JP2550990B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery

Info

Publication number
JP2550990B2
JP2550990B2 JP62107989A JP10798987A JP2550990B2 JP 2550990 B2 JP2550990 B2 JP 2550990B2 JP 62107989 A JP62107989 A JP 62107989A JP 10798987 A JP10798987 A JP 10798987A JP 2550990 B2 JP2550990 B2 JP 2550990B2
Authority
JP
Japan
Prior art keywords
limn
aqueous electrolyte
battery
active material
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62107989A
Other languages
Japanese (ja)
Other versions
JPS63274059A (en
Inventor
雅明 横川
俊夫 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP62107989A priority Critical patent/JP2550990B2/en
Priority to GB8724998A priority patent/GB2196785B/en
Priority to DE3736366A priority patent/DE3736366C2/en
Priority to KR1019870012003A priority patent/KR960006425B1/en
Priority to US07/114,282 priority patent/US4828834A/en
Priority to FR8715017A priority patent/FR2606219B1/en
Publication of JPS63274059A publication Critical patent/JPS63274059A/en
Application granted granted Critical
Publication of JP2550990B2 publication Critical patent/JP2550990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、各種小型電子機器の電源として使用が期待
される充放電可能な非水電解液電池に関するものであ
る。
The present invention relates to a chargeable / dischargeable non-aqueous electrolyte battery expected to be used as a power source for various small electronic devices.

〔発明の概要〕[Outline of Invention]

本発明は、リチウム含有物を陰極活物質とする非水電
解液電池において、FeKα線を使用してX線回折を行っ
た時に回折角46.1゜における回折ピークの半値幅が1.1
〜2.1゜であるようなLiMn2O4を陽極活物質として選択的
に使用することにより、上記非水電解液電池の充放電特
性を向上することを可能とするものである。
The present invention relates to a non-aqueous electrolyte battery using a lithium-containing material as a cathode active material, which has a half-value width of 1.1 at a diffraction angle of 46.1 ° when X-ray diffraction is performed using FeKα rays.
By selectively using LiMn 2 O 4 having an angle of up to 2.1 ° as the positive electrode active material, it is possible to improve the charge / discharge characteristics of the non-aqueous electrolyte battery.

〔従来の技術〕[Conventional technology]

陰極活物質としてリチウムを使用し、電解液に有機電
解質を使用したいわゆる非水電解液電池は、自己放電が
少ない、電圧が高い、保存性に優れる等の利点を有して
おり、特に5〜10年の長期にわたる信頼性を有する電池
として、電子時計や種々のメモリーバックアップ用の電
源等して広く使用されている。
A so-called non-aqueous electrolyte battery using lithium as a cathode active material and an organic electrolyte as an electrolyte has advantages such as low self-discharge, high voltage, and excellent storage stability. As a battery with long-term reliability for 10 years, it is widely used as a power source for electronic clocks and various memory backups.

ところが、これら従来使用されている非水電解液電池
は一次電池であり、一度の使用でその寿命が尽きてしま
うため、経済性に改善の余地がある。
However, these conventionally used non-aqueous electrolyte batteries are primary batteries, and their lifespan is exhausted by one use, so there is room for improvement in economic efficiency.

そこで、近年種々の電子機器の飛躍的進歩とともに、
長時間便利にかつ経済的に使用できる電源として再充電
可能な非水電解液二次電池の出現が待たれており、多く
の研究が進められている。
In recent years, with the dramatic progress of various electronic devices,
A rechargeable non-aqueous electrolyte secondary battery has been awaited as a power source that can be conveniently and economically used for a long time, and much research has been conducted.

一般に、非水電解液二次電池の陰極活物質としては、
金属リチウム、リチウム合金(たとえばLi−Al合金)、
リチウムイオンをドーピングした導電性高分子(たとえ
ばポリアセチレンやポリピロール等)、さらにはリチウ
ムイオンを結晶中に混入した層間化合物等が用いられて
おり、電解液としては有機溶媒に電解質を溶解した非水
電解液が用いられている。
Generally, as a cathode active material of a non-aqueous electrolyte secondary battery,
Metallic lithium, lithium alloys (eg Li-Al alloys),
Conductive polymers doped with lithium ions (such as polyacetylene and polypyrrole) and intercalation compounds with lithium ions mixed into the crystal are used, and the electrolytic solution is non-aqueous electrolysis in which the electrolyte is dissolved in an organic solvent. Liquid is used.

一方、陽極活物質としては研究の結果各種の材料が提
案されており、代表的なものとしてはたとえば特開昭50
−54836号公報に記載されるようにTiS2、MoS2、NbSe2
V2O5等が挙げられる。
On the other hand, various materials have been proposed as a positive electrode active material as a result of research, and a typical example thereof is Japanese Patent Laid-Open No.
−54836, TiS 2 , MoS 2 , NbSe 2 ,
Examples include V 2 O 5 and the like.

これらの材料を用いた電池の放電反応は、陰極のリチ
ウムイオンが陽極活物質であるこれら材料の層間にイン
ターカーレーションすることによって進行し、逆に充電
する場合には上記材料の層間からリチウムイオンが陰極
ヘデインターカーレーションする。すなわち、陰極のリ
チウムイオンが陽極活物質の層間に出入りする反応を繰
返すことによって、充放電を繰返すことができる。
The discharge reaction of the battery using these materials proceeds by intercalation of the lithium ions of the cathode between the layers of these materials that are the anode active material, and in the case of charging in reverse, the lithium ions are discharged from the layers of the above materials. Deintercalates into the cathode. That is, charge and discharge can be repeated by repeating the reaction in which lithium ions of the cathode enter and leave the layers of the anode active material.

しかしながら、上述の陽極材料においては、充放電反
応を繰返すうちにリチウムイオンが次第にデインターカ
ーレーションされにくくなるため、放電容量が徐々に低
下し、サイクル寿命が短くなるという欠点があった。ま
た、これらの陽極材料は高価であるため、大容量の電池
を製造しようとするとコストが高くなり、二次電池の主
流となっているニッケル−カドミウム電池と比べても経
済上不利となる。
However, in the above-mentioned anode material, lithium ions gradually become less likely to be deintercalated during repeated charge / discharge reactions, so that the discharge capacity gradually decreases and the cycle life becomes short. In addition, since these anode materials are expensive, it is costly to manufacture a battery having a large capacity, which is economically disadvantageous as compared with nickel-cadmium batteries which are the mainstream of secondary batteries.

そこで、充放電サイクルにともなう放電容量の劣化が
少なく、サイクル寿命特性に優れ、さらに経済性にも優
れる陽極材料として、本願出願人はたとえば特願昭61−
257479号明細書において、LiMn2O4を主体とする陽極材
料を開示した。
Therefore, as an anode material having little deterioration in discharge capacity with charge / discharge cycles, excellent cycle life characteristics, and excellent economic efficiency, the applicant of the present invention has disclosed, for example, Japanese Patent Application No.
No. 257479 discloses an anode material mainly composed of LiMn 2 O 4 .

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上述のように、陽極材料としてLiMn2O4が開発された
ことにより、放電容量、サイクル寿命、経済性にはある
程度の改善がみられた。ところで、このLiMn2O4を利用
する電池反応は次式のように表される。
As described above, due to the development of LiMn 2 O 4 as the anode material, the discharge capacity, cycle life, and economic efficiency have been improved to some extent. By the way, the battery reaction using this LiMn 2 O 4 is represented by the following equation.

このLiMn2O4は、一般的には炭酸リチウムと二酸化マ
ンガンを1:4のモル比で混合し、800〜900℃で焼成する
ことにより調製される。しかしながら、このように調製
されたLiMn2O4を陽極活物質として電池を構成しても、
その充放電容量は上記反応式から理論的に算出される充
放電容量の30%程度にしか達しない。
This LiMn 2 O 4 is generally prepared by mixing lithium carbonate and manganese dioxide in a molar ratio of 1: 4 and calcining at 800 to 900 ° C. However, even if a battery is constructed by using LiMn 2 O 4 thus prepared as an anode active material,
The charge / discharge capacity reaches only about 30% of the charge / discharge capacity theoretically calculated from the above reaction formula.

そこで本発明は、充放電特性に優れるLiMn2O4を陽極
活物質として使用する非水電解電池を提供することを目
的とする。
Therefore, it is an object of the present invention to provide a non-aqueous electrolytic battery using LiMn 2 O 4 having excellent charge / discharge characteristics as an anode active material.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、LiMn2O4を陽極活物質とする非水電解
液電池の充放電容量を理論容量に近づけるべく種々検討
を重ねた結果、FeKα線を使用してX線回折を行った際
に、回折角46.1゜において回折ピークの半値幅が1.1〜
2.1゜であるようなLiMn2O4を上記非水電解液電池の陽極
活物質として使用すると、優れた充放電特性が得られる
ことを見出し、本発明に到ったものである。すなわち、
本発明にかかる非水電解液電池は、Liを主体とする負極
活物質と、LiMn2O4を主体とする陽極活物質と、非水電
解液とから成り、上記LiMn2O4は、FeKα線を使用したX
線回折において、回折角46.1゜における回折ピークの半
値幅が1.1〜2.1゜であることを特徴とするものである。
The present inventors have conducted various studies to bring the charge / discharge capacity of a non-aqueous electrolyte battery using LiMn 2 O 4 as an anode active material close to the theoretical capacity, and as a result, X-ray diffraction was performed using FeKα rays. At the diffraction angle of 46.1 °, the half-value width of the diffraction peak is 1.1-
The present inventors have found that excellent charge / discharge characteristics can be obtained by using LiMn 2 O 4 having an angle of 2.1 ° as the positive electrode active material of the above non-aqueous electrolyte battery, and have reached the present invention. That is,
The non-aqueous electrolyte battery according to the present invention is composed of a negative electrode active material mainly composed of Li, a positive electrode active material mainly composed of LiMn 2 O 4 , and a non-aqueous electrolytic solution, and the LiMn 2 O 4 is FeKα. X using a line
In line diffraction, the half width of the diffraction peak at a diffraction angle of 46.1 ° is 1.1 to 2.1 °.

本発明の非水電解液電池の陽極活物質として用いられ
るLiMn2O4は、たとえば炭酸リチウムと二酸化マンガン
を空気中で焼成することにより調製される。このとき、
焼成温度を調節することにより、X線回折において観測
される回折ピークの半値幅が変化するわけである。本発
明においては、FeKα線を使用してX線回折を行った際
に、回折角46.1゜における回折ピークの半値幅が1.1〜
2.1であるLiMn2O4を選択的に使用するが、半値幅が上述
の範囲よりも小さいと、所望の放電容量が達成されな
い。
LiMn 2 O 4 used as the anode active material of the non-aqueous electrolyte battery of the present invention is prepared, for example, by firing lithium carbonate and manganese dioxide in air. At this time,
By adjusting the firing temperature, the half-value width of the diffraction peak observed in X-ray diffraction changes. In the present invention, when X-ray diffraction is performed using FeKα rays, the half-value width of the diffraction peak at a diffraction angle of 46.1 ° is 1.1 to
LiMn 2 O 4 of 2.1 is selectively used, but if the half-width is smaller than the above range, the desired discharge capacity cannot be achieved.

また、上記炭酸リチウムの代わりにヨウ化リチウムを
使用しても良く、また焼成を空気中ではなく不活性ガス
中で行っても良い。
Further, lithium iodide may be used instead of the above-mentioned lithium carbonate, and the firing may be performed in an inert gas instead of in air.

一方、陰極活物質として使用される物質としては、金
属リチウム、リチウム合金(たとえばLiAl、LiPb、LiS
n、LiBi、LiCd等)、リチウムイオンを結晶中に混入し
た層間化合物(たとえば、TiS2、MoS2等の層間にリチウ
ムをはさんだもの)等が使用可能である。
On the other hand, as materials used as the cathode active material, metallic lithium and lithium alloys (for example, LiAl, LiPb, LiS
n, LiBi, LiCd, etc.), an intercalation compound in which lithium ions are mixed in the crystal (for example, lithium sandwiched between layers such as TiS 2 , MoS 2 ) and the like can be used.

また、電解液にはリチウム塩を電解質とし、これを有
機溶剤に溶解した非水電解液が使用される。ここで、有
機溶剤としては、1,2−ジメトキシエタン、1,2−ジエト
キシエタン、γ−ブチロラクトン、テトラヒドロフラ
ン、2−メチルテトラヒドロフラン、1,3−ジオキソラ
ン、4−メチル−1,3−ジオキソラン等の単独または2
種以上の混合溶剤が使用できる。
Further, as the electrolytic solution, a non-aqueous electrolytic solution in which a lithium salt is used as an electrolyte and this is dissolved in an organic solvent is used. Here, as the organic solvent, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, etc. Alone or 2
Mixtures of more than one solvent can be used.

電解質としては、LiClO4、LiAsF6、LiPF6、LiBF4、Li
B(C6H5の1種または2種以上を混合したもの等が
使用可能である。
As the electrolyte, LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , Li
It is possible to use one or a mixture of two or more of B (C 6 H 5 ) 4 .

〔作用〕[Action]

FeKα線を使用してX線回折を行った時に、回折角46.
1゜におけるピークの半値幅が1.1〜2.1゜であるようなL
iMn2O4を選択的に非水電解液電池の陽極活物質として使
用することにより、理論充放電容量を90%以上という高
い充放電容量を確保することが可能である。
When X-ray diffraction was performed using FeKα rays, the diffraction angle was 46.
L such that the full width at half maximum of the peak at 1 ° is 1.1 to 2.1 °
By selectively using iMn 2 O 4 as the positive electrode active material of the non-aqueous electrolyte battery, it is possible to secure a high charge / discharge capacity of 90% or more of the theoretical charge / discharge capacity.

〔実施例〕〔Example〕

以下、本発明を具体的な実験例にもとづき、図面を参
照しながら説明する。
Hereinafter, the present invention will be described based on specific experimental examples with reference to the drawings.

第1の実施例 本実施例は、LiMn2O4をいろいろな焼成温度にて調製
し、これらを用いていわゆるボタン型の電池をそれぞれ
作成し、これらの充放電特性に調べたものである。
First Example In this example, LiMn 2 O 4 was prepared at various firing temperatures, so-called button-type batteries were prepared using these, and the charge and discharge characteristics thereof were investigated.

まず、非水電解液電池の陽極活物質として良好な特性
を有するLiMn2O4を得るため、LiMn2O4の焼成温度を種々
に変化させ、これによるX線回折ピークの変化および放
電容量の変化を調べた。
First, in order to obtain LiMn 2 O 4 having good characteristics as an anode active material of a non-aqueous electrolyte battery, the firing temperature of LiMn 2 O 4 was changed variously, and thereby the change of the X-ray diffraction peak and the discharge capacity I examined the changes.

LiMn2O4を調製するにあたっては、市販の二酸化マン
ガン86.9g(1モル)と炭酸リチウム18.5g(0.25モル)
とを乳鉢ですりつぶしながら十分に混合し、得られた化
合物をアルミナボート上、空気中で1時間焼成した。焼
成温度は430℃から900℃の間とした。
When preparing LiMn 2 O 4 , commercially available manganese dioxide 86.9 g (1 mol) and lithium carbonate 18.5 g (0.25 mol)
And were thoroughly mixed with each other in a mortar, and the obtained compound was baked on an alumina boat in the air for 1 hour. The firing temperature was between 430 ° C and 900 ° C.

次にこの生成物を冷却し、X線回折により分析した。
このX線回折はFeKα線を使用して行い、測定条件は管
電圧30kV、管電流15mA、測定範囲2,000cps、走査速度1
゜/分、記録紙速度5mm/分、発散スリット幅1゜、受光
スリット幅0.6mmである。物質の同定は、アメリカ材料
試験協会(ASTM)のカード・インデックスと照合するこ
とにより行い、上記生成物はLiMn2O4であることが確認
された。この一例として、460℃の焼成温度にて得られ
たLiMn2O4のX線回折スペクトルを第1図に示す。この
とき、回折角46.1゜における回折ピークの半値幅は2.08
゜であり、これは従来のLiMn2O4の一般的な製造方法に
おいて800〜900℃で焼成されたものよりも広い幅であ
る。なお、他の温度にて焼成されたLiMn2O4についての
半値幅のデータは、後述の表1にまとめて示す。
The product was then cooled and analyzed by X-ray diffraction.
This X-ray diffraction is performed using FeKα rays, and the measurement conditions are: tube voltage 30kV, tube current 15mA, measurement range 2,000cps, scanning speed 1
° / min, recording paper speed 5 mm / min, divergence slit width 1 °, light-receiving slit width 0.6 mm. The substance was identified by matching with the American Society for Testing and Materials (ASTM) card index, and the product was confirmed to be LiMn 2 O 4 . As an example of this, the X-ray diffraction spectrum of LiMn 2 O 4 obtained at a firing temperature of 460 ° C. is shown in FIG. At this time, the full width at half maximum of the diffraction peak at a diffraction angle of 46.1 ° is 2.08.
This is a wider range than that obtained by firing at 800 to 900 ° C. in the conventional general manufacturing method of LiMn 2 O 4 . The data of the full width at half maximum for LiMn 2 O 4 baked at other temperatures are collectively shown in Table 1 below.

次に、上述のようにして各焼成温度にて得られたLiMn
2O4を使用して、第2図に断面図で示すような非水電解
液電池を作成した。すなわち、上記LiMn2O4を86.4重量
部とり、これに8.6重量部のグラファイト、およびバイ
ンダーとして5重量部のポリテトラフルオロエチレン
(テフロン)を添加して陽極組成物とした。この陽極組
成物を直径15.5mm、厚さ0.44mm、重量0.213gの陽極ペレ
ット(5)に成形した。
Next, the LiMn obtained at each firing temperature as described above
Using 2 O 4 , a non-aqueous electrolyte battery as shown in the sectional view of FIG. 2 was prepared. That is, 86.4 parts by weight of the above LiMn 2 O 4 was taken, 8.6 parts by weight of graphite, and 5 parts by weight of polytetrafluoroethylene (Teflon) as a binder were added thereto to obtain an anode composition. This anode composition was molded into an anode pellet (5) having a diameter of 15.5 mm, a thickness of 0.44 mm and a weight of 0.213 g.

一方、市販の0.3mm厚のアルミニウム板を直径15.5mm
に打抜き、陰極罐(2)にスポット溶接により接着し、
その上に厚さ0.18mmのリチウム箔を直径15mmの円形に打
抜いたものを圧着して陰極ペレット(1)を作成し、陰
極を形成した。
On the other hand, a commercially available 0.3 mm thick aluminum plate has a diameter of 15.5 mm.
Punched out and bonded to the cathode can (2) by spot welding,
A 0.18 mm-thick lithium foil was punched into a circular shape having a diameter of 15 mm, and a cathode pellet (1) was prepared by pressing it to form a cathode.

次に、上記陰極上にセパレータ(3)を重ね、プラス
チック製のガスケット(4)をはめ込み、1モル/の
LiClO4を溶解した炭酸プロピレンと1,2−ジメトキシエ
タンの混合電解液を注入した。これに、先に作成した陽
極ペレット(5)を上記セパレート(3)に重ね、陽極
罐(6)を被せた後、開口部を密封するようにかしめて
シールを施し、外形20mm、厚さ1.6mmのいわゆるボタン
型の非水電解液電池を作成した。
Next, a separator (3) is placed on the cathode, and a plastic gasket (4) is fitted into the cathode (1).
A mixed electrolyte of propylene carbonate in which LiClO 4 was dissolved and 1,2-dimethoxyethane was injected. The anode pellet (5) prepared above is placed on the separate (3), covered with the anode can (6), and then caulked so as to seal the opening, and the outer diameter is 20 mm and the thickness is 1.6. A so-called button type non-aqueous electrolyte battery of mm was prepared.

上述の方法により、各焼成温度にて調製されたLiMn2O
4を使用し、それぞれ非水電解液電池A,B,C,D,E,F,G,H,
I,J,Kを作成した。これら各電池の名称と焼成温度との
対応は、表1に示すとおりである。
LiMn 2 O prepared at each firing temperature by the above method
4 , using non-aqueous electrolyte batteries A, B, C, D, E, F, G, H,
I, J, K were created. The correspondence between the name of each of these batteries and the firing temperature is as shown in Table 1.

このようにして得られた非水電解液電池A,B,C,D,E,F,
G,H,I,J,Kの充放電特性を調べた。
Non-aqueous electrolyte battery A, B, C, D, E, F, obtained in this way
The charge / discharge characteristics of G, H, I, J, K were investigated.

まず、これらの非水電解液電池に1kΩの抵抗を接続
し、終止電圧を2.0Vとして放電特性を測定した結果を第
3図に示す。この図において、縦軸は電池電圧(V)、
横軸は放電時間(Hr)を表す。この第3図から平均放電
電圧値を読みとって平均放電電流値に換算し、さらに終
止電圧に達するまでの放電持続時間を乗ずると、放電容
量をアンペア時容量(この測定系では1kΩの抵抗を使用
しているので、単位はmAHとなる。)として算出するこ
とができる。表1には、このようにして求めた放電容量
を併記してある。
First, FIG. 3 shows the results of measuring discharge characteristics by connecting a resistance of 1 kΩ to these non-aqueous electrolyte batteries and setting the final voltage to 2.0 V. In this figure, the vertical axis represents the battery voltage (V),
The horizontal axis represents discharge time (Hr). By reading the average discharge voltage value from Fig. 3 and converting it to the average discharge current value, and multiplying it by the discharge duration until reaching the cutoff voltage, the discharge capacity is calculated as ampere hour capacity (1 kΩ resistor is used in this measurement system. Therefore, the unit is mAH.) Table 1 also shows the discharge capacities thus obtained.

次に、上述のように放電を起こした各電池に、4mAの
電流を流し、終止電圧を3.1Vとして充電特性を測定した
結果を第4図に示す。この図において、縦軸は電池電圧
(V)、横軸は充電時間(Hr)をそれぞれ表す。この第
4図、および前述の第3図において、各電池に対応する
曲線が平坦な部分(定電圧的に変化する部分)を多く有
していることからもわかるように、本発明にかかる非水
電界液電池の充放電特性は非常に安定している。これ
は、LiMn2O4層間へのリチウム・イオンのインターカー
レーションおよびデインターカーレーションが非常に速
やかに起こっている証拠であり、上述のようにして調製
されたLiMn2O4が陽極活物質として優れた特性を有して
いることがわかる。
Next, FIG. 4 shows the results of measuring the charging characteristics by applying a current of 4 mA to each battery discharged as described above and setting the final voltage to 3.1V. In this figure, the vertical axis represents the battery voltage (V) and the horizontal axis represents the charging time (Hr). As shown in FIG. 4 and FIG. 3 described above, the curves corresponding to the respective batteries have many flat portions (portions that change in a constant voltage), as shown in FIG. The charge / discharge characteristics of the water electrolyte solution battery are very stable. This is evidence that the intercalation and deintercalation of lithium ions between LiMn 2 O 4 layers occurs very quickly, and that LiMn 2 O 4 prepared as described above is the positive electrode active material. It can be seen that it has excellent characteristics as.

また、表1に記載の放電容量と焼成温度との関係を図
示すると、第5図のようになる。この図において、縦軸
は放電容量(mAH)、横軸は焼成温度(℃)を表す。以
上、表1、第3図および第5図から、20mAH以上の優れ
た放電容量を有し、実用に耐える電池はA,B,C,D,E,Fの
各電池であり、これらの陽極活物質であるLiMn2O4はX
線回折角46.1゜における回折ピークの半値幅がいずれも
1.1〜2.1゜の範囲にあることがわかる。しかも、この半
値幅はLiMn2O4の焼成温度により制御することが可能で
あり、その適正温度範囲は430〜520゜である。上述の範
囲よりも焼成温度が高い場合には放電容量が順次減少す
る傾向のあることがわかった。また、焼成温度が上述の
範囲よりも低くてもやはり放電容量は低下し、たとえば
焼成温度を400℃として調製されたLiMn2O4を使用した電
池Lでは、放電容量が19.1mAH(第5図参照)とかえっ
て低下していた。このときのLiMn2O4のX線回折スペク
トルは、第6図に示すとおりである。この図から、焼成
温度が400℃と低い場合には、未反応の炭酸リチウムお
よび二酸化マンガンが残存しており、所望の特性が達成
されないことがわかる。
Further, the relationship between the discharge capacity and the firing temperature shown in Table 1 is illustrated in FIG. In this figure, the vertical axis represents discharge capacity (mAH) and the horizontal axis represents firing temperature (° C). As described above, from Table 1, FIG. 3 and FIG. 5, the batteries that have an excellent discharge capacity of 20 mAH or more and can withstand practical use are A, B, C, D, E and F batteries, and their anodes The active material LiMn 2 O 4 is X
The full width at half maximum of the diffraction peak at the line diffraction angle of 46.1 ° is
It can be seen that it is in the range of 1.1 to 2.1 °. Moreover, this half-value width can be controlled by the firing temperature of LiMn 2 O 4 , and the appropriate temperature range is 430 to 520 °. It was found that when the firing temperature was higher than the above range, the discharge capacity tended to gradually decrease. Moreover, the discharge capacity is still reduced even if the firing temperature is lower than the above range. For example, in the battery L using LiMn 2 O 4 prepared at a firing temperature of 400 ° C., the discharge capacity is 19.1 mAH (see FIG. 5). Instead, it was decreasing. The X-ray diffraction spectrum of LiMn 2 O 4 at this time is as shown in FIG. From this figure, it can be seen that when the firing temperature is as low as 400 ° C., unreacted lithium carbonate and manganese dioxide remain, and the desired characteristics cannot be achieved.

第2の実施例 本実施例は、LiMn2O4を調製する際に、第1の実施例
に記載した炭酸リチウムの代わりにヨウ化リチウムを使
用し、また焼成を空気中で行う代わりに窒素雰囲気下で
行った例である。
Second Example In this example, in preparing LiMn 2 O 4 , lithium iodide was used in place of the lithium carbonate described in the first example, and nitrogen was used instead of firing in air. This is an example performed in an atmosphere.

まず、市販の二酸化マンガン50g(0.57モル)とヨウ
化リチウム39g(0.29モル)およびグラファイト5.2gと
を乳鉢ですりつぶしながら十分に混合し、得られた混合
物を3トン/cm2の圧力でペレット状に加圧成形した。こ
のペレットをアルミナボートにのせ、窒素雰囲気下、30
0℃で6時間焼成した。焼成後、生成物を冷却し、エチ
レングリコールおよびジメチルエーテルで逐次洗浄し
た。この生成物を、第1の実施例に記載の条件にてX線
回折により分析し、ASTMのカード・インデックスと照合
してLiMn2O4であることを確認した。このX線回折スペ
クトルを第7図に示す。回折角46.1゜におけるピークの
半値幅は1.57゜であった。この第7図では、第1図に現
れているピークの他に、グラファイトのピークが見られ
る。
First, 50 g (0.57 mol) of commercially available manganese dioxide, 39 g (0.29 mol) of lithium iodide and 5.2 g of graphite were thoroughly mixed while mashing in a mortar, and the obtained mixture was pelletized at a pressure of 3 ton / cm 2. Was pressure molded. Place the pellets on an alumina boat, and under a nitrogen atmosphere,
It was baked at 0 ° C. for 6 hours. After calcination, the product was cooled and washed successively with ethylene glycol and dimethyl ether. This product was analyzed by X-ray diffraction under the conditions described in the first example, and was confirmed to be LiMn 2 O 4 by collating with the ASTM card index. This X-ray diffraction spectrum is shown in FIG. The full width at half maximum of the peak at a diffraction angle of 46.1 ° was 1.57 °. In FIG. 7, in addition to the peaks appearing in FIG. 1, graphite peaks are seen.

次に、このLiMn2O4の95重量部にバインダーとして5
重量部のポリテトラフルオロエチレン(テフロン)を添
加し、陽極組成物とした。以下の非水電解液電池の組み
立ては、第1の実施例に記載の方法に準じて行い、電池
Mを作成した。この電池Mの放電容量は、第1の実施例
に記載の方法に準じて行った結果、23.1mAHという良好
なものであった。
Next, 5 parts by weight of a binder was added to 95 parts by weight of this LiMn 2 O 4.
By weight, polytetrafluoroethylene (Teflon) was added to obtain an anode composition. The following non-aqueous electrolyte battery was assembled according to the method described in the first example, and a battery M was prepared. The discharge capacity of this battery M was 23.1 mAH as a result of carrying out according to the method described in the first example.

第3の実施例 本実施例は、LiMn2O4を調製する際に、第1の実施例
に記載したように焼成を空気中で行う代わりに窒素雰囲
気下で行った例である。
Third Example This example is an example of preparing LiMn 2 O 4 in a nitrogen atmosphere instead of firing in air as described in the first example.

まず、市販の二酸化マンガン86.9g(1モル)と炭酸
リチウム18.5g(0.25モル)とを乳鉢ですりつぶしなが
ら十分に混合し、得られた混合物をアルミナボートにの
せ、窒素雰囲気下、450℃で1時間焼成した。この生成
物を、第1の実施例に記載の条件にてX線回折により分
析し、LiMn2O4であることを確認した。回折角46.1゜に
おけるピークの半値幅は1.60゜であった。
First, 86.9 g (1 mol) of commercially available manganese dioxide and 18.5 g (0.25 mol) of lithium carbonate were thoroughly mixed while crushing in a mortar, and the resulting mixture was placed on an alumina boat and heated at 450 ° C. under nitrogen atmosphere at 450 ° C. Burned for hours. This product was analyzed by X-ray diffraction under the conditions described in the first example, and was confirmed to be LiMn 2 O 4 . The full width at half maximum of the peak at a diffraction angle of 46.1 ° was 1.60 °.

以下の非水電解液電池の組み立ては、第1の実施例に
記載の方法に準じて行い、電池Nを作成した。この電池
Nの放電容量は、第1の実施例に記載の方法に準じて行
った結果、22.9mAHという良好なものであった。
The assembly of the following non-aqueous electrolyte battery was performed according to the method described in the first example to prepare a battery N. The discharge capacity of this battery N was 22.9 mAH as a result of carrying out according to the method described in the first example.

〔発明の効果〕〔The invention's effect〕

以上の説明からも明らかなように、本発明において
は、非水電解液二次電池の陽極活物質に使用されるLiMn
2O4の焼成温度を、実用上好適な放電容量を維持し得る
程度に従来よりも低く設定し、特に回折角46.1゜におけ
る回折ピークの半値幅を広めに設定しているので、これ
を用いて作成される電池の充放電特性を理論容量の90%
以上にまで著しく高めることが可能である。
As is clear from the above description, in the present invention, LiMn used as the anode active material of the non-aqueous electrolyte secondary battery
The firing temperature of 2 O 4 is set lower than before so that a practically suitable discharge capacity can be maintained, and in particular, the full width at half maximum of the diffraction peak at a diffraction angle of 46.1 ° is set wider, so this is used. 90% of theoretical capacity
It is possible to significantly increase the above.

また、LiMn2O4は比較的安価な物質であるため、陽極
活物質として従来使用されていたTiS2、MoS2、NbSe2、V
2O5等の高価な物質に比べて経済性に優れることはもち
ろん、製造過程におけるエネルギー節減も可能となる。
Moreover, since LiMn 2 O 4 is a relatively inexpensive substance, TiS 2 , MoS 2 , NbSe 2 , V
Not only is it more economical than expensive materials such as 2 O 5 , but it also enables energy savings in the manufacturing process.

【図面の簡単な説明】[Brief description of drawings]

第1図は二酸化マンガンと炭酸リチウムとを460℃で焼
成して得られたLiMn2O4のX線回折スペクトル図、第2
図は非水電解液電池の一構成例を示す概略断面図、第3
図は使用したLiMn2O4の回折ピークの半値幅の違いによ
る放電特性の違いを示す特性図、第4図は使用したLiMn
2O4の回折ピークの半値幅の違いによる充電特性の違い
を示す特性図、第5図は非水電解液電池の放電容量とLi
Mn2O4の焼成温度との関係を示す特性図、第6図は二酸
化マンガンと炭酸リチウムとを400℃で焼成して得られ
たLiMn2O4のX線回折スペクトル図、第7図は二酸化マ
ンガンとヨウ化リチウムとを300℃で焼成して得られたL
iMn2O4のX線回折スペクトル図である。 1……陰極ペレット 2……陰極罐 3……セパレータ 4……ガスケット 5……陽極ペレット 6……陽極罐
FIG. 1 is an X-ray diffraction spectrum of LiMn 2 O 4 obtained by firing manganese dioxide and lithium carbonate at 460 ° C.
FIG. 3 is a schematic cross-sectional view showing a configuration example of a non-aqueous electrolyte battery,
The figure shows the characteristics of the discharge characteristics of the used LiMn 2 O 4 due to the difference in the half-width of the diffraction peak.
Fig. 5 is a characteristic diagram showing the difference in charging characteristics due to the difference in the half width of the diffraction peak of 2 O 4 , Fig. 5 shows the discharge capacity and Li
Fig. 6 is a characteristic diagram showing the relationship with the firing temperature of Mn 2 O 4 , and Fig. 6 is an X-ray diffraction spectrum diagram of LiMn 2 O 4 obtained by firing manganese dioxide and lithium carbonate at 400 ° C. L obtained by firing manganese dioxide and lithium iodide at 300 ° C
It is an X-ray diffraction spectrum of iMn 2 O 4. 1 …… Cathode pellet 2 …… Cathode can 3 …… Separator 4 …… Gasket 5 …… Anode pellet 6 …… Anode can

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Liを主体とする負極活物質と、 LiMn2O4を主体とする陽極活物質と、 非水電解液とから成り、 上記LiMn2O4は、FeKα線を使用したX線回折において、
回折角46.1゜における回折ピークの半値幅が1.1〜2.1゜
であることを特徴とする非水電解液電池。
1. A negative electrode active material containing Li as a main component, an anode active material containing LiMn 2 O 4 as a main component, and a non-aqueous electrolyte, wherein the LiMn 2 O 4 is an X-ray using FeKα rays. In diffraction,
A non-aqueous electrolyte battery characterized in that the half-value width of the diffraction peak at a diffraction angle of 46.1 ° is 1.1 to 2.1 °.
JP62107989A 1986-10-29 1987-05-01 Non-aqueous electrolyte battery Expired - Fee Related JP2550990B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62107989A JP2550990B2 (en) 1987-05-01 1987-05-01 Non-aqueous electrolyte battery
GB8724998A GB2196785B (en) 1986-10-29 1987-10-26 Organic electrolyte secondary cell
DE3736366A DE3736366C2 (en) 1986-10-29 1987-10-27 Rechargeable galvanic element with organic electrolyte
KR1019870012003A KR960006425B1 (en) 1986-10-29 1987-10-29 Rechargeable organic electrolyte cell
US07/114,282 US4828834A (en) 1986-10-29 1987-10-29 Rechargeable organic electrolyte cell
FR8715017A FR2606219B1 (en) 1986-10-29 1987-10-29 RECHARGEABLE ORGANIC ELECTROLYTE CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62107989A JP2550990B2 (en) 1987-05-01 1987-05-01 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPS63274059A JPS63274059A (en) 1988-11-11
JP2550990B2 true JP2550990B2 (en) 1996-11-06

Family

ID=14473162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62107989A Expired - Fee Related JP2550990B2 (en) 1986-10-29 1987-05-01 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2550990B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824043B2 (en) * 1988-11-17 1996-03-06 松下電器産業株式会社 Manufacturing method of non-aqueous electrolyte secondary battery and its positive electrode active material
JP3009673B2 (en) * 1988-11-21 2000-02-14 富士電気化学株式会社 Non-aqueous electrolyte secondary battery
JPH0834101B2 (en) * 1989-05-12 1996-03-29 富士電気化学株式会社 Non-aqueous electrolyte secondary battery
JP2526750B2 (en) * 1991-07-30 1996-08-21 株式会社ユアサコーポレーション Lithium secondary battery
US5807646A (en) * 1995-02-23 1998-09-15 Tosoh Corporation Spinel type lithium-mangenese oxide material, process for preparing the same and use thereof
JP3606289B2 (en) * 1995-04-26 2005-01-05 日本電池株式会社 Cathode active material for lithium battery and method for producing the same

Also Published As

Publication number Publication date
JPS63274059A (en) 1988-11-11

Similar Documents

Publication Publication Date Title
KR960006425B1 (en) Rechargeable organic electrolyte cell
US5514490A (en) Secondary lithium battery using a new layered anode material
JPH08213015A (en) Positive active material for lithium secondary battery and lithium secondary battery
JP2002151072A (en) Positive electrode material and battery using it
JPH0757783A (en) Rechargeable lithium battery and its preparation
JP4207434B2 (en) Positive electrode active material and method for producing non-aqueous electrolyte battery
KR100837579B1 (en) Cathode active material, non-aqueous electrolyte cell and methods for preparation thereof
KR101115416B1 (en) Positive active material for rechargeable, method of preparing same, and rechargeable lithium battery including same
JP2003017060A (en) Positive electrode active material and non-aqueous electrolyte battery
JP4032744B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery using the same
JP2004063422A (en) Positive electrode active material and nonaqueous electrolytic battery
US6627351B1 (en) Non-aqueous electrolyte battery
JPH09298061A (en) Nonaqueous secondary battery
JP2550990B2 (en) Non-aqueous electrolyte battery
JPH10302766A (en) Lithium ion secondary battery
CA1290805C (en) Rechargeable organic electrolyte cell
KR101602419B1 (en) Cathode active material cathode comprising the same and lithium battery using the cathode
JP2004006293A (en) Positive electrode material, its manufacturing method, and battery using it
JP2611265B2 (en) Non-aqueous electrolyte secondary battery
JPH0945330A (en) Nonaqueous secondary battery
JP2002063904A (en) Positive electrode active material and nonaqueous electrolyte battery as well as their manufacturing method
JP2002184404A (en) Positive electrode material and nonaqueous electrolyte battery
JP3081981B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3173425B2 (en) Organic electrolyte secondary battery
JP2952367B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees