JP2553455Y2 - Car side frame structure - Google Patents

Car side frame structure

Info

Publication number
JP2553455Y2
JP2553455Y2 JP1988095096U JP9509688U JP2553455Y2 JP 2553455 Y2 JP2553455 Y2 JP 2553455Y2 JP 1988095096 U JP1988095096 U JP 1988095096U JP 9509688 U JP9509688 U JP 9509688U JP 2553455 Y2 JP2553455 Y2 JP 2553455Y2
Authority
JP
Japan
Prior art keywords
section
steel
side wall
side frame
mold steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1988095096U
Other languages
Japanese (ja)
Other versions
JPH0216368U (en
Inventor
義治 角南
典明 関
弘利 土田
Original Assignee
関東自動車工業 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関東自動車工業 株式会社 filed Critical 関東自動車工業 株式会社
Priority to JP1988095096U priority Critical patent/JP2553455Y2/en
Publication of JPH0216368U publication Critical patent/JPH0216368U/ja
Application granted granted Critical
Publication of JP2553455Y2 publication Critical patent/JP2553455Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Body Structure For Vehicles (AREA)

Description

【考案の詳細な説明】 <産業上の利用分野> 本考案は、自動車のサイドフレーム構造に関して、そ
の目的は、後突時にサイドフレームに衝撃荷重が加わっ
た際の崩壊部所を簡単な構造で制御可能としたものであ
る。
[Detailed description of the invention] <Industrial application field> The present invention relates to the structure of a side frame of an automobile. The purpose of the invention is to provide a simple structure for a collapse portion when an impact load is applied to the side frame during a rear collision. Controllable.

<従来の技術> 自動車のサイドフレーム1は第13図で示すように、下
向きコの字状断面の上側型鋼2とこの上側型鋼2の側壁
内側に側壁外側が嵌合する上向きコの字状断面の下側型
鋼3とよりなり、前記嵌合部は高さ方向の略中央部で重
合され、この重合部を溶接Wして箱形断面を構成してい
る。
<Related Art> As shown in FIG. 13, a side frame 1 of an automobile has an upper mold steel 2 having a downward U-shaped cross section and an upward U-shaped cross section in which the outside of the side wall is fitted to the inside of the side wall of the upper mold steel 2. The fitting portion is overlapped at a substantially central portion in the height direction, and the overlapped portion is welded W to form a box-shaped cross section.

第11図で示すように、後突時のサイドフレーム1のリ
ヤ側は、リヤバンパを通して衝撃荷重Pが加わり、サイ
ドフレーム1のリヤ側の何れかの位置で崩壊が生じる。
As shown in FIG. 11, an impact load P is applied to the rear side of the side frame 1 through a rear bumper at the time of a rear collision, and collapse occurs at any position on the rear side of the side frame 1.

その場合、乗員保護の観点から、サイドフレーム1の
リヤ側を設計の思い通りに壊す必要がある。その位置を
仮に後車軸懸架部分の弯曲した部位を崩壊部所Zとした
場合、サイドフレーム1のリヤ側への荷重の加わり具合
からサイドフレーム1に強い部分と弱い部分のバランス
を意図的に設ける必要があり、多くの場合、第11図のl
の部分に強い部分を設けるために、第12図で示すよう
に、サイドフレーム1の閉断面内で、殊に引張側となる
上側型鋼2側へリィンホース4を固設していた。
In that case, it is necessary to break the rear side of the side frame 1 as designed in view of occupant protection. If the curved portion of the rear axle suspension portion is assumed to be a collapsed portion Z at that position, a balance between a strong portion and a weak portion is intentionally provided on the side frame 1 due to the load applied to the rear side of the side frame 1. Need to be done, often in FIG.
In order to provide a strong portion at the portion (2), as shown in FIG. 12, a line hose 4 is fixed to the side of the closed section of the side frame 1, particularly to the side of the upper section steel 2 on the tension side.

尚、第11図で示すように、後突時にサイドフレーム1
に衝撃荷重Pが加わると下向きに曲げモーメントMが作
用する。これにより、塑性変形は上側型鋼2の上面は引
張側となり下側型鋼3の下面は圧縮側となる。
In addition, as shown in FIG.
When an impact load P is applied to the plate, a bending moment M acts downward. Thereby, in the plastic deformation, the upper surface of the upper mold steel 2 is on the tensile side and the lower surface of the lower mold steel 3 is on the compressive side.

<考案が解決しようとする課題> 上記従来のサイドフレーム1の上側型鋼2と下側型鋼
3の溶接Wの位置を後突時に発生する歪みの引張側と圧
縮側の一定位置で実施しており、耐衝撃荷重はサイドフ
レーム1の全長に渡って同じである。その場合、崩壊部
所Zの制御はリィンホース4による補強範囲lの大きさ
で行っている。そのため、崩壊部所Zの制御が難しいこ
とと、リィンホース4の追加により重量が増大し、かつ
部品点数を増加する問題がある。
<Problem to be Solved by the Invention> The position of the welding W of the upper die 2 and the lower die 3 of the above-mentioned conventional side frame 1 is carried out at fixed positions on the tension side and the compression side of the strain generated at the time of a rear collision. The impact resistance is the same over the entire length of the side frame 1. In this case, the control of the collapse site Z is performed by the size of the reinforcement range 1 by the line hose 4. Therefore, there is a problem that it is difficult to control the collapsing portion Z, and that the weight increases and the number of parts increases due to the addition of the line hose 4.

<課題を解決するための手段> 本考案は、上記従来の問題点を解決するためになされ
たもので、その特徴とする構成は、下向きコの字状断面
の上側型鋼の開口端の側壁内側に上向きコの字状断面の
下側型鋼の開口端の側壁外側を重合し、この重合部を
上,下側型鋼の長手方向に溶接して箱形断面を構成する
自動車のサイドフレームにおいて、前記サイドフレーム
のリヤ側における重合部の溶接位置を、前記サイドフレ
ームのリヤ側の特定位置では後突時に衝突荷重が加わっ
た際に上側型鋼の上面が塑性変形の引張側となる上側型
鋼の側壁上面側に片寄らせ、その他の位置では下側型鋼
の下面が塑性変形の圧縮側となる下側型鋼の側壁下面側
に片寄らせたことを特徴とするものである。
<Means for Solving the Problems> The present invention has been made to solve the above-mentioned conventional problems, and the feature of the invention is that the inside of the side wall of the open end of the upper mold steel having a downward U-shaped cross section is provided. The side wall outside of the open end of the lower mold steel having an upward U-shaped cross section is superimposed on the outer side wall, and this overlapped portion is welded in the longitudinal direction of the upper and lower mold steels to form a box-shaped cross section. The welding position of the overlapped portion on the rear side of the side frame is set at a specific position on the rear side of the side frame. Side, and at other positions, the lower surface of the lower mold steel is biased toward the lower surface of the side wall of the lower mold steel which is the compression side of plastic deformation.

また、サイドフレームのリヤ側の、後軸懸架部分の湾
曲した部位における重合部の溶接位置を、上側型鋼の上
面が塑性変形の引張側となる上側型鋼の側壁上面側に片
寄らせ、前記後軸支懸架部分の湾曲した部位の前後を下
側型鋼の下面が塑性変形の圧縮側となる下側型鋼の側壁
下面側に片寄らせたことを特徴とするものである。
Further, the welding position of the overlapped portion at the curved portion of the rear shaft suspension portion on the rear side of the side frame is biased toward the upper surface of the side wall of the upper mold steel where the upper surface of the upper mold steel is the tensile side of plastic deformation, and The front and rear portions of the curved portion of the suspension portion are offset toward the lower surface of the side wall of the lower mold steel where the lower surface of the lower mold steel is on the compression side of plastic deformation.

<作用> 本考案は上記の構成により、後突時に衝突荷重が加わ
った際に、引張側に溶接位置を片寄らせた部位では圧縮
側が弱い部分の崩壊部所となり、圧縮側へ溶接位置を片
寄らせた部位では圧縮側が強くなり、この溶接位置を定
めることにより、崩壊部所が容易に制御することができ
る。
<Operation> In the present invention, when a collision load is applied at the time of a rear collision, the welding position is shifted to the tensile side when the collision load is applied at the time of the rear collision. The compression side becomes strong at the part where it is set, and by determining this welding position, the collapsed part can be easily controlled.

<実施例> 以下本考案の実施例を図面に基づいて説明する。第1
図において、1はサイドフレームである。このサイドフ
レーム1は、下向きコの字状断面の上側型鋼2と上向き
コの字状断面の下側型鋼3とからなり、上側型鋼2の開
口端の側壁内側に下側型鋼3の開口端の側壁外側を重合
し、この重合部を上,下側型鋼2,3の長手方向に溶接し
て箱形断面を構成したものである。
An embodiment of the present invention will be described below with reference to the drawings. First
In the figure, reference numeral 1 denotes a side frame. The side frame 1 is composed of an upper die steel 2 having a downward U-shaped cross section and a lower steel die 3 having an upward U-shaped cross section. The open end of the lower die steel 3 is provided inside the side wall of the open end of the upper die steel 2. The outside of the side wall is overlapped, and this overlapped portion is welded in the longitudinal direction of the upper and lower mold steels 2 and 3 to form a box-shaped cross section.

前記サイドフレーム1のリヤ側は、後突時に壊す必要
がある崩壊部所の部位においては、後突時に衝突荷重が
加わった際の曲げモーメントにより上側型鋼2の上面が
塑性変形の引張側となる上側型鋼2の側壁上面側に前記
重合部の溶接位置を片寄らせ、前記崩壊部所の部位以外
の他の部位は下側型鋼3の下面が塑性変形の圧縮側とな
る下側型鋼3の側壁下面側に前記重合部の溶接位置を片
寄らせて箱形断面を構成している。
On the rear side of the side frame 1, at the site of the collapsing portion that needs to be broken at the time of a rear collision, the upper surface of the upper mold steel 2 becomes the tensile side of plastic deformation due to the bending moment when a collision load is applied at the time of a rear collision. The welding position of the overlapped portion is offset to the upper surface of the side wall of the upper mold steel 2, and the other side of the lower mold steel 3 is a side wall of the lower mold steel 3 where the lower surface of the lower mold steel 3 is on the compression side of plastic deformation other than the collapsed portion. The welding position of the overlapped portion is shifted toward the lower surface to form a box-shaped cross section.

すなわち本考案では、前記サイドフレーム1のリヤ側
において、後突時に壊す必要がある第1図のD−D部位
の崩壊部所Zの部位においては第3図で示すように、後
突時に衝突荷重が加わった際に上側型鋼2の上面が塑性
変形の引張側となる上側型鋼2の側壁上面側に溶接W2の
位置を片寄らせ、また、崩壊部所Zの部位以外の第1図
のC−C部位の他の部位は第2図で示すように、下側型
鋼3側の下面が塑性変形の圧縮側となる下側型鋼3の側
壁下面側に溶接W1の位置を片寄らせたものである。
That is, according to the present invention, at the rear side of the side frame 1, as shown in FIG. 3, at the collapsing portion Z of the DD section in FIG. When a load is applied, the position of the weld W2 is shifted toward the upper surface of the side wall of the upper mold steel 2 where the upper surface of the upper mold steel 2 is the tensile side of plastic deformation, and C in FIG. As shown in FIG. 2, the other part of the -C part is one in which the position of the weld W1 is offset to the lower surface of the side wall of the lower mold steel 3 whose lower surface on the lower mold steel 3 side is the compression side of plastic deformation. is there.

前記第1図のD−D部位の崩壊部所Zの部位は、サイ
ドフレーム1のリヤ側の、後軸懸架部分の湾曲した部位
とし、第1図のC−C部位は、前記後軸懸架部分の湾曲
した部位の前後の部位とすることが望ましい。
The portion of the collapse portion Z of the DD portion in FIG. 1 is a curved portion of the rear shaft suspension portion on the rear side of the side frame 1, and the portion CC in FIG. 1 is the rear shaft suspension. It is desirable that the portion be located before and after the curved portion of the portion.

その結果、第4図で示すように耐衝撃荷重は、第11図
の従来のA−A部位と第1図の本考案のC−C部位とで
は本考案のC−Cの部位が大であり、これは従来のA−
A部位と本考案のC−C部位とを比較した場合は本考案
のC−C部位方が強度が大きいことを示している。また
崩壊部所Zである第11図の従来のB−B部位と第1図の
本考案のD−D部位とでは本考案のD−D部位が小さ
い。これは、従来のB−B部位と本考案のD−D部位と
を比較すると本考案のD−D部位の方が壊れ易いことを
意味するものである。
As a result, as shown in FIG. 4, the impact resistance load is large in the CC section of the present invention between the conventional AA section in FIG. 11 and the CC section in the present invention in FIG. Yes, this is the conventional A-
Comparison of the A portion with the CC portion of the present invention indicates that the CC portion of the present invention has higher strength. In addition, the DD portion of the present invention is smaller between the conventional BB portion of FIG. 11 which is the collapse site Z and the DD portion of the present invention of FIG. This means that the DD part of the present invention is more easily broken when the conventional BB part is compared with the DD part of the present invention.

上記の根拠についての実験結果を第5図乃至第10図に
よって説明する。第5図で示すような側壁を重合溶接し
ていない箱形断面材の場合、その両端より荷重Pを付与
すると両端に下向きの曲げモーメントが加わり、箱形断
面材の塑性変形は上面が引張側となり下面が圧縮側とな
る。
Experimental results on the above grounds will be described with reference to FIGS. 5 to 10. In the case of a box-shaped section material whose side walls are not overlap-welded as shown in Fig. 5, when a load P is applied from both ends, a downward bending moment is applied to both ends, and the plastic deformation of the box-shaped section material is such that the upper surface is on the tensile side. And the lower surface is on the compression side.

このとき、圧縮側の側壁に作用する応力は第6図で示
すように、a−a線部位,b−b線部位及びc−c線部位
の分布となる。そこで、前記各a−a線部位,b−b線部
位及びc−c線部位の側壁に作用する荷重P(耐衝撃荷
重)は、第7図の荷重−変位曲線で示すように圧縮側の
底辺から引張側に約7mm寄ったa−a線部位では第7図
のaで示すように約2.8トン荷重Pであり、圧縮側の底
辺から引張側に約12mm寄ったb−b線部位では第7図の
bで示すように約2.3トン荷重Pであり、さらに、圧縮
側の底辺から引張側に約17mm寄ったc−c線部位では第
7図のcで示すように約1.8トン荷重Pとなり、圧縮側
の底辺に近いa−a線部位の側壁に最大の荷重が作用さ
れ、b−b線部位及びc−c線部位と圧縮側の底辺から
引張側に向かって離間するにしたがって側壁に作用する
荷重Pが漸次減少する傾向となる。
At this time, the stress acting on the side wall on the compression side has a distribution of an aa line portion, a bb line portion, and a cc line portion as shown in FIG. Therefore, the load P (impact load) applied to the side walls of the aa line portion, the bb line portion and the cc line portion is, as shown by the load-displacement curve in FIG. At the a-a line portion deviated by about 7 mm from the base to the tension side, the load P is about 2.8 ton as shown in FIG. 7a, and at the bb line part deviated by about 12 mm from the compression-side base to the tension side. As shown in FIG. 7b, the load is about 2.3 ton load P. Further, at the cc line portion which is shifted from the base on the compression side by about 17 mm to the tension side, as shown in FIG. P, the maximum load is applied to the side wall of the a-a line portion near the bottom of the compression side, and as the distance from the bottom side of the bb line portion and the cc line portion and the compression side increases toward the tension side. The load P acting on the side wall tends to gradually decrease.

従って、箱形断面材の側壁の塑性変形は外側に向かっ
て変形され、第6図におけるa−a線部位では最大に座
屈変形し、b−b線部位点はa−a線部位より小さく、
また、c−c線部位はb−b線部位より小さくなり、圧
縮側の側壁が下脹れのように座屈変形する。すなわち、
塑性変形による崩壊部所は前記座屈変形する圧縮側の側
壁となる。
Therefore, the plastic deformation of the side wall of the box-shaped section member is deformed outward, the buckling deformation is maximized at the line aa in FIG. 6, and the point bb is smaller than the line aa. ,
Further, the cc line portion is smaller than the bb line portion, and the side wall on the compression side is buckled and deformed like a downward expansion. That is,
The collapsed portion due to plastic deformation is the side wall on the compression side where the buckling deformation occurs.

このような特性の原理に基づいて、下向きコの字状断
面の上側型鋼と上向きコの字状断面の下側型鋼との側壁
を、引張側と圧縮側との略中央部で重合し、この重合部
を溶接Wした第8図で示す箱形断面と、下向きコの字状
断面の上側型鋼と上向きコの字状断面の下側型鋼との側
壁を、圧縮側の底辺に近い部位で重合し、この重合部を
溶接Wした第9図で示す箱形断面とを前記のように荷重
Pを付与して曲げモーメントを加えた場合を比較実験し
た結果、側壁が塑性変形するときの荷重Pは第10図で示
す荷重−変位曲線となった。
Based on the principle of such characteristics, the side walls of the upper die steel having a downward U-shaped cross section and the lower die steel having an upward U-shaped cross section are superimposed at a substantially central portion between the tension side and the compression side, and this The side wall of the box-shaped section shown in Fig. 8 where the overlapped portion is welded W, the upper section steel having a downward U-shaped section, and the lower section steel having an upward U-shaped section are overlapped at a portion near the bottom side on the compression side. The overlapped section was welded W and the box-shaped cross section shown in FIG. 9 was subjected to a comparative experiment in which a load P was applied as described above and a bending moment was applied. As a result, the load P when the side wall was plastically deformed was determined. Is a load-displacement curve shown in FIG.

すなわち、第8図で示す箱形断面では、第10図におけ
る図8の場合の曲線で示すように、第9図の箱形断面よ
りも小さい荷重−変位曲線となり、しかも、第10図にお
ける図8の場合の曲線bで示すように、第8図の箱形断
面の圧縮側の底辺に最も近いa−a線部位よりもb−b
線部位の側壁が塑性変形するときの荷重Pが最大となっ
ている。その理由は、b−b線部位の部分が上側型鋼と
下側型鋼の側壁が重合溶接された2重壁構成であるた
め、その分だけ塑性変形させるための耐衝撃荷重及びエ
ネルギーが必要となるからである。
That is, the box-shaped cross section shown in FIG. 8 has a smaller load-displacement curve than the box-shaped cross section shown in FIG. 9, as shown by the curve in FIG. 8 in FIG. As shown by the curve b in the case of No. 8, the line bb is closer than the line aa closest to the base on the compression side of the box-shaped cross section in FIG.
The load P when the side wall of the line portion is plastically deformed is maximum. The reason is that the portion of the bb line portion has a double wall configuration in which the side walls of the upper and lower mold steels are overlap-welded, so that an impact load and energy are required for plastic deformation by that much. Because.

また、第9図で示す箱形断面では、第10図における図
9の場合の曲線のaで示すように、第9図の箱形断面の
圧縮側の底辺に最も近い溶接W部位のa−a線部位の側
壁が塑性変形するときの荷重Pが最大となっている。そ
の理由は、この部分が上側型鋼と下側型鋼の側壁が重合
溶接された2重壁構成であるため、その分だけ塑性変形
させるための耐衝撃荷重及びエネルギーが必要となるか
らである。
Further, in the box-shaped cross section shown in FIG. 9, as shown by the curve a in the case of FIG. 9 in FIG. 10, the a- of the weld W portion closest to the compression-side bottom of the box-shaped cross section in FIG. The load P when the side wall of the a-line portion undergoes plastic deformation is maximum. The reason is that since this portion has a double wall configuration in which the side walls of the upper die steel and the lower die steel are overlap-welded, an impact load and energy for plastic deformation are required accordingly.

さらに、第5図及びで第6図で示すような側壁を重合
溶接していない箱形断面の場合は、第10図における図6
の場合の曲線で示すように、第7図と同じ荷重−変位曲
線となる。
Further, in the case of a box-shaped cross section in which the side walls are not overlap-welded as shown in FIGS. 5 and 6, FIG.
As shown by the curve in the case of, the load-displacement curve is the same as that in FIG.

すなわち、部材の重なり合い部及び溶接Wの部位が圧
縮側に片寄っていればいるほど圧縮側の側壁を塑性変形
させるための耐衝撃荷重及びエネルギーは大きくなり、
逆に引張側に片寄っていればいるほど圧縮側の側壁を塑
性変形させるための耐衝撃荷重及びエネルギーは小さく
なることが解明された。
That is, the more the overlapping portion of the member and the portion of the weld W are more deviated to the compression side, the greater the impact load and energy for plastically deforming the side wall on the compression side,
Conversely, it has been clarified that the closer to the tension side, the smaller the impact load and energy required to plastically deform the side wall on the compression side.

そこで、本考案は、この実験結果による特性を利用
し、崩壊部所ZであるD−D部位では、上側型鋼2と下
側型鋼3の側壁の重合溶接W2の部位を第3図で示すよう
に、引張側に片寄らせ、圧縮側を下側型鋼の側壁のみと
し、第7図のaのように、大きな荷重作用により最大の
座屈変形をさせて壊れ易くした崩壊部所Zとし、その他
の壊れてはならない強度を保持したい部位は、上側型鋼
2と下側型鋼3の側壁の重合溶接W1の部位を第2図で示
すように、圧縮側に片寄らせ、圧縮側の側壁を重合溶接
した2重壁構成とし、リィンホースを用いることなく強
度を高くして前記崩壊部所Zの部位の制御を可能とした
ものである。
Therefore, the present invention utilizes the characteristics based on the results of this experiment, and shows in FIG. 3 the portion of the overlap welding W2 on the side walls of the upper die steel 2 and the lower die steel 3 in the D-D portion which is the collapse site Z. In addition, the collapse side is made to be deviated to the tension side, the compression side is made only of the side wall of the lower section steel, and as shown in FIG. As shown in FIG. 2, the portion of the upper welded steel 2 and the lower welded steel 3 where the welded portion W1 is desired to maintain the strength that should not be broken is biased toward the compression side as shown in FIG. A double wall configuration is adopted, and the strength is increased without using a lean hose so that the collapsed portion Z can be controlled.

<考案の効果> 以上のように本考案によると、下向きコの字状断面の
上側型鋼と上向きコの字状断面の下側型鋼の上下2部材
の側壁を重合溶接して箱形断面とするサイドフレームに
おいて、曲げモーメントが加わったときの崩壊部所とす
る部位とその他の強度を保持したい部位とを、曲げモー
メントが加わったときの塑性変形の引張側並びに圧縮側
に重合溶接位置を片寄らせるだけで塑性変形する圧縮側
の側壁の耐衝撃荷重及びエネルギーを大小変更して崩壊
点部位を制御するものであるから、従来のように崩壊部
所の部位以外にリィンホースの追加を不要とし、崩壊部
所の部位を容易に設定することができる。また、前記リ
ィンホースの排除により重量の軽減並びに部品点数の削
減が得られる。
<Effects of the Invention> As described above, according to the present invention, the upper and lower sidewalls of the upper die steel having a downward U-shaped cross section and the lower die steel having an upward U-shaped cross section are overlap-welded to form a box-shaped cross section. In the side frame, the part to be the collapsed part when the bending moment is applied and the part that wants to maintain the other strength are shifted the overlap welding position to the tensile side and the compression side of the plastic deformation when the bending moment is applied Since the impact point and energy of the side wall on the compression side, which is plastically deformed alone, are changed in magnitude, the collapse point is controlled, so that it is not necessary to add a line hose other than the collapse site as in the past, and the collapse The part can be easily set. In addition, the elimination of the lean hose can reduce the weight and the number of parts.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本考案の要部斜視図、第2図は第1図C−C線
断面図、第3図は第1図D−D線断面図、第4図は本考
案と従来構造との耐衝撃荷重−荷重点変位の関係を示す
比較曲線図、第5図、第6図、第7図、第8図、第9図
及び第10図は本考案の特性の原理を示す実験説明図、第
11図は従来構造の斜視図、第12図は第11図A−A線断面
図、第13図は第11図B−B線断面図である。 1…サイドフレーム、2…上側型鋼、3…下側型鋼、W
1,W2…溶接の部位。
FIG. 1 is a perspective view of a main part of the present invention, FIG. 2 is a sectional view taken along the line CC of FIG. 1, FIG. 3 is a sectional view taken along the line DD of FIG. 1, and FIG. Fig. 5, Fig. 6, Fig. 7, Fig. 8, Fig. 9, Fig. 9 and Fig. 10 show experimental curves illustrating the principle of the characteristics of the present invention. Figure, No.
11 is a perspective view of a conventional structure, FIG. 12 is a sectional view taken along the line AA of FIG. 11, and FIG. 13 is a sectional view taken along the line BB of FIG. 1 ... side frame, 2 ... upper section steel, 3 ... lower section steel, W
1, W2 ... Welded part.

───────────────────────────────────────────────────── フロントページの続き (72)考案者 土田 弘利 神奈川県横須賀市田浦港町無番地 関東 自動車工業株式会社内 (56)参考文献 実開 昭63−89384(JP,U) ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hirotoshi Tsuchida No address at Taura Port Town, Yokosuka City, Kanagawa Prefecture Kanto Auto Works, Ltd.

Claims (2)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】下向きコの字状断面の上側型鋼の開口端の
側壁内側に上向きコの字状断面の下側型鋼の開口端の側
壁外側を重合し、この重合部を上,下側型鋼の長手方向
に溶接して箱形断面を構成する自動車のサイドフレーム
において、 前記サイドフレームのリヤ側における重合部の溶接位置
を、前記サイドフレームのリヤ側の特定位置では後突時
に衝突荷重が加わった際に上側型鋼の上面が塑性変形の
引張側となる上側型鋼の側壁上面側に片寄らせ、その他
の位置では下側型鋼の下面が塑性変形の圧縮側となる下
側型鋼の側壁下面側に片寄らせたことを特徴とする自動
車のサイドフレーム構造。
1. An outer side wall of an open end of a lower U-shaped steel section having an upwardly U-shaped cross section is superimposed on an inner side wall of an open end of an upper type steel section having a downwardly U-shaped cross section. In a side frame of an automobile having a box-shaped cross-section welded in the longitudinal direction, a collision load is applied at a rear end of the side frame at a specific position on the rear side of the side frame at the time of a rear collision. When the upper mold steel is pressed, the upper surface of the upper mold steel is biased toward the upper side of the side wall of the upper mold steel, which is the tensile side of plastic deformation. A side frame structure of an automobile characterized by being offset.
【請求項2】サイドフレームのリヤ側の、後軸懸架部分
の湾曲した部位における重合部の溶接位置を、上側型鋼
の上面が塑性変形の引張側となる上側型鋼の側壁上面側
に片寄らせ、前記後軸懸架部分の湾曲した部位の前後を
下側型鋼の下面が塑性変形の圧縮側となる下側型鋼の側
壁下面側に片寄らせた請求項1に記載の自動車のサイド
フレーム構造。
2. The welding position of the overlapped portion at the curved portion of the rear shaft suspension portion on the rear side of the side frame is offset toward the upper surface of the side wall of the upper mold steel in which the upper surface of the upper mold steel is the tensile side of plastic deformation. 2. The side frame structure of an automobile according to claim 1, wherein the front and rear portions of the curved portion of the rear shaft suspension portion are biased toward the lower surface of the side wall of the lower mold steel where the lower surface of the lower mold steel is on the compression side of plastic deformation.
JP1988095096U 1988-07-20 1988-07-20 Car side frame structure Expired - Fee Related JP2553455Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988095096U JP2553455Y2 (en) 1988-07-20 1988-07-20 Car side frame structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988095096U JP2553455Y2 (en) 1988-07-20 1988-07-20 Car side frame structure

Publications (2)

Publication Number Publication Date
JPH0216368U JPH0216368U (en) 1990-02-01
JP2553455Y2 true JP2553455Y2 (en) 1997-11-05

Family

ID=31319714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988095096U Expired - Fee Related JP2553455Y2 (en) 1988-07-20 1988-07-20 Car side frame structure

Country Status (1)

Country Link
JP (1) JP2553455Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3448882B2 (en) * 1992-10-26 2003-09-22 マツダ株式会社 Frame and car body structure
JP5299170B2 (en) * 2009-08-25 2013-09-25 トヨタ自動車株式会社 Body structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389384U (en) * 1986-12-01 1988-06-10

Also Published As

Publication number Publication date
JPH0216368U (en) 1990-02-01

Similar Documents

Publication Publication Date Title
JP4733702B2 (en) Vehicle crash box
US7100952B2 (en) Bumper beam having face with supported angled wall
JP4723942B2 (en) Vehicle shock absorber and vehicle shock absorption structure
JP3783546B2 (en) Vehicle side sill structure
US7237832B2 (en) Vehicle body side structure
JPH0210740B2 (en)
CA2920874A1 (en) Method and press-forming apparatus for manufacturing structural member for automotive body
JP2553455Y2 (en) Car side frame structure
JP3676491B2 (en) Shock absorbing member
JP4289130B2 (en) Front pillar reinforcement structure
KR20220067999A (en) Front side member for vehicle
KR101085821B1 (en) Front side member for vehicles
JPH0492719A (en) Side impact beam for vehicle
JP3025023B2 (en) Vehicle impact beam
WO2013105439A1 (en) Vehicle
JP3029514B2 (en) Aluminum alloy car door reinforcement
JPH0820297A (en) Bumper reinforcement
JP7364225B2 (en) Instrument panel reinforcement member
JP3211451B2 (en) Vehicle impact beam
UA127556C2 (en) Tunnel having integrated lateral reinforcements
JP3723289B2 (en) Guard beam for automobile door
JP6908204B2 (en) Front pillar outer
JP6613712B2 (en) Structural member for automobile body, method for manufacturing the same, automobile body, and impact energy absorbing method
CN110254518A (en) Centre-pillar structure
JPH077266Y2 (en) Car side member structure

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees