

Info

Publication number
JP2554235B2
JP2554235B2 JP5263546A JP26354693A JP2554235B2 JP 2554235 B2 JP2554235 B2 JP 2554235B2 JP 5263546 A JP5263546 A JP 5263546A JP 26354693 A JP26354693 A JP 26354693A JP 2554235 B2 JP2554235 B2 JP 2554235B2
Authority
JP
Japan
Prior art keywords
based oxide
superconducting wire
layer
oxide
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5263546A
Other languages
Japanese (ja)
Other versions
JPH07122128A (en
Inventor
広幸 赤田
吉田  隆
恒行 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority to JP5263546A priority Critical patent/JP2554235B2/en
Publication of JPH07122128A publication Critical patent/JPH07122128A/en
Application granted granted Critical
Publication of JP2554235B2 publication Critical patent/JP2554235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Tl系酸化物超電導線
材およびその製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Tl-based oxide superconducting wire and its manufacturing method.

【0002】[0002]

【従来の技術】1986年、約40Kと云うこれまでに
ない高い超電導転移温度(Tc)を有する酸化物超電導
体〔La,Sr〕CuO4、〔La,Ba〕CuO4が発
見され、以来この方面の研究開発が盛んに行われるよう
になった。その結果、現在ではいろいろな酸化物超電導
体が知られるようになった。
2. Description of the Related Art In 1986, oxide superconductors [La, Sr] CuO 4 and [La, Ba] CuO 4 having an unprecedentedly high superconducting transition temperature (Tc) of about 40 K were discovered. R & D in various fields has become popular. As a result, various oxide superconductors are now known.

【0003】特に、Y系、Bi系、Tl系はTcが液体
窒素温度よりも高いので、これらを用いれば液体窒素冷
却による超電導システムを構成できる可能性がある。
In particular, since the Tc of the Y, Bi, and Tl systems is higher than the liquid nitrogen temperature, it is possible to construct a superconducting system by cooling the liquid nitrogen by using them.

【0004】それまでの超電導システムは、液体ヘリウ
ムで冷却していたが、液体窒素は安価な上に比熱が大き
く、これを用いることができればシステムの簡略化、小
型化、ランニングコストの低減などが期待される。その
ために、前記Y系、Bi系、Tl系の実用化の研究が各
方面で行われている。中でも、Tl系はTcが125K
と最も高い系であり、液体窒素冷却による超電導システ
ムを構成する上で最も有利な材料と考えられる。
Conventional superconducting systems have been cooled by liquid helium, but liquid nitrogen is inexpensive and has a large specific heat, and if it can be used, the system can be simplified, downsized, and running cost can be reduced. Be expected. Therefore, researches for practical use of the Y-system, Bi-system, and Tl-system have been conducted in various fields. Among them, Tl has a Tc of 125K.
It is considered to be the most advantageous material in constructing a superconducting system with liquid nitrogen cooling.

【0005】さて、酸化物超電導体の長尺線材の製法は
いろいろあるが、その一例としてプラズマ溶射法を挙げ
る。この方法は、粉末状の原料をプラズマフレームで溶
融して液滴化し、これを基材上に吹き付けることによっ
て成膜する方法である。この方法は、100cm2当り
100μm/分以上と云う成膜速度が得られので、大量
生産向きと云う特徴がある。
There are various methods for producing a long wire of an oxide superconductor, and the plasma spraying method is given as an example. This method is a method in which a powdery raw material is melted in a plasma flame to form droplets, and the droplets are sprayed onto a substrate to form a film. This method has a feature that it is suitable for mass production because a film forming rate of 100 μm / min or more per 100 cm 2 can be obtained.

【0006】上記の方法を用いてTl系超電導線材を製
造するには次のような方法で行う。まず、基板上にTl
を含まない酸化物層を溶射し、次にこの溶射された酸化
物層にTlを導入して熱処理することでTl系酸化物超
電導体層を形成する。
The following method is used to manufacture a Tl-based superconducting wire using the above method. First, Tl on the substrate
A Tl-based oxide superconductor layer is formed by thermal spraying an oxide layer not containing Tl and then introducing Tl into the thermally sprayed oxide layer and subjecting it to heat treatment.

【0007】上記において、まず、Tlを含まない酸化
物層を溶射形成する理由は、Tlは蒸気圧が高く、例え
Tl系酸化物を予め合成して溶射しても、Tlの一部が
溶射中に蒸発し、溶射後の酸化物層中にTlが不足して
しまうからである。
In the above, first, the reason why the oxide layer not containing Tl is formed by thermal spraying is that Tl has a high vapor pressure and even if Tl-based oxide is previously synthesized and sprayed, a part of Tl is sprayed. This is because Tl is deficient in the oxide layer after thermal spraying.

【0008】[0008]

【発明が解決しようとする課題】前記のようなプラズマ
溶射法でTl系酸化物超電導線材を製造することができ
るが、前記の方法では酸化物超電導体層がむき出しにな
っているため、実用化を考えた場合は該酸化物層に保護
のための被覆層を設けることが必要である。
Although the Tl-based oxide superconducting wire can be manufactured by the plasma spraying method as described above, the oxide superconducting layer is exposed in the above-mentioned method, so that it is put into practical use. In consideration of the above, it is necessary to provide a coating layer for protection on the oxide layer.

【0009】上記被覆層を設ける方法としては、該酸化
物超電導体層上に金属の溶射層を形成することが考えら
れるが、これには問題がある。それは、被覆層を溶射に
より形成する際の温度上昇によって、Tl系酸化物超電
導体層中のTlが蒸発してしまうためである。
As a method of providing the above-mentioned coating layer, it is possible to form a metal sprayed layer on the oxide superconductor layer, but this has a problem. This is because Tl in the Tl-based oxide superconductor layer evaporates due to a temperature rise when the coating layer is formed by thermal spraying.

【0010】本発明の目的は、前記の課題を克服した被
覆層付きのTl系酸化物超電導線材を提供することにあ
る。
An object of the present invention is to provide a Tl-based oxide superconducting wire with a coating layer that overcomes the above problems.

【0011】本発明の他の目的は、前記の課題を克服し
た被覆層付きのTl系酸化物超電導線材の製法を提供す
ることにある。
Another object of the present invention is to provide a method for producing a Tl-based oxide superconducting wire with a coating layer that overcomes the above problems.

【0012】[0012]

【課題を解決するための手段】本発明の要旨は次のとお
りである。
The gist of the present invention is as follows.

【0013】(1) 基材上にTl系酸化物超電導体層
が形成され、その上に空隙率が5〜50%の金属,金属
酸化物または無機質の溶射被覆層が設けられていること
を特徴とするTl系酸化物超電導線材。
(1) A Tl-based oxide superconductor layer is formed on a substrate, and a metal having a porosity of 5 to 50%
A Tl-based oxide superconducting wire, characterized in that an oxide or inorganic thermal spray coating layer is provided.

【0014】(2) 基材上にTl系酸化物超電導体層
が形成され、その上に空隙率が5〜50%の金属,金属
酸化物または無機質の溶射被覆層が設けられており、前
記Tl系酸化物超電導体層が下式〔1〕または〔2〕で
示されることを特徴とするTl系酸化物超電導線材。
(2) A Tl-based oxide superconductor layer is formed on a substrate, and a metal having a porosity of 5 to 50%, or a metal.
A Tl-based oxide superconducting wire, comprising an oxide or inorganic thermal spray coating layer, wherein the Tl-based oxide superconductor layer is represented by the following formula [1] or [2].

【0015】[0015]

【数2】 [Equation 2]

【0016】〔但し、0.8≦A≦1.2、0≦x≦0.
4、0≦y≦0.2、0≦z≦0.4である。〕 (3) 前記基材および溶射被覆層の主成分がAg、A
u、Cu、SrTiO3、MgO、Al23またはYS
Z(イットリウム安定化ジルコニア)である前記(1)
または(2)に記載のTl系酸化物超電導線材。
[However, 0.8≤A≤1.2, 0≤x≤0.
4, 0 ≦ y ≦ 0.2 and 0 ≦ z ≦ 0.4. (3) The main components of the base material and the spray coating layer are Ag and A
u, Cu, SrTiO 3 , MgO, Al 2 O 3 or YS
(1) which is Z (yttrium-stabilized zirconia)
Alternatively, the Tl-based oxide superconducting wire according to (2).

【0017】(4) 基材上にTlを含まない酸化物層
を形成し、該酸化物層上に空隙率が5〜50%の金属,
金属酸化物または無機質の溶射被覆層を形成し、次いで
Tl含有物質蒸気中で熱処理して前記酸化物層とTlを
反応させるTl系酸化物超電導線材の製法。
(4) A Tl-free oxide layer is formed on a substrate, and a metal having a porosity of 5 to 50% is formed on the oxide layer .
A method for producing a Tl-based oxide superconducting wire, which comprises forming a thermal spray coating layer of a metal oxide or an inorganic substance, and then heat treating the vapor in a Tl-containing substance vapor to react the oxide layer with Tl.

【0018】(5) 前記基材および溶射被覆層の主成
分がAg、Au、Cu、SrTiO3、MgO、Al2
3またはYSZである前記(4)に記載のTl系酸化物
超電導線材の製法。
(5) The main components of the base material and the thermal spray coating layer are Ag, Au, Cu, SrTiO 3 , MgO and Al 2 O.
The method for producing a Tl-based oxide superconducting wire according to (4) above, which is 3 or YSZ.

【0019】(6) 前記Tl含有物質がTl23であ
る前記(4)または(5)に記載のTl系酸化物超電導
線材の製法。
(6) The method for producing a Tl-based oxide superconducting wire according to (4) or (5), wherein the Tl-containing substance is Tl 2 O 3 .

【0020】前記において、溶射被覆層(以下、単に被
覆層と云う)の空隙率を5〜50%としたのは、5%未
満ではTl含有物質の蒸気中で熱処理を行っても、酸化
物層がTlと十分反応せず、77K,0T(ゼロテス
ラ)における超電導臨界電流密度(Jc)が5×102
A/cm2未満となる。また、50%を超えるときは作
製した超電導線材を大気中に30日放置しておくと、大
気中の水分等の影響により、77K,0TにおけるJc
が作製時の1/50以下に低下する経時劣化が生ずると
云う問題がある。
In the above, the thermal spray coating layer (hereinafter, simply referred to as
The porosity of the cover layer) is set to 5 to 50%. When the porosity is less than 5%, the oxide layer does not sufficiently react with Tl even if the heat treatment is performed in the vapor of the Tl-containing substance. The superconducting critical current density (Jc) at zero Tesla) is 5 × 10 2.
It is less than A / cm 2 . When the content exceeds 50%, if the manufactured superconducting wire is left in the atmosphere for 30 days, the Jc at 77K, 0T may be affected by moisture in the atmosphere.
However, there is a problem that deterioration with time is reduced to 1/50 or less of that at the time of manufacture.

【0021】[0021]

【作用】本発明の超電導線材は、基材上に形成したTl
を含まない酸化物層上に空隙率が5〜50%の被覆層を
形成し、Tl含有物質の蒸気中で熱処理を施すことによ
って、上記被覆層の空隙を介してTlが浸透し酸化物層
と反応し、Tl系酸化物超電導体層が形成される。しか
し、前記被覆層の空隙率が5〜50%の範囲でなければ
好ましくない。その詳細な理由はまだ明らかでない。
The superconducting wire of the present invention is made of Tl formed on the base material.
A coating layer having a porosity of 5 to 50% is formed on the oxide layer containing no Tl, and heat treatment is performed in the vapor of the Tl-containing substance, whereby Tl penetrates through the voids in the coating layer and the oxide layer Reacts with and a Tl-based oxide superconductor layer is formed. However, it is not preferable unless the porosity of the coating layer is in the range of 5 to 50%. The detailed reason for this is not clear yet.

【0022】[0022]

【実施例】次に実施例により本発明を説明する。The present invention will be described below with reference to examples.

【0023】〔実施例 1〕モル比がBa:Sr:C
a:Cuが1.6:0.4:2.0:3.0となるようにB
aO,SrO,CaO,CuOを混合し、880℃で1
0時間焼成した。焼成後、焼成体を粉砕,分級して粒径
10〜100μmの粉末を得た。
[Example 1] The molar ratio was Ba: Sr: C.
a: Cu so that it becomes 1.6: 0.4: 2.0: 3.0 B
Mix aO, SrO, CaO, CuO, and add 1 at 880 ℃.
It was baked for 0 hours. After firing, the fired body was pulverized and classified to obtain a powder having a particle size of 10 to 100 μm.

【0024】上記粉末を用いて、厚さ50μm×幅2m
mのAg基材上に、酸化物層の厚さが50μmとなるよ
う溶射し、さらにその上に厚さ50μmのAgの被覆層
を溶射した試料を作製した。なお、上記の溶射条件は、
次のとおりである。
Using the above powder, thickness 50 μm × width 2 m
A sample was prepared by spraying an oxide layer having a thickness of 50 μm on an Ag base material of m, and further spraying a coating layer of Ag having a thickness of 50 μm thereon. The above thermal spraying conditions are
It is as follows.

【0025】溶射装置 :大気圧溶射装置 プラズマガス:Ar+H2(圧力100psi,流量1
00cfh) cfh(cubic foot per hour):立方フィート毎時 プラズマ電圧:30〜60V プラズマ電流:400〜900A 溶射距離 :50〜200mm 溶射粉末 :粒径10〜100μm(但し、溶射装置
に入れる際に、最大粒径から最小粒径を差し引いた値が
50μm以下になるように調節した。) Ag層の空隙率は、上記の溶射条件を一部変えることに
より調節した。空隙率の異なる試料(No.1〜9)を
作製し、Al23製密封容器中でTl23粉末とともに
810℃で20時間の焼成を2回行った。
Thermal spraying apparatus: Atmospheric pressure thermal spraying apparatus Plasma gas: Ar + H 2 (pressure 100 psi, flow rate 1
00cfh) cfh (cubic foot per hour): Cubic foot per hour Plasma voltage: 30-60V Plasma current: 400-900A Thermal spraying distance: 50-200mm Thermal spraying powder: Particle size 10-100μm (however, maximum when put in the thermal spraying device The value obtained by subtracting the minimum particle size from the particle size was adjusted to 50 μm or less.) The porosity of the Ag layer was adjusted by partially changing the above-mentioned thermal spraying conditions. Samples with different porosities (Nos. 1 to 9) were prepared and fired twice at 810 ° C. for 20 hours together with Tl 2 O 3 powder in an Al 2 O 3 hermetically sealed container.

【0026】なお、前記Ag被覆層の空隙率γ(%)は
(a×100)/b(但し、aは顕微鏡観察による被覆層
中の空隙の総断面積、bは被覆層の総断面積である。)
によって求めた。
The porosity γ (%) of the Ag coating layer is
(a × 100) / b (where a is the total cross-sectional area of the voids in the coating layer by microscopic observation, and b is the total cross-sectional area of the coating layer.)
Sought by.

【0027】上記により作製した試料は、77K,0T
において直流4端子法でJcを測定した。結果を表1に
示す。
The sample produced as described above was 77K, 0T.
In, the Jc was measured by the direct current 4-terminal method. The results are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】〔実施例 2〕モル比がBa:Sr:C
a:Cuが1.6:0.4:2.0:3.0となるようにB
aO,SrO,CaO,CuOを混合し、880℃で1
0時間焼成した。焼成後、焼成体を粉砕,分級して粒径
10〜100μmの粉末を得た。
Example 2 The molar ratio is Ba: Sr: C.
a: Cu so that it becomes 1.6: 0.4: 2.0: 3.0 B
Mix aO, SrO, CaO, CuO, and add 1 at 880 ℃.
It was baked for 0 hours. After firing, the fired body was pulverized and classified to obtain a powder having a particle size of 10 to 100 μm.

【0030】上記粉末を用いて、厚さ50μm×幅2m
mのAg、Au、Cu、SrTiO3、MgO、Al2
3、YSZの各基材上に、酸化物層の厚さが50μmと
なるよう溶射し、さらにその上に厚さ50μmのAg、
Au、Cu、SrTiO3、MgO、Al23、YSZ
の被覆層を溶射した試料(No.10〜57)を作製し
た。なお、上記の溶射条件は、実施例1と同じである。
Using the above powder, thickness 50 μm × width 2 m
m Ag, Au, Cu, SrTiO 3 , MgO, Al 2 O
3 , sprayed on each YSZ base material so that the oxide layer has a thickness of 50 μm, and further, Ag having a thickness of 50 μm,
Au, Cu, SrTiO 3 , MgO, Al 2 O 3 , YSZ
Samples (No. 10 to 57) in which the coating layer of No. 10 was sprayed were prepared. The above-mentioned thermal spraying conditions are the same as in Example 1.

【0031】上記各試料をAl23製密封容器中でTl
23粉末とともに810℃で20時間の焼成を2回行っ
た。なお、これらの各試料の被覆層の空隙率は5〜50
%である。
Each of the above samples was placed in a sealed container made of Al 2 O 3 with Tl.
Firing was performed twice at 810 ° C. for 20 hours together with 2 O 3 powder. The porosity of the coating layer of each of these samples was 5 to 50.
%.

【0032】上記各試料は77K,0Tにおいて直流4
端子法でJcを測定した。結果を表2,表3に示す。
Each of the above samples has a DC of 4 at 77K and 0T.
Jc was measured by the terminal method. The results are shown in Tables 2 and 3.

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】〔実施例 3〕モル比がPb:Sr:B
a:Ca:Cuが0.7:1.6:0.4:2.0:3.0
となるようにPbO,SrO,BaO,CaO,CuO
を混合し、880℃で10時間焼成した。焼成後、焼成
体を粉砕,分級して粒径10〜100μmの粉末を得
た。なお、Pbは溶射中にその一部が蒸発するので多く
配合した。
Example 3 The molar ratio is Pb: Sr: B.
a: Ca: Cu is 0.7: 1.6: 0.4: 2.0: 3.0
PbO, SrO, BaO, CaO, CuO
Were mixed and baked at 880 ° C. for 10 hours. After firing, the fired body was pulverized and classified to obtain a powder having a particle size of 10 to 100 μm. A large amount of Pb was added because it partially evaporates during thermal spraying.

【0036】上記粉末を用いて、厚さ50μm×幅2m
mのAg、Au、Cu、SrTiO3、MgO、Al2
3、YSZの各基材上に、酸化物層の厚さが50μmと
なるよう溶射し、さらにその上に厚さ50μmのAg、
Au、Cu、SrTiO3、MgO、Al23、YSZ
の被覆層を溶射した試料(No.58〜106)を作製
した。なお、上記の溶射条件は、実施例1と同じであ
る。
Using the above powder, thickness 50 μm × width 2 m
m Ag, Au, Cu, SrTiO 3 , MgO, Al 2 O
3 , sprayed on each YSZ base material so that the oxide layer has a thickness of 50 μm, and further, Ag having a thickness of 50 μm,
Au, Cu, SrTiO 3 , MgO, Al 2 O 3 , YSZ
Samples (No. 58 to 106) were produced by spraying the coating layer of No. The above-mentioned thermal spraying conditions are the same as in Example 1.

【0037】上記各試料をAl23製密封容器中でTl
23粉末とともに810℃で20時間の焼成を2回行っ
た。これらの各試料の被覆層の空隙率は5〜50%であ
る。
Each of the above samples was placed in a sealed container made of Al 2 O 3 with Tl.
Firing was performed twice at 810 ° C. for 20 hours together with 2 O 3 powder. The porosity of the coating layer of each of these samples is 5 to 50%.

【0038】上記各試料は77K,0Tにおいて直流4
端子法でJcを測定した。結果を表4,表5に示す。
Each of the above samples had a DC of 4 at 77K and 0T.
Jc was measured by the terminal method. The results are shown in Tables 4 and 5.

【0039】[0039]

【表4】 [Table 4]

【0040】[0040]

【表5】 [Table 5]

【0041】[0041]

【発明の効果】本発明によれば、超電導特性が優れた、
被覆層を有するTl系酸化物超電導線材を得ることがで
き、該線材は経時劣化も少なくと云う優れた効果があ
る。
According to the present invention, the superconducting property is excellent,
It is possible to obtain a Tl-based oxide superconducting wire having a coating layer, and the wire has an excellent effect that deterioration with time is small.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01B 13/00 565 H01B 13/00 565D (56)参考文献 特開 平2−275779(JP,A) 特開 平3−103321(JP,A) 特開 平4−300202(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location H01B 13/00 565 H01B 13/00 565D (56) Reference JP-A-2-275779 (JP, A ) JP-A-3-103321 (JP, A) JP-A-4-300202 (JP, A)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基材上にTl系酸化物超電導体層が形成
され、その上に空隙率が5〜50%の金属,金属酸化物
または無機質の溶射被覆層が設けられていることを特徴
とするTl系酸化物超電導線材。
1. A metal or metal oxide having a Tl-based oxide superconductor layer formed on a base material and having a porosity of 5 to 50% .
Alternatively, a Tl-based oxide superconducting wire is provided with an inorganic thermal spray coating layer.
【請求項2】 基材上にTl系酸化物超電導体層が形成
され、その上に空隙率が5〜50%の金属,金属酸化物
または無機質の溶射被覆層が設けられており、前記Tl
系酸化物超電導体層が下式〔1〕または〔2〕で示され
ることを特徴とするTl系酸化物超電導線材。 【数1】 〔但し、0.8≦A≦1.2、0≦x≦0.4、0≦y≦
0.2、0≦z≦0.4である。〕
2. A Tl-based oxide superconductor layer is formed on a substrate, and a metal or metal oxide having a porosity of 5 to 50% is formed thereon .
Alternatively, an inorganic thermal spray coating layer is provided, and the Tl
A Tl-based oxide superconducting wire, characterized in that the oxide-based superconductor layer is represented by the following formula [1] or [2]. [Equation 1] [However, 0.8 ≦ A ≦ 1.2, 0 ≦ x ≦ 0.4, 0 ≦ y ≦
0.2 and 0 ≦ z ≦ 0.4. ]
【請求項3】 前記基材および溶射被覆層の主成分がA
g、Au、Cu、SrTiO3、MgO、Al23また
はYSZ(イットリウム安定化ジルコニア)である請求
項1または2に記載のTl系酸化物超電導線材。
3. The main component of the base material and the thermal spray coating layer is A
The Tl-based oxide superconducting wire according to claim 1 or 2, which is g, Au, Cu, SrTiO 3 , MgO, Al 2 O 3 or YSZ (yttrium-stabilized zirconia).
【請求項4】 基材上にTlを含まない酸化物層を形成
し、該酸化物層上に空隙率が5〜50%の金属,金属酸
化物または無機質の溶射被覆層を形成し、次いでTl含
有物質蒸気中で熱処理して前記酸化物層とTlを反応さ
せることを特徴とするTl系酸化物超電導線材の製法。
4. A metal or metal acid having a Tl-free oxide layer formed on a substrate and having a porosity of 5 to 50% on the oxide layer.
A method for producing a Tl-based oxide superconducting wire, which comprises forming a thermal spray coating layer of an oxide or an inorganic substance, and then heat treating the vapor in a Tl-containing substance vapor to react the oxide layer with Tl.
【請求項5】 前記基材および溶射被覆層の主成分がA
g、Au、Cu、SrTiO3、MgO、Al23また
はYSZである請求項4に記載のTl系酸化物超電導線
材の製法。
5. The main component of the base material and the spray coating layer is A
The method for producing a Tl-based oxide superconducting wire according to claim 4, which is g, Au, Cu, SrTiO 3 , MgO, Al 2 O 3 or YSZ.
【請求項6】 前記Tl含有物質がTl23である請求
項4または5に記載のTl系酸化物超電導線材の製法。
6. The method for producing a Tl-based oxide superconducting wire according to claim 4, wherein the Tl-containing substance is Tl 2 O 3 .
JP5263546A 1993-10-21 1993-10-21 Tl-based oxide superconducting wire and method for producing the same Expired - Fee Related JP2554235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5263546A JP2554235B2 (en) 1993-10-21 1993-10-21 Tl-based oxide superconducting wire and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5263546A JP2554235B2 (en) 1993-10-21 1993-10-21 Tl-based oxide superconducting wire and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07122128A JPH07122128A (en) 1995-05-12
JP2554235B2 true JP2554235B2 (en) 1996-11-13

Family

ID=17391049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5263546A Expired - Fee Related JP2554235B2 (en) 1993-10-21 1993-10-21 Tl-based oxide superconducting wire and method for producing the same

Country Status (1)

Country Link
JP (1) JP2554235B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275779A (en) * 1989-04-17 1990-11-09 Ngk Insulators Ltd Superconducting ceramic composite material
JPH03103321A (en) * 1989-09-14 1991-04-30 Hitachi Chem Co Ltd Raw material for superconductor, production thereof and production of superconductor using same raw material
JPH04300202A (en) * 1991-03-29 1992-10-23 Hitachi Ltd Superconductor using oxide and production thereof

Also Published As

Publication number Publication date
JPH07122128A (en) 1995-05-12

Similar Documents

Publication Publication Date Title
US5369089A (en) Method of preparing oxide superconducting wire
EP0330214B1 (en) High-Tc oxide superconductor and method for producing the same
EP0351844B1 (en) Method of manufacturing bismuth type oxide superconductor
JP2554235B2 (en) Tl-based oxide superconducting wire and method for producing the same
US5273957A (en) Thermally sprayed lead-containing thick layers
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
US4929597A (en) Superconductor containing internal stress absorber
JP2579311B2 (en) How to prevent deterioration of superconductors
JP2573650B2 (en) Superconductor manufacturing method
JPH01270518A (en) Superconductor thick film and production thereof
JP2532969B2 (en) Oxide-based superconducting film and method for producing the same
Itoh et al. Superconductivity in the Tl-Nd-Sr-Cu-O and the Tl-Pb-Nd-Sr-Cu-O systems
JPH0574232A (en) Degradation preventing method for oxide superconductor
JPH01246105A (en) Superconducting oxide and surface coating method
JP2904348B2 (en) Method for manufacturing compound superconducting wire
JP2698689B2 (en) Oxide superconducting material and manufacturing method thereof
EP0419200A2 (en) Method for producing oxide superconductors
JPH01238190A (en) Manufacture of superconductor thick film
JPH01140683A (en) Formation of superconducting thin film
JPH053158B2 (en)
JPH0196016A (en) Starting material for conjugate oxide superconductor and production thereof
JPH01126208A (en) Production of superconducting thin film
Cooper et al. High-T C Superconducting Oxide Films Produced from Solution Precursors
JPH06183742A (en) Superconducting composite and its production
Chopra et al. Structural and Electrical Properties of Screen Printed and Spray Pyrolized High T c Superconducting Films

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees