JPH09298061A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JPH09298061A
JPH09298061A JP9033464A JP3346497A JPH09298061A JP H09298061 A JPH09298061 A JP H09298061A JP 9033464 A JP9033464 A JP 9033464A JP 3346497 A JP3346497 A JP 3346497A JP H09298061 A JPH09298061 A JP H09298061A
Authority
JP
Japan
Prior art keywords
lithium
nickel
site
active material
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9033464A
Other languages
Japanese (ja)
Inventor
Takehito Mitachi
武仁 見立
Shumei Nishijima
主明 西島
Yoshihiro Tsukuda
至弘 佃
Kazuo Yamada
和夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP9033464A priority Critical patent/JPH09298061A/en
Priority to US08/810,346 priority patent/US5792574A/en
Priority to DE69705446T priority patent/DE69705446T2/en
Priority to EP97301439A priority patent/EP0794586B1/en
Publication of JPH09298061A publication Critical patent/JPH09298061A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery of a large discharge capacity, of no irregularity in charge/discharge characteristics, of reproducibility, of a small reduction of the discharge capacity by increase of charge/discharge cycles, and of excellent cycle characteristics. SOLUTION: A battery is composed of a positive electrode, a negative electrode, and nonaqueous ion conductor. In this case, active material of the positive electrode in this battery has a layered rock salt structure belonging to a space group of R-3m, and the electrode coutaius such lithium nickelate that an axial length, that is a lattice constant, in a hexagonal system determined by sort belt analysis of a diffraction pattern obtained by powder diffraction method using X-ray is 0.2870-0.2880nm for a-axis, and 1.4175-1.4210nm for c-axis, an occupancy rate of lithium at a site 3b is 0-0.07, an occupancy rate of nickel at a site 3a is 0-0.08, total of lithium occupying the sites 3a and 3b is 0.92-1.02, and that total of nickel occupying the sites 3a and 3b is 0.98-1.08.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、正極、負極、非水
系のイオン伝導体から成り、ニッケル酸リチウムを含む
正極およびリチウムを含む物質或いは、リチウムの挿入
・脱離の可能な物質、特に炭素、黒鉛を含む負極から成
る非水系二次電池に関する。
TECHNICAL FIELD The present invention relates to a positive electrode, a negative electrode, a non-aqueous ionic conductor, a positive electrode containing lithium nickel oxide and a substance containing lithium, or a substance capable of inserting and releasing lithium, particularly carbon. , A non-aqueous secondary battery comprising a negative electrode containing graphite.

【0002】[0002]

【従来の技術】電子機器等の小型、省電力化に伴って、
軽量、高電圧可能なリチウム等アルカリ金属を利用した
二次電池の研究開発が進んでいる。負極にリチウムなど
アルカリ金属を単体で用いた場合、充放電の繰り返し、
つまりアルカリ金属の溶解−析出過程により、金属の溶
解−析出面上にデンドライト(樹枝状結晶)が生成し、
成長することによりセパレータを貫通し、正極と接する
ことにより電池内部の短絡を誘発する問題があった。ア
ルカリ金属のかわりにアルカリ金属合金を二次電池用の
負極に用いると、単体の時に比べ、デンドライトの発生
が抑制され、充放電サイクル特性が向上することが判明
した。しかし、合金を使用しても、完全にデンドライト
が生成しなくなるわけではなく、電池内部の短絡が起こ
ることもある。近年になって、負極に、アルカリ金属や
その合金のような金属の溶解−析出過程或いは溶解−析
出−固体内拡散過程を利用する変わりに、アルカリ金属
イオンの吸収−放出過程を利用した炭素や導電性高分子
等の有機材料が開発された。これにより、アルカリ金属
やその合金を用いた場合に発生したデンドライトの生成
が原理上起こらなくなり、電池内部の短絡の問題が激減
するにいたり、現在では負極に炭素や黒鉛を用い、正極
にコバルト酸リチウムを用いたリチウムイオン電池が実
用化になっている。
2. Description of the Related Art With the miniaturization and power saving of electronic devices,
Research and development of secondary batteries that use lightweight and high-voltage alkaline metals such as lithium are underway. When an alkali metal such as lithium is used alone for the negative electrode, repeated charging and discharging,
That is, by the dissolution-precipitation process of the alkali metal, dendrites (dendritic crystals) are generated on the dissolution-precipitation surface of the metal.
There is a problem in that the growth penetrates the separator and contacts the positive electrode to induce a short circuit inside the battery. It has been found that when an alkali metal alloy is used instead of an alkali metal for a negative electrode for a secondary battery, the generation of dendrites is suppressed and the charge / discharge cycle characteristics are improved as compared with the case of a single substance. However, the use of the alloy does not completely prevent the generation of dendrite, and may cause a short circuit inside the battery. In recent years, instead of using a dissolution-precipitation process or a dissolution-precipitation-diffusion process of a metal such as an alkali metal or an alloy thereof for a negative electrode, carbon or carbon using an absorption-desorption process of an alkali metal ion is used. Organic materials such as conductive polymers have been developed. As a result, the generation of dendrites that occur when using alkali metals or their alloys will no longer occur in principle, and the problem of short circuits inside the battery will be drastically reduced.Currently, carbon or graphite is used for the negative electrode and cobalt oxide for the positive electrode. Lithium ion batteries using lithium have been put to practical use.

【0003】しかしながら、正極にコバルト酸リチウム
を用いた場合、コバルトが資源的に少なく、原料のコス
トが高くなるなどの問題があった。
However, when lithium cobalt oxide is used for the positive electrode, there are problems that the amount of cobalt is small and the raw material cost is high.

【0004】そこでより低コストで、資源的にもより豊
富なニッケルを用いたニッケル酸リチウムがジョン・バ
ニスター・グッドエナフら(特公昭63−59507号
公報)によって提案されて以来、注目されている。
Therefore, lithium nickelate using nickel, which is lower in cost and richer in resources, has been noted since it was proposed by John Bannister Goodenaf et al. (Japanese Patent Publication No. 63-59507).

【0005】ニッケル酸リチウムにさらに他の元素を添
加した複合酸化物を含む電極を用いた高電圧を有するリ
チウム二次電池が、特開昭62−90863号公報(A
xyz2で、Aはアルカリ金属、Mは遷移金属、Nは
アルミニウム、インジウム、錫であり、遷移金属の一部
をアルミニウム、インジウム、錫に置換した物質、x:
0.05〜1.10、y:0.85〜1.00、z:
0.001〜0.10)、特開昭62−264560号
公報(LiNixCo1-x2)、特開平4−17165
9号公報(リチウムの一部をアルカリ土類金属に置
換)、特開平5−101827号公報(ニッケルの一部
をマグネシウム、バナジウム、クロム、銅に置換)、特
開平5−283076号公報(ニッケルの一部をチタ
ン、バナジウム、マンガン、鉄に置換)、特開平6−1
24707号公報(ニッケルの一部を銅、銀、亜鉛に置
換)等に示されているごとく、提案されている。
A lithium secondary battery having a high voltage using an electrode containing a composite oxide in which another element is added to lithium nickelate is disclosed in JP-A-62-90863 (A).
x M y N z O 2 , A is an alkali metal, M is a transition metal, N is aluminum, indium, tin, and a substance in which a part of the transition metal is replaced with aluminum, indium, tin, x:
0.05-1.10, y: 0.85-1.00, z:
0.001 to 0.10), JP 62-264560 JP (LiNi x Co 1-x O 2), JP-A-4-17165
No. 9 (substitution of lithium with alkaline earth metal), JP-A-5-101827 (substitution of nickel with magnesium, vanadium, chromium, copper), JP-A-5-283076 (nickel). A part of the above is replaced with titanium, vanadium, manganese, and iron), JP-A-6-1.
As disclosed in Japanese Patent No. 24707 (substituting a part of nickel with copper, silver and zinc) and the like, it is proposed.

【0006】ニッケル酸リチウムの組成において、特開
平2−40861号公報にLiyNi2-y2(y:0.
84〜1.22)が提案され、特開平5−290851
号公報ではLixNiOy(x:1.15〜1.75、
y>0)を用いることにより容量の改善を行っている。
Regarding the composition of lithium nickelate, Japanese Patent Laid-Open No. 2-40861 discloses Li y Ni 2-y O 2 (y: 0.
84-1.22) is proposed, and is disclosed in Japanese Patent Laid-Open No. 5-290851.
In the publication, LixNiOy (x: 1.15 to 1.75,
The capacity is improved by using y> 0).

【0007】また物性的には、特開平5−290845
号公報、特開平6−60887号公報、特開平6−96
769号公報、特開平6−111822号公報のごとく
粉末X線回折パターンから得られる回折線のピーク強度
比を適正化することにより、また特開平5−28307
6号公報、特開平6−124707号公報のごとくニッ
ケル酸リチウムのニッケルの一部を他の元素によって置
換した物質についた六方晶系の格子定数(a軸とc軸)
を適正化することにより、特開平6−267539号公
報のごとく(003)面に関するピークの半価幅及びニ
ッケルの価数を適正化することにより放電容量、高率放
電、サイクル特性について改善する提案があった。
In terms of physical properties, Japanese Unexamined Patent Publication No. 5-290845.
JP-A-6-60887 and JP-A-6-96.
By optimizing the peak intensity ratio of the diffraction line obtained from the powder X-ray diffraction pattern as disclosed in JP-A-76928 and JP-A-6-111822.
6 and JP-A-6-124707, hexagonal lattice constants (a-axis and c-axis) of a substance obtained by substituting a part of nickel of lithium nickelate with another element.
Proposal to improve the discharge capacity, high rate discharge, and cycle characteristics by optimizing the half-value width of the peak and the nickel valence related to the (003) plane as disclosed in JP-A-6-267539. was there.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来の
ニッケル酸リチウムを用いた場合、充放電特性は初期の
充放電サイクルにおいては、放電容量が140mAh/
g程度得られるものの、まだ放電容量が小さく、充放電
特性にばらつきがあり、再現性に乏しい問題がある。さ
らに、充放電サイクル数の増加に伴い放電容量は著しく
低下し、充放電サイクルによる寿命は短いという課題が
あった。さらに、高温の充放電においてサイクル劣化が
激しいという課題があった。
However, when the conventional lithium nickel oxide is used, the charge and discharge characteristics are such that the discharge capacity is 140 mAh / in the initial charge and discharge cycle.
Although about g can be obtained, there is a problem that the discharge capacity is still small, the charge and discharge characteristics vary, and the reproducibility is poor. Further, there has been a problem that the discharge capacity is remarkably reduced as the number of charge / discharge cycles increases, and the life due to charge / discharge cycles is short. Further, there is a problem that cycle deterioration is severe during high temperature charge / discharge.

【0009】[0009]

【課題を解決するための手段】そこで上記問題点を解決
するために鋭意研究を行った結果、粉末X線回折パター
ンから得られるリチウム及びニッケルのサイトの占有
率、格子定数と放電容量、充放電サイクル特性に相関関
係があることを見いだし、以下に掲げる方法により問題
点の解決が可能であることを突き止めた。
Therefore, as a result of intensive studies to solve the above problems, the site occupancy of lithium and nickel obtained from the powder X-ray diffraction pattern, lattice constant and discharge capacity, charge and discharge We found that there is a correlation between the cycle characteristics, and found that the problems could be solved by the following methods.

【0010】本発明によれば、正極の活物質が、R−3
mの空間群に属した層状岩塩型構造を持ち、好ましくは
X線を用いた粉末回折法により得られた回折パターンを
リートベルト解析により求める方法から得られる、六方
晶系による軸長つまり格子定数がa軸では0.2870
〜0.2880nm、c軸では1.4175〜1.42
10nmであり、リチウムの3bサイトの占有率が0〜
0.07、ニッケルの3aサイトの占有率が0〜0.0
8であり、3aサイトと3bサイトを占有しているリチ
ウムの合計が0.92〜1.02、3aサイトと3bサ
イトを占有しているニッケルの合計が0.98〜1.0
8であるニッケル酸リチウムを含んだ電極である非水系
二次電池により上述の問題点は解決される。
According to the present invention, the positive electrode active material is R-3.
It has a layered rock-salt structure belonging to the space group of m, and is preferably obtained by the method of obtaining the diffraction pattern obtained by the powder diffraction method using X-rays by Rietveld analysis, that is, the axial length of the hexagonal system, that is, the lattice constant Is 0.2870 on the a-axis
~ 0.2880 nm, 1.4175 to 1.42 on c-axis
10 nm, the occupancy of lithium 3b site is 0 to
0.07, occupancy of nickel 3a site is 0 to 0.0
8, the total of lithium occupying the 3a site and the 3b site is 0.92 to 1.02, and the total of nickel occupying the 3a site and the 3b site is 0.98 to 1.0.
The above problem is solved by the non-aqueous secondary battery which is an electrode containing lithium nickel oxide which is No. 8.

【0011】ニッケル酸リチウムの基本的な組成式はL
iNiO2と書くことができる。この活物質を非水系二
次電池、特にリチウム二次電池として用いた場合、充放
電を行うことによりリチウムが挿入・脱離するために物
質中のリチウムの組成比は1〜0まで変化する。
The basic composition formula of lithium nickelate is L
It can be written as iNiO 2 . When this active material is used as a non-aqueous secondary battery, in particular, a lithium secondary battery, the composition ratio of lithium in the substance changes from 1 to 0 because lithium is inserted and released by charging and discharging.

【0012】ニッケル酸リチウムは六方晶系のR−3m
の空間群に属した層状岩塩型構造であり、基本的な構造
は図1に示している。酸素の立方最密充填の中でリチウ
ム、ニッケルともに6配位位置に存在している。さらに
NiO6八面体の酸素すべてが三方から共有されてNi
2層構造となり、層間の6配位のサイトにリチウムが
存在し、LiNiO2を形成する。ここで、酸素が占め
ているサイトが6cサイト、リチウムが占めているサイ
トが3aサイト、ニッケルが占めているサイトが3bサ
イトである。
Lithium nickelate is hexagonal R-3m.
It is a layered rock-salt type structure belonging to the space group, and its basic structure is shown in FIG. Both lithium and nickel are present in the hexacoordinated position in the cubic closest packing of oxygen. Furthermore, all the oxygen of the NiO 6 octahedron is shared by the three sides,
An O 2 layer structure is formed, and lithium is present at the 6-coordinate site between the layers to form LiNiO 2 . Here, the sites occupied by oxygen are 6c sites, the sites occupied by lithium are 3a sites, and the sites occupied by nickel are 3b sites.

【0013】本発明においては、ニッケル酸リチウムの
粉末X線回折法により得た回折パターンを用いてリート
ベルト解析することにより、格子定数、構造パラメータ
を精密化し、格子定数、各サイトの占有率を求める。
In the present invention, Rietveld analysis is performed using a diffraction pattern obtained by a powder X-ray diffraction method of lithium nickel oxide to refine the lattice constant and the structural parameter, and the lattice constant and the occupation rate of each site are calculated. Ask.

【0014】リートベルト解析は、X線、中性子線を用
いた粉末回折パターンを用い、この中に含まれている情
報を抽出するために、実測で得られた回折パターンと、
結晶構造モデルから予想される回折パターンとをフィテ
ィングすることにより、結晶構造に関するパラメーター
の精密化を行う方法である。
The Rietveld analysis uses a powder diffraction pattern using X-rays and neutron rays, and in order to extract the information contained therein, a diffraction pattern obtained by actual measurement,
This is a method for refining parameters relating to the crystal structure by fitting with a diffraction pattern expected from the crystal structure model.

【0015】実際には、各回折点に対して寄与する反射
について、構造モデルから求めた積分強度にピークの形
を近似する関数をかけ、和をとり、各回折点における回
折強度が実測で得られた回折強度にできる限り当てはま
るように、種々の構造パラメーターを非線形最小二乗法
により精密化していく。
In practice, for the reflections that contribute to each diffraction point, the integrated intensity obtained from the structural model is multiplied by a function that approximates the shape of the peak, and the sum is calculated to obtain the diffraction intensity at each diffraction point by actual measurement. Various structural parameters are refined by the nonlinear least squares method so as to fit the obtained diffraction intensity as much as possible.

【0016】本発明で使用される正極活物質のニッケル
酸リチウムは、好ましくはX線を用いた粉末回折法によ
り得られた回折パターンのリートベルト解析により得ら
れた、六方晶系対する格子定数はa軸では0.2870
〜0.2880nm、c軸では1.4175〜1.42
10nmである。a軸の格子定数が0.2870より小
さい、またはc軸の格子定数が1.4175より小さい
ときには、不純物が格子中に含まれており、好ましくな
い。a軸の格子定数が0.2880より大きい、または
c軸の格子定数が1.4210より大きいときには、電
極特性、特に充放電容量、サイクル特性の低下を招くの
で好ましくない。
The positive electrode active material lithium nickel oxide used in the present invention preferably has a lattice constant with respect to the hexagonal system obtained by Rietveld analysis of a diffraction pattern obtained by a powder diffraction method using X-rays. 0.2870 on the a-axis
~ 0.2880 nm, 1.4175 to 1.42 on c-axis
10 nm. When the a-axis lattice constant is smaller than 0.2870 or the c-axis lattice constant is smaller than 1.4175, impurities are included in the lattice, which is not preferable. When the a-axis lattice constant is larger than 0.2880 or the c-axis lattice constant is larger than 1.4210, the electrode characteristics, particularly the charge / discharge capacity and the cycle characteristics are deteriorated, which is not preferable.

【0017】リチウムとニッケルのサイトの占有率は、
リチウムの3bサイトの占有率(g1)が0〜0.0
7、ニッケルの3aサイトの占有率(g3)が0〜0.
08、好ましくは0.01〜0.08であり、3aサイ
ト(占有率g1)と3bサイト(占有率g2)を占有して
いるリチウムの合計(g1+g2=aLi)が0.92〜
1.02、3aサイト(占有率g3)と3bサイト(占
有率g4)を占有しているニッケルの合計(g3+g4
Ni)が0.98〜1.08であり、これらより3aサ
イトと3bサイトを占有しているリチウムとニッケルの
比(Li/Ni、(g1+g2)/(g3+g4))が0.
85〜1.04である。ニッケルの3aサイトの占有率
が0.01より小さいニッケル酸リチウムは合成が困難
である。リチウムの3bサイトの占有率が0.06より
大きい場合、またニッケルの3aサイトの占有率が0.
08より大きい場合、3aサイトと3bサイトを占有し
ているリチウムの合計が0.92〜1.02以外の場
合、3aサイトと3bサイトを占有しているニッケルの
合計が0.98〜1.08以外の場合、つまり3aサイ
トと3bサイトを占有しているリチウムとニッケルの比
が0.85〜1.04以外の場合ともに、リチウムと/
あるいはニッケルの異なったサイトへの移動(ニッケル
は3aサイト、リチウムは3bサイトへの移動)がすす
み、充放電特性の劣った結晶構造のニッケル酸リチウム
が増大し、好ましくない。さらに高温における充放電特
性よりリチウムとニッケルの比((g1+g2)/(g3
+g4)またはaLi/aNi)が0.9〜1.04が好ま
しく、さらに1〜1.04が好ましい。
The site occupancy of lithium and nickel is
Occupancy rate of lithium 3b site (g 1 ) is 0 to 0.0
7. Nickel 3a site occupancy (g 3 ) is 0 to 0.
08, preferably 0.01 to 0.08, and the total lithium (g 1 + g 2 = a Li ) occupying the 3a site (occupancy g 1 ) and the 3b site (occupancy g 2 ) is 0. .92-
1.02 Total of nickel occupying 3a site (occupancy g 3 ) and 3b site (occupancy g 4 ) (g 3 + g 4 =
a Ni ) is 0.98 to 1.08, and the ratio of lithium to nickel occupying the 3a site and the 3b site (Li / Ni, (g 1 + g 2 ) / (g 3 + g 4 )). Is 0.
85 to 1.04. It is difficult to synthesize lithium nickelate having a nickel 3a site occupancy of less than 0.01. When the occupancy of the lithium 3b site is greater than 0.06, and when the occupancy of the nickel 3a site is 0.
When it is larger than 08, the total of lithium occupying 3a site and 3b site is other than 0.92 to 1.02, and the total of nickel occupying 3a site and 3b site is 0.98 to 1.2. In other than 08, that is, when the ratio of lithium and nickel occupying 3a site and 3b site is other than 0.85 to 1.04,
Alternatively, nickel moves to different sites (nickel moves to 3a site, lithium moves to 3b site), and lithium nickel oxide having a crystal structure with poor charge / discharge characteristics increases, which is not preferable. The ratio of lithium to nickel ((g 1 + g 2 ) / (g 3
+ G 4 ) or a Li / a Ni ) is preferably 0.9 to 1.04, and more preferably 1 to 1.04.

【0018】BET法による比表面積が0.2〜10m
2/gのニッケル酸リチウムであればより好ましい。B
ET法による比表面積が0.2m2/gより小さい場
合、放電容量が小さく、10m2/gより大きい場合、
サイクル特性が好ましくない。さらに好ましくは0.2
〜6m2/gである。6m2/gより大きいと自己放電が
大きくなり好ましくない。
Specific surface area by BET method is 0.2-10 m
More preferably, it is 2 / g of lithium nickel oxide. B
When the specific surface area by the ET method is smaller than 0.2 m 2 / g, the discharge capacity is small, and when it is larger than 10 m 2 / g,
Cycle characteristics are not desirable. More preferably 0.2
~ 6 m 2 / g. When it is larger than 6 m 2 / g, self-discharge becomes large, which is not preferable.

【0019】上記の構造にすることにより、適度なリチ
ウムとニッケルが他サイトを占有し、結晶構造が安定化
するために放電容量が安定化し、放電容量の大きい、さ
らにサイクル特性の優れた特性を得ることができる。
With the above structure, appropriate lithium and nickel occupy the other sites, the crystal structure is stabilized, the discharge capacity is stabilized, the discharge capacity is large, and the cycle characteristics are excellent. Obtainable.

【0020】ニッケル酸リチウムは次のように製造する
ことができる。リチウム源であるリチウム化合物は炭酸
リチウム、水酸化リチウム、過酸化リチウム、酸化リチ
ウム、硝酸リチウム、硫酸リチウム、酢酸リチウム、安
息香酸リチウム、塩化リチウム、臭化リチウム、クエン
酸リチウム、蟻酸リチウム、ヨウ化リチウム、乳酸リチ
ウム、シュウ酸リチウム、ピルビン酸リチウム、ステア
リン酸リチウム、酒石酸リチウム等がある。ニッケル源
であるニッケル化合物は炭酸ニッケル、水酸化ニッケ
ル、オキシ水酸化ニッケル、酸化ニッケル、硝酸ニッケ
ル、硫酸ニッケル、酢酸ニッケル、安息香酸ニッケル、
塩化ニッケル、臭化ニッケル、クエン酸ニッケル、蟻酸
ニッケル、ヨウ化ニッケル、シュウ酸ニッケル、ステア
リン酸ニッケル、酒石酸ニッケル等を用いる。これらの
原料を組成比より過剰のリチウムを加えて混合し、酸素
雰囲気あるいは空気中で600℃から900℃の温度で
焼成する。混合した後、加圧成形し焼成することも可能
である。
Lithium nickelate can be manufactured as follows. The lithium compounds that are the lithium source include lithium carbonate, lithium hydroxide, lithium peroxide, lithium oxide, lithium nitrate, lithium sulfate, lithium acetate, lithium benzoate, lithium chloride, lithium bromide, lithium citrate, lithium formate, and iodide. Examples include lithium, lithium lactate, lithium oxalate, lithium pyruvate, lithium stearate, and lithium tartrate. The nickel compound as the nickel source is nickel carbonate, nickel hydroxide, nickel oxyhydroxide, nickel oxide, nickel nitrate, nickel sulfate, nickel acetate, nickel benzoate,
Nickel chloride, nickel bromide, nickel citrate, nickel formate, nickel iodide, nickel oxalate, nickel stearate, nickel tartrate, etc. are used. Lithium in excess of the composition ratio is added to and mixed with these raw materials, and the mixture is fired at a temperature of 600 to 900 ° C. in an oxygen atmosphere or air. It is also possible to perform pressure molding and firing after mixing.

【0021】ニッケル酸リチウムを活物質として用いた
正極は、上記のようにして得られるニッケル酸リチウム
と、導電材、結着材及び場合によっては、固体電解質等
を混合した合剤を用いて形成される。導電材には、カー
ボンブラック、アセチレンブラック、ケッチェンブラッ
ク等の炭素類や、黒鉛粉末(天然黒鉛、人造黒鉛)、金
属粉末、金属繊維等を用いることができるがこれに限定
されるものではない。結着材には、ポリテトラフルオロ
エチレン、ポリフッ化ビニリデン等のフッ素系ポリマ
ー、ポリエチレン、ポリプロピレン、エチレン−プロピ
レン−ジエンターポリマー等のポリオレフィン系ポリマ
ー、スチレンブタジエンゴム等を用いることができるが
これに限定されるものではない。この混合比は、活物質
100重量部に対して、導電材を1〜50重量部、結着
材を1〜30重量部とすることができる。導電材が1重
量部より小さいと、電極の抵抗あるいは分極等が大きく
なり放電容量が小さくなるため実用的な二次電池が作製
できない。導電材が50重量部より多い(混合する導電
材の種類により重量部は変わる)と電極内に含まれる活
物質量が減るため正極としての放電容量が小さくなる。
結着材は、1重量部より小さいと結着能力がなくなって
しまい、30重量部より大きいと、導電材の場合と同様
に、電極内に含まれる活物質量が減り、さらに、上記に
記載のごとく、電極の抵抗あるいは分極等が大きくなり
放電容量が小さくなるため実用的ではない。
A positive electrode using lithium nickel oxide as an active material is formed by using a mixture of lithium nickel oxide obtained as described above, a conductive material, a binder, and in some cases a solid electrolyte. To be done. As the conductive material, carbons such as carbon black, acetylene black and Ketjen black, graphite powder (natural graphite, artificial graphite), metal powder, metal fiber and the like can be used, but are not limited thereto. . As the binder, a fluoropolymer such as polytetrafluoroethylene or polyvinylidene fluoride, a polyolefin polymer such as polyethylene, polypropylene or ethylene-propylene-diene terpolymer, or a styrene-butadiene rubber can be used, but the binder is not limited thereto. It is not something that will be done. The mixing ratio can be 1 to 50 parts by weight of the conductive material and 1 to 30 parts by weight of the binder with respect to 100 parts by weight of the active material. When the amount of the conductive material is less than 1 part by weight, the resistance or polarization of the electrode increases and the discharge capacity decreases, so that a practical secondary battery cannot be manufactured. When the amount of the conductive material is more than 50 parts by weight (the weight part changes depending on the kind of the mixed conductive material), the amount of the active material contained in the electrode is reduced, so that the discharge capacity as the positive electrode becomes small.
If the binder is less than 1 part by weight, the binding ability will be lost, and if it is more than 30 parts by weight, the amount of the active material contained in the electrode will be reduced as in the case of the conductive material. As described above, the resistance or polarization of the electrode increases and the discharge capacity decreases, which is not practical.

【0022】上述の合剤を正極として成形するには、圧
縮されてペレット状にする方法、また合剤に適当な溶剤
を添加したペーストを集電体上に塗布し、乾燥、圧縮し
てシート状にする方法があるがこれに限定はされない。
To form the above-mentioned mixture as a positive electrode, it is compressed into pellets, or a paste prepared by adding a suitable solvent to the mixture is applied on a current collector, dried and compressed into a sheet. However, the method is not limited to this.

【0023】正極からまたは正極への電子の授受は集電
体を通して行われる。集電体としては、金属単体、合
金、炭素等が用いられる。例えば、チタン、アルミニウ
ム、ステンレス鋼等がある。また、銅、アルミニウムや
ステンレス鋼の表面にカーボン、チタン、銀を処理させ
たもの、これらの材料の表面を酸化したものも用いられ
る。形状は、箔の他、フィルム、シート、ネット、パン
チされたもの、ラス体、多孔質体、発泡体、繊維群の成
形体などが用いられる。厚みは1μm〜1mmのものが
用いられるが特に限定はされない。
The transfer of electrons from or to the positive electrode is performed through a current collector. As the current collector, a simple metal, an alloy, carbon or the like is used. For example, titanium, aluminum, stainless steel, etc. are available. In addition, those obtained by treating the surface of copper, aluminum, or stainless steel with carbon, titanium, and silver, and those obtained by oxidizing the surface of these materials are also used. As the shape, besides foil, a film, a sheet, a net, a punched product, a lath body, a porous body, a foamed body, a molded body of a fiber group, or the like is used. Although the thickness is 1 μm to 1 mm, it is not particularly limited.

【0024】負極としてはリチウム、リチウム合金又は
/及びリチウムを吸蔵・放出可能な物質を用いる。例え
ば、リチウム金属、リチウム/アルミ合金、リチウム/
ズズ合金、リチウム/鉛合金、ウッド合金等リチウム合
金類、さらに電気化学的にリチウムイオンをドープ・脱
ドープできる物質、例えば、導電性高分子(ポリアセチ
レン、ポリチオフェン、ポリパラフェニレン等)、熱分
解炭素、触媒の存在下で気相熱分解された熱分解炭素、
ピッチ、コークス、タール等から焼成した炭素、セルロ
ース、フェノール樹脂等の高分子より焼成した炭素など
や、リチウムイオンのインターカレーション/デインタ
ーカレーションの可能な黒鉛(天然黒鉛、人造黒鉛、膨
張黒鉛等)、リチウムイオンをドープ・脱ドープできる
無機化合物(WO2、MoO2等)等の物質単独或いはこ
れらの複合体を用いることができる。これらの負極活物
質のうち、熱分解炭素、触媒の存在下で気相熱分解され
た熱分解炭素、ピッチ、コークス、タール等から焼成し
た炭素、高分子より焼成した炭素などや、黒鉛(天然黒
鉛、人造黒鉛、膨張黒鉛等)が電池特性、特に安全性、
の面で好ましい二次電池を作製することができる。特
に、高電圧の二次電池を作製するには黒鉛を用いるとよ
い。
For the negative electrode, lithium, a lithium alloy, and / or a substance capable of inserting and extracting lithium is used. For example, lithium metal, lithium / aluminum alloy, lithium /
Lithium alloys such as zuzu alloys, lithium / lead alloys, and wood alloys, as well as substances that can be electrochemically doped or dedoped with lithium ions, such as conductive polymers (polyacetylene, polythiophene, polyparaphenylene, etc.), pyrolytic carbon , Pyrolytic carbon that was pyrolyzed in the gas phase in the presence of a catalyst,
Carbon calcined from pitch, coke, tar, etc., carbon calcined from polymers such as cellulose and phenol resin, and graphite capable of intercalating / deintercalating lithium ions (natural graphite, artificial graphite, expanded graphite) Etc.), inorganic compounds (WO 2 , MoO 2, etc.) capable of doping and dedoping with lithium ions, etc., or a composite of these substances can be used. Of these negative electrode active materials, pyrolytic carbon, pyrolytic carbon vapor-decomposed in the presence of a catalyst, carbon fired from pitch, coke, tar, etc., carbon fired from a polymer, graphite (natural Graphite, artificial graphite, expanded graphite, etc.) have battery characteristics, especially safety,
From this viewpoint, a preferable secondary battery can be manufactured. In particular, graphite is preferably used for manufacturing a high voltage secondary battery.

【0025】負極活物質に導電性高分子、炭素、黒鉛、
無機化合物等を用いて負極とする場合、導電材と結着材
が添加されてもよい。導電材には、カーボンブラック、
アセチレンブラック、ケッチェンブラック等の炭素類
や、黒鉛粉末(天然黒鉛、人造黒鉛)、金属粉末、金属
繊維等を用いることができるがこれに限定されるもので
はない。結着材には、ポリテトラフルオロエチレン、ポ
リフッ化ビニリデン等のフッ素系ポリマー、ポリエチレ
ン、ポリプロピレン、エチレン−プロピレン−ジエンタ
ーポリマー等のポリオレフィン系ポリマー、スチレンブ
タジエンゴム等を用いることができるがこれに限定され
るものではない。
As the negative electrode active material, conductive polymer, carbon, graphite,
When the negative electrode is made of an inorganic compound or the like, a conductive material and a binder may be added. The conductive material is carbon black,
Carbons such as acetylene black and Ketjen black, graphite powder (natural graphite, artificial graphite), metal powder, metal fiber and the like can be used, but not limited thereto. As the binder, a fluoropolymer such as polytetrafluoroethylene or polyvinylidene fluoride, a polyolefin polymer such as polyethylene, polypropylene or ethylene-propylene-diene terpolymer, or a styrene-butadiene rubber can be used, but the binder is not limited thereto. It is not something that will be done.

【0026】またイオン伝導体は、例えば有機電解液、
固体電解質(高分子固体電解質、無機固体電解質)、溶
融塩等を用いることができ、この中でも有機電解液を好
適に用いることができる。有機電解液は有機溶媒と電解
質から構成される。有機溶媒として、非プロトン性有機
溶媒であるプロピレンカーボネート、エチレンカーボネ
ート、ブチレンカーボネート、ジエチルカーボネート、
ジメチルカーボネート、メチルエチルカーボネート、γ
−ブチロラクトン等のエステル類や、テトラヒドロフラ
ン、2−メチルテトラヒドロフランなどの置換テトラヒ
ドロフラン、ジオキソラン、ジエチルエーテル、ジメト
キシエタン、ジエトキシエタン、メトキシエトキシエタ
ン等のエーテル類、ジメチルスルホキシド、スルホラ
ン、メチルスルホラン、アセトニトリル、ギ酸メチル、
酢酸メチル等が挙げられ、これらの1種あるいは2種以
上の混合溶媒として使用される。また電解質として、過
塩素酸リチウム、ホウフッ化リチウム、リンフッ化リチ
ウム、6フッ化砒酸リチウム、トリフルオロメタンスル
ホン酸リチウム、ハロゲン化リチウム、塩化アルミン酸
リチウム等のリチウム塩が挙げられ、これらの1種或い
は2種以上を混合して使用される。前記で選ばれた溶媒
に電解質を溶解することによって電解液を調製する。電
解液を調製する際に使用する溶媒、電解質は、上記に掲
げたものに限定されない。
The ionic conductor is, for example, an organic electrolytic solution,
Solid electrolytes (polymer solid electrolytes, inorganic solid electrolytes), molten salts and the like can be used, and among these, organic electrolytes can be preferably used. The organic electrolyte is composed of an organic solvent and an electrolyte. As the organic solvent, propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, which are aprotic organic solvents,
Dimethyl carbonate, methyl ethyl carbonate, γ
-Esters such as butyrolactone, tetrahydrofuran, substituted tetrahydrofuran such as 2-methyltetrahydrofuran, dioxolane, diethyl ether, ethers such as dimethoxyethane, diethoxyethane, methoxyethoxyethane, dimethyl sulfoxide, sulfolane, methylsulfolane, acetonitrile, formic acid Methyl,
Methyl acetate and the like can be mentioned, and they are used as a mixed solvent of one kind or two or more kinds thereof. Examples of the electrolyte include lithium salts such as lithium perchlorate, lithium borofluoride, lithium phosphorofluoride, lithium hexafluoroarsenate, lithium trifluoromethanesulfonate, lithium halides and lithium chloroaluminate. One of these or Two or more kinds are mixed and used. An electrolyte solution is prepared by dissolving the electrolyte in the solvent selected above. The solvent and the electrolyte used when preparing the electrolytic solution are not limited to those listed above.

【0027】無機固体電解質には、Liの窒化物、ハロ
ゲン化物、酸素酸塩などが知られている。例えば、Li
3N、LiI、Li3N−LiI−LiOH、LiSiO
4、LiSiO4−LiI−LiOH、Li3PO4−Li
4SiO4、硫化リン化合物、Li2SiS3等がある。
Known inorganic solid electrolytes include Li nitrides, halides, and oxyacid salts. For example, Li
3 N, LiI, Li 3 N -LiI-LiOH, LiSiO
4 , LiSiO 4 -LiI-LiOH, Li 3 PO 4 -Li
4 SiO 4 , phosphorus sulfide compounds, Li 2 SiS 3 and the like.

【0028】有機固体電解質では、上記の電解質と電解
質の解離を行う高分子から構成された物質、高分子にイ
オン解離基を持たせた物質等がある。電解質の解離を行
う高分子として、例えば、ポリエチレンオキサイド誘導
体あるいは該誘導体を含むポリマー、ポリプロピレンオ
キサイド誘導体、該誘導体を含むポリマー、リン酸エス
テルポリマー等がある。その他に上記非プロトン性極性
溶媒を含有させた高分子マトリックス材料、イオン解離
基を含むポリマーと上記非プロトン性電解液の混合物、
ポリアクリロニトリルを電解液に添加する方法もある。
また、無機と有機固体電解質を併用する方法も知られて
いる。
Examples of the organic solid electrolyte include a substance composed of the above-mentioned electrolyte and a polymer that dissociates the electrolyte, a substance in which the polymer has an ionic dissociation group, and the like. Examples of the polymer that dissociates the electrolyte include a polyethylene oxide derivative or a polymer containing the derivative, a polypropylene oxide derivative, a polymer containing the derivative, and a phosphate ester polymer. In addition, a polymer matrix material containing the aprotic polar solvent, a mixture of a polymer containing an ionic dissociative group and the aprotic electrolytic solution,
There is also a method of adding polyacrylonitrile to the electrolytic solution.
In addition, a method of using an inorganic and an organic solid electrolyte in combination is also known.

【0029】これら電解液を保持するためのセパレータ
ーとしては、電気絶縁性の合成樹脂繊維、ガラス繊維、
天然繊維などの不織布、織布あるいはミクロポア構造材
料、またアルミナなどの粉末の成形体などが挙げられ
る。中でも合成樹脂のポリエチレン、ポリプロピレンな
どの不織布、ミクロポア構造体が品質の安定性などの点
から好ましい。これら合成樹脂の不織布・ミクロポア構
造体では電池が異常発熱した場合に、セパレーターが熱
により溶解し正極と負極の間を遮断する機能を付加した
ものもあり、安全性の観点からこれらも好適に使用する
ことができる。セパレーターの厚みは特に限定はない
が、必要量の電解液を保持することが可能で、かつ正極
と負極との短絡を防ぐ厚さがあればよく、通常0.01
〜1mm程度のものを用いることができ、好ましくは
0.02〜0.05mm程度である。
As a separator for holding these electrolytic solutions, electrically insulating synthetic resin fiber, glass fiber,
Examples include non-woven fabrics such as natural fibers, woven fabrics or micropore structure materials, and powder compacts such as alumina. Of these, non-woven fabrics of synthetic resins such as polyethylene and polypropylene, and micropore structures are preferable from the viewpoint of quality stability. Some of these synthetic resin non-woven fabrics / micropore structures have the function of separating the positive electrode and negative electrode by melting the separator due to heat when the battery abnormally heats up, and these are also suitable for safety. can do. The thickness of the separator is not particularly limited, but it is sufficient if it can hold a necessary amount of electrolytic solution and has a thickness that prevents a short circuit between the positive electrode and the negative electrode, and is usually 0.01.
Approximately 1 mm can be used, and preferably approximately 0.02 to 0.05 mm.

【0030】電池の形状はコイン、ボタン、シート、円
筒、角などいずれにも適用できる。コインやボタン形電
池のときは、正極や負極はペレット状に形成し、これを
缶中に入れ、絶縁パッキンを介して蓋をかしめる方法が
一般的である。
The shape of the battery can be any of coins, buttons, sheets, cylinders, corners and the like. In the case of a coin or button type battery, it is common to form the positive electrode and the negative electrode in the form of pellets, put them in a can, and crimp the lid with an insulating packing.

【0031】円筒、角形電池では、主にシート電極を缶
に挿入し、缶とシートを電気的に接続し、電解液を注入
し、絶縁パッキンを介して封口板を封口、あるいはハー
メチックシールにより封口板と缶を絶縁して封口し電池
を作る。このとき、安全素子を備えつけた安全弁を封口
板として用いることができる。安全素子には、例えば、
過電流防止素子として、ヒューズ、バイメタル、PTC
素子などがある。また、安全弁のほかに電池缶の内圧上
昇の対策として、ガスケットに亀裂を入れる方法、封口
板に亀裂を入れる方法、電池缶に切り込みを入れる方法
等を用いる。また、過充電や過放電対策を組み込んだ外
部回路を用いても良い。
In a cylindrical or prismatic battery, a sheet electrode is mainly inserted into a can, the can and the sheet are electrically connected, an electrolytic solution is injected, and a sealing plate is sealed with an insulating packing or a hermetic seal is used. Insulate the plate and the can and seal them to make a battery. At this time, a safety valve provided with a safety element can be used as a sealing plate. Safety elements include, for example:
Fuse, bimetal, PTC as overcurrent protection element
There are elements, etc. In addition to the safety valve, as a measure for increasing the internal pressure of the battery can, a method of cracking the gasket, a method of cracking the sealing plate, a method of making a cut in the battery can, etc. are used. Also, an external circuit incorporating measures against overcharge and overdischarge may be used.

【0032】ペレットやシート電極はあらかじめ乾燥、
脱水されていることが好ましい。乾燥、脱水方法として
は、一般的な方法を利用することができる。例えば、熱
風、真空、赤外線、遠赤外線、電子線及び低湿風等を単
独あるいは組み合わせて用いる方法がある。温度は50
〜380℃の範囲が好ましい。
Pellets and sheet electrodes are dried in advance,
It is preferably dehydrated. As a drying and dehydrating method, a general method can be used. For example, there is a method of using hot air, vacuum, infrared rays, far infrared rays, electron beams, low humidity air, etc., alone or in combination. Temperature is 50
The range of ~ 380 ° C is preferred.

【0033】[0033]

【発明の実施の形態】以下実施例により発明を具体的に
説明する。尚、リートベルト解析法は、公知の方法、例
えば "The Rietvelt Methode", ed. by R.A.Young, Ox
ford University Press, Oxford (1993)に記載された方
法によって行うことができ、以下の手順で行った。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to Examples. The Rietveld analysis method is a known method, for example, "The Rietvelt Methode", ed. By RAYoung, Ox.
It can be performed by the method described in ford University Press, Oxford (1993), and the procedure was as follows.

【0034】実際にリートベルト解析を行う際には、予
想した構造モデルを基にした計算パターンを実測回折パ
ターンに当てはめることにより行わねばならない。
When actually conducting the Rietveld analysis, it is necessary to apply the calculated pattern based on the predicted structural model to the actually measured diffraction pattern.

【0035】そのため、最初に構造モデルを作らなけれ
ばならない。この構造モデルのパラメーターには、1)
回折ピークの強度を調整するためのパラメーター(尺度
因子、選択配向パラメーター)、2)回折ピークの位置
に関するパラメーター(格子定数、ゼロ点シフト)、
3)プロファイルに関するパラメーター(半価幅パラメ
ーター)、4)構造に関するパラメーター(原子座標、
占有率、等方性熱振動パラメーター)、5)バックグラ
ウンドパラメーターがある。1)、2)、3)、5)に
関する初期値は実測X線回折パターンから得られる情報
により、得ることができる。4)の構造に関する初期値
は、LiNiO2試料の場合、結晶相の空間群はR−3
mであり、各々の構成原子は、Li−3aサイト、Ni
−3bサイト、O−6cサイトに存在している。
Therefore, a structural model must first be created. The parameters of this structural model are 1)
Parameters for adjusting the intensity of the diffraction peak (scale factor, selective orientation parameter), 2) Parameters relating to the position of the diffraction peak (lattice constant, zero point shift),
3) Parameters related to profile (half-width parameter), 4) Parameters related to structure (atomic coordinate,
Occupancy rate, isotropic thermal vibration parameter), and 5) background parameter. The initial values for 1), 2), 3), and 5) can be obtained from the information obtained from the measured X-ray diffraction pattern. As for the initial value regarding the structure of 4), the space group of the crystal phase is R-3 in the case of the LiNiO 2 sample.
m, and each constituent atom is a Li-3a site, Ni
-3b site and O-6c site.

【0036】以上述べた手順で初期値の設定をし、リー
トベルト解析を行う。その後、得られた解析結果の中か
ら、R因子が順調に低下するようにパラメーターを順次
設定し直し、精密化していく。
The Rietveld analysis is performed by setting the initial values according to the procedure described above. After that, the parameters are sequentially set again from the obtained analysis result so that the R factor is smoothly decreased, and the parameters are refined.

【0037】LiNiO2試料を解析する場合には、3
aサイトと3bサイトのリチウムとニッケルの置換が起
こりやすいことが考えられ、各サイトの占有率のパラメ
ーターの初期値としては、3aサイトのLi占有率、お
よび3bサイトのNi占有率が大きく、残りの部分に
は、3aサイトにNi、3bサイトにLiが存在するも
のとして占有率を設定し解析を行った。解析の終了は、
R因子を小さく、実測値と計算値の残差の値(Rwp値)
が10%程度以下になることを目安として、すべてのパ
ラメーターが物理的に適当と考えられる値に収束したと
きとした。以上により、格子定数及び各サイトの各原子
の占有率を求めた。その際に、統計的に予想される最良
のRwp値であるRe値を付記した。表記のない限り、電
極及び電池の評価は20℃で行った。
When analyzing a LiNiO 2 sample, 3
It is considered that substitution of lithium and nickel at the a site and the 3b site is likely to occur. In the portion, the occupancy was set assuming that Ni was present at the 3a site and Li was present at the 3b site, and analysis was performed. The end of analysis is
The R factor is small, and the residual value between the measured value and the calculated value (R wp value)
Was set to about 10% or less as a guide when all parameters converged to values physically considered appropriate. From the above, the lattice constant and the occupation rate of each atom at each site were obtained. At that time, the R e value which is the best statistically expected R wp value was added. Unless otherwise stated, evaluation of electrodes and batteries was performed at 20 ° C.

【0038】(実施例1) ・ニッケル酸リチウムの合成 水酸化リチウムと、オキシ水酸化ニッケル(NiOO
H)をリチウムとニッケルの比Li:Niが1.1:1
になるように秤量した後、乳鉢で混合し、100kg/
cm2の圧力をかけて、ペレットを作った。これを75
0℃で10時間、酸素雰囲気中で焼成し、活物質である
ニッケル酸リチウムを得ることができた。この活物質
の、X線源にCuKα線を用いた、粉末X線回折を行
い、上述に示したごとくリートベルト解析を行った。そ
の結果を表1に示す。さらに、粉末X線回折より求めら
れるパラメータI(003)/I(104)またはI
(104)/I(003)((003)面の強度と(1
04)面の強度比)、(003)面のピークに対する半
価幅、化学分析(ICP発光分光分析)により求めたL
i/Ni比、窒素吸着BET法により求めた比表面積も
表1に示す。
(Example 1) Synthesis of lithium nickel oxide Lithium hydroxide and nickel oxyhydroxide (NiOO)
H) has a Li: Ni ratio of Li: Ni of 1.1: 1.
To 100kg /
A pressure of cm 2 was applied to make pellets. This is 75
By firing at 0 ° C. for 10 hours in an oxygen atmosphere, lithium nickelate as an active material could be obtained. This active material was subjected to powder X-ray diffraction using CuKα ray as an X-ray source, and Rietveld analysis was performed as described above. Table 1 shows the results. Further, the parameter I (003) / I (104) or I obtained by powder X-ray diffraction
(104) / I (003) ((003) plane strength and (1
(04) intensity ratio), half width relative to (003) plane peak, L determined by chemical analysis (ICP emission spectroscopy)
Table 1 also shows the i / Ni ratio and the specific surface area obtained by the nitrogen adsorption BET method.

【0039】[0039]

【表1】 [Table 1]

【0040】・電極の作製 以上のようにして得られた活物質をアセチレンブラック
及びポリテトラフルオロエチレンと共にそれぞれ10
0:10:5の割合で乳鉢にて混合したのち、加圧成形
を行って、直径20mm、重量0.10gのペレットを
作製した。加圧成形時に、集電体として作用するチタン
メッシュも入れて作製した。チタンメッシュからチタン
線をスポット溶接することにより集電を取り、評価用の
電極とした。
Preparation of Electrode The active material obtained as described above was mixed with acetylene black and polytetrafluoroethylene for 10 times each.
After mixing in a mortar at a ratio of 0: 10: 5, pressure molding was performed to prepare pellets having a diameter of 20 mm and a weight of 0.10 g. A titanium mesh that acts as a current collector was also added during pressure molding. A titanium wire was spot-welded from the titanium mesh to collect current, and used as an electrode for evaluation.

【0041】・電極の評価 評価は、3極法を用い、対極および参照極にリチウムを
用いた。電解液には、1mol/lの過塩素酸リチウム
(LiClO4)を溶解したプロピレンカーボネートを
用いた。27.4mA/gの電流密度で初めに参照極の
リチウムに対して4.2Vまで充電を行い、続いて同じ
電流で2.7Vまで放電を行った。2回目以降も同じ電
位の範囲、同じ電流密度で充放電を繰り返した。
Evaluation of Electrode For evaluation, a three-pole method was used, and lithium was used for the counter electrode and the reference electrode. As the electrolytic solution, propylene carbonate in which 1 mol / l lithium perchlorate (LiClO 4 ) was dissolved was used. At a current density of 27.4 mA / g, the reference electrode lithium was first charged to 4.2 V, and then discharged to 2.7 V with the same current. Charge and discharge were repeated in the same potential range and the same current density after the second time.

【0042】その結果を表2に示す。さらに図4にも示
す。自己放電の評価のために、別の電極にて、上記の条
件で充放電を10回繰り返した後、充電を行い、20℃
にて30日放置した後の保持容量を測定し、容量保持率
を求めた。その結果を比表面積の関係として図5に示
す。
The results are shown in Table 2. Further shown in FIG. In order to evaluate self-discharge, after charging and discharging was repeated 10 times under the above conditions with another electrode, charging was performed at 20 ° C.
The storage capacity after standing for 30 days was measured to determine the capacity retention rate. The results are shown in FIG. 5 as the relationship of the specific surface area.

【0043】[0043]

【表2】 [Table 2]

【0044】(実施例2)焼成温度と時間を、900℃
で5時間にした以外は実施例1と同様に活物質を合成
し、実施例1と同様の方法でリートベルト解析を行って
得られた結果を表1に示す。さらに粉末X線回折より求
められるパラメータI(003)/I(104)または
I(104)/I(003)((003)面の強度と
(104)面の強度比)、(003)面のピークに対す
る半価幅、化学分析(ICP発光分光分析)により求め
たLi/Ni比、窒素吸着BET法により求めた比表面
積も表1に示す。
(Example 2) The firing temperature and time were set to 900 ° C.
Table 1 shows the results obtained by synthesizing the active material in the same manner as in Example 1 except that the heating time was 5 hours, and performing Rietveld analysis in the same manner as in Example 1. Furthermore, the parameters I (003) / I (104) or I (104) / I (003) (the intensity ratio of the (003) plane and the intensity of the (104) plane) obtained by powder X-ray diffraction, of the (003) plane Table 1 also shows the full width at half maximum with respect to the peak, the Li / Ni ratio determined by chemical analysis (ICP emission spectroscopy), and the specific surface area determined by the nitrogen adsorption BET method.

【0045】活物質とアセチレンブラック、ポリテトラ
フルオロエチレンを100:20:15の割合にした以
外は実施例1と同様に電極を作製した。
An electrode was prepared in the same manner as in Example 1 except that the active material, acetylene black and polytetrafluoroethylene were mixed in the ratio of 100: 20: 15.

【0046】電解液をエチレンカーボネートとジエチル
カーボネートとの1:1混合溶媒に1mol/lの過塩
素酸リチウムを溶解したものを用いた以外は実施例1と
同様に電極の評価を行った。その結果を表2に示す。さ
らに図4にも示す。自己放電の評価のために、別の電極
にて、上記の条件で充放電を10回繰り返した後、充電
を行い、20℃にて30日放置した後の保持容量を測定
し、容量保持率を求めた。その結果を比表面積の関係と
して図5に示す。
The electrodes were evaluated in the same manner as in Example 1 except that 1 mol / l of lithium perchlorate was dissolved in a 1: 1 mixed solvent of ethylene carbonate and diethyl carbonate as the electrolytic solution. The results are shown in Table 2. Further shown in FIG. In order to evaluate self-discharge, charging and discharging were repeated 10 times under the above conditions with another electrode, charging was performed, and the storage capacity after standing for 30 days at 20 ° C. was measured. I asked. The results are shown in FIG. 5 as the relationship of the specific surface area.

【0047】(実施例3)主発原料を過酸化リチウム
(Li22)と酸化ニッケル(NiO)にした以外は実
施例1と同様に活物質を合成し、実施例1と同様の方法
でリートベルト解析を行って得られた結果を表1に示
す。さらに粉末X線回折より求められるパラメータI
(003)/I(104)またはI(104)/I(0
03)((003)面の強度と(104)面の強度
比)、(003)面のピークに対する半価幅、化学分析
(ICP発光分光分析)により求めたLi/Ni比、窒
素吸着BET法により求めた比表面積も表1に示す。
Example 3 An active material was synthesized in the same manner as in Example 1 except that lithium peroxide (Li 2 O 2 ) and nickel oxide (NiO) were used as the main raw materials, and the same method as in Example 1 was used. The results obtained by conducting the Rietveld analysis in Table 1 are shown in Table 1. Further, a parameter I obtained by powder X-ray diffraction
(003) / I (104) or I (104) / I (0
03) (intensity ratio of (003) plane and intensity of (104) plane), half width to peak of (003) plane, Li / Ni ratio determined by chemical analysis (ICP emission spectroscopy), nitrogen adsorption BET method Table 1 also shows the specific surface area obtained by.

【0048】活物質とアセチレンブラック、ポリテトラ
フルオロエチレンを100:5:3の割合にした以外は
実施例1と同様に電極を作製した。
An electrode was prepared in the same manner as in Example 1 except that the active material, acetylene black and polytetrafluoroethylene were mixed in the ratio of 100: 5: 3.

【0049】電解液をプロピレンカーボネートとジエチ
ルカーボネートとの1:1混合溶媒に1mol/lのリ
ンフッ化リチウム(LiPF6)を溶解したものを用い
た以外は実施例1と同様に電極の評価を行った。その結
果を表2に示す。さらに図4にも示す。自己放電の評価
のために、別の電極にて、上記の条件で充放電を10回
繰り返した後、充電を行い、20℃にて30日放置した
後の保持容量を測定し、容量保持率を求めた。その結果
を比表面積の関係として図5に示す。
Electrodes were evaluated in the same manner as in Example 1 except that 1 mol / l of lithium phosphorus fluoride (LiPF 6 ) was dissolved in a 1: 1 mixed solvent of propylene carbonate and diethyl carbonate as the electrolytic solution. It was The results are shown in Table 2. Further shown in FIG. In order to evaluate self-discharge, charging and discharging were repeated 10 times under the above conditions with another electrode, charging was performed, and the storage capacity after standing for 30 days at 20 ° C. was measured. I asked. The results are shown in FIG. 5 as the relationship of the specific surface area.

【0050】(実施例4)主発原料を過酸化リチウム
(Li22)とオキシ水酸化ニッケル(NiOOH)に
し、焼成温度と時間を、600℃で8時間にした以外は
実施例1と同様に活物質を合成し、実施例1と同様の方
法でリートベルト解析を行って得られた結果を表1に示
す。さらに粉末X線回折より求められるパラメータI
(003)/I(104)またはI(104)/I(0
03)((003)面の強度と(104)面の強度
比)、(003)面のピークに対する半価幅、化学分析
(ICP発光分光分析)により求めたLi/Ni比、窒
素吸着BET法により求めた比表面積も表1に示す。
Example 4 Example 1 was repeated except that lithium peroxide (Li 2 O 2 ) and nickel oxyhydroxide (NiOOH) were used as the main raw materials, and the firing temperature and time were 600 ° C. for 8 hours. Similarly, an active material was synthesized, and Rietveld analysis was carried out in the same manner as in Example 1. The results obtained are shown in Table 1. Further, a parameter I obtained by powder X-ray diffraction
(003) / I (104) or I (104) / I (0
03) (intensity ratio of (003) plane and intensity of (104) plane), half width to peak of (003) plane, Li / Ni ratio determined by chemical analysis (ICP emission spectroscopy), nitrogen adsorption BET method Table 1 also shows the specific surface area obtained by.

【0051】活物質とアセチレンブラック、ポリテトラ
フルオロエチレンを100:10:7の割合にした以外
は実施例1と同様に電極を作製した。
An electrode was prepared in the same manner as in Example 1 except that the active material, acetylene black and polytetrafluoroethylene were mixed in the ratio of 100: 10: 7.

【0052】電解液をプロピレンカーボネートとメチル
エチルカーボネートとの1:1混合溶媒に1mol/l
のリンフッ化リチウム(LiPF6)を溶解したものを
用いた以外は実施例1と同様に電極の評価を行った。そ
の結果を表2に示す。さらに図4にも示す。自己放電の
評価のために、別の電極にて、上記の条件で充放電を1
0回繰り返した後、充電を行い、20℃にて30日放置
した後の保持容量を測定し、容量保持率を求めた。その
結果を比表面積の関係として図5に示す。
The electrolytic solution was added to a 1: 1 mixed solvent of propylene carbonate and methyl ethyl carbonate at 1 mol / l.
The electrodes were evaluated in the same manner as in Example 1 except that the one obtained by dissolving the lithium phosphate fluoride (LiPF 6 ) of was used. The results are shown in Table 2. Further shown in FIG. To evaluate the self-discharge, charge and discharge 1 with another electrode under the above conditions.
After repeating 0 times, charging was performed and the storage capacity after standing at 20 ° C. for 30 days was measured to determine the capacity retention rate. The results are shown in FIG. 5 as the relationship of the specific surface area.

【0053】(実施例5)焼成温度と時間を、800℃
で10時間にした以外は実施例1と同様に活物質を合成
し、実施例1と同様の方法でリートベルト解析を行って
得られた結果を表1に示す。さらに粉末X線回折より求
められるパラメータI(003)/I(104)または
I(104)/I(003)((003)面の強度と
(104)面の強度比)、(003)面のピークに対す
る半価幅、化学分析(ICP発光分光分析)により求め
たLi/Ni比、窒素吸着BET法により求めた比表面
積も表1に示す。
(Example 5) The firing temperature and time were set to 800 ° C.
Table 1 shows the results obtained by synthesizing the active material in the same manner as in Example 1 except that the heating time was 10 hours, and performing Rietveld analysis in the same manner as in Example 1. Furthermore, the parameters I (003) / I (104) or I (104) / I (003) (the intensity ratio of the (003) plane and the intensity of the (104) plane) obtained by powder X-ray diffraction, of the (003) plane Table 1 also shows the full width at half maximum with respect to the peak, the Li / Ni ratio determined by chemical analysis (ICP emission spectroscopy), and the specific surface area determined by the nitrogen adsorption BET method.

【0054】活物質とアセチレンブラック、ポリテトラ
フルオロエチレンを100:30:25の割合にした以
外は実施例1と同様に電極を作製した。
An electrode was prepared in the same manner as in Example 1 except that the ratio of the active material, acetylene black and polytetrafluoroethylene was 100: 30: 25.

【0055】電解液をエチレンカーボネートとジメチル
カーボネートとの1:1混合溶媒に1mol/lの過塩
素酸リチウムを溶解したものを用いた以外は実施例1と
同様に電極の評価を行った。その結果を表2に示す。さ
らに図4にも示す。自己放電の評価のために、別の電極
にて、上記の条件で充放電を10回繰り返した後、充電
を行い、20℃にて30日放置した後の保持容量を測定
し、容量保持率を求めた。その結果を比表面積の関係と
して図5に示す。
The electrodes were evaluated in the same manner as in Example 1 except that 1 mol / l of lithium perchlorate was dissolved in a 1: 1 mixed solvent of ethylene carbonate and dimethyl carbonate as the electrolytic solution. The results are shown in Table 2. Further shown in FIG. In order to evaluate self-discharge, charging and discharging were repeated 10 times under the above conditions with another electrode, charging was performed, and the storage capacity after standing for 30 days at 20 ° C. was measured. I asked. The results are shown in FIG. 5 as the relationship of the specific surface area.

【0056】(実施例6)焼成温度と時間を、850℃
で5時間にした以外は実施例3と同様に活物質を合成
し、実施例1と同様の方法でリートベルト解析を行って
得られた結果を表1に示す。さらに粉末X線回折より求
められるパラメータI(003)/I(104)または
I(104)/I(003)((003)面の強度と
(104)面の強度比)、(003)面のピークに対す
る半価幅、化学分析(ICP発光分光分析)により求め
たLi/Ni比、窒素吸着BET法により求めた比表面
積も表1に示す。
(Example 6) The firing temperature and time were set to 850 ° C.
Table 1 shows the results obtained by synthesizing the active material in the same manner as in Example 3 except that the period was 5 hours, and performing Rietveld analysis in the same manner as in Example 1. Furthermore, the parameters I (003) / I (104) or I (104) / I (003) (the intensity ratio of the (003) plane and the intensity of the (104) plane) obtained by powder X-ray diffraction, of the (003) plane Table 1 also shows the full width at half maximum with respect to the peak, the Li / Ni ratio determined by chemical analysis (ICP emission spectroscopy), and the specific surface area determined by the nitrogen adsorption BET method.

【0057】活物質とアセチレンブラック、ポリテトラ
フルオロエチレンを100:4:3の割合にした以外は
実施例1と同様に電極を作製した。
An electrode was prepared in the same manner as in Example 1 except that the active material, acetylene black and polytetrafluoroethylene were mixed at a ratio of 100: 4: 3.

【0058】電解液をプロピレンカーボネートとジメチ
ルカーボネートとの1:1混合溶媒に1mol/lの過
塩素酸リチウムを溶解したものを用いた以外は実施例1
と同様に電極の評価を行った。その結果を表2に示す。
さらに図4にも示す。自己放電の評価のために、別の電
極にて、上記の条件で充放電を10回繰り返した後、充
電を行い、20℃にて30日放置した後の保持容量を測
定し、容量保持率を求めた。その結果を比表面積の関係
として図5に示す。
Example 1 except that 1 mol / l of lithium perchlorate was dissolved in a 1: 1 mixed solvent of propylene carbonate and dimethyl carbonate was used as the electrolytic solution.
The electrodes were evaluated in the same manner as in. The results are shown in Table 2.
Further shown in FIG. In order to evaluate self-discharge, charging and discharging were repeated 10 times under the above conditions with another electrode, charging was performed, and the storage capacity after standing for 30 days at 20 ° C. was measured. I asked. The results are shown in FIG. 5 as the relationship of the specific surface area.

【0059】(実施例7)主発原料を水酸化リチウム
(LiOH)と酸化ニッケル(NiO)とし、リチウム
とニッケルの比Li:Niが1.2:1になるように
し、焼成温度と時間を、750℃で24時間にした以外
は実施例1と同様に活物質を合成し、実施例1と同様の
方法でリートベルト解析を行って得られた結果を表1に
示す。さらに粉末X線回折より求められるパラメータI
(003)/I(104)またはI(104)/I(0
03)((003)面の強度と(104)面の強度
比)、(003)面のピークに対する半価幅、化学分析
(ICP発光分光分析)により求めたLi/Ni比、窒
素吸着BET法により求めた比表面積も表1に示す。
Example 7 The main raw materials were lithium hydroxide (LiOH) and nickel oxide (NiO), the ratio Li: Ni of lithium to nickel was 1.2: 1, and the firing temperature and time were Table 1 shows the results obtained by synthesizing the active material in the same manner as in Example 1 except that the temperature was maintained at 750 ° C. for 24 hours and performing Rietveld analysis in the same manner as in Example 1. Further, a parameter I obtained by powder X-ray diffraction
(003) / I (104) or I (104) / I (0
03) (intensity ratio of (003) plane and intensity of (104) plane), half width to peak of (003) plane, Li / Ni ratio determined by chemical analysis (ICP emission spectroscopy), nitrogen adsorption BET method Table 1 also shows the specific surface area obtained by.

【0060】活物質とアセチレンブラック、ポリテトラ
フルオロエチレンを100:10:7の割合にした以外
は実施例1と同様に電極を作製した。
An electrode was prepared in the same manner as in Example 1 except that the active material, acetylene black and polytetrafluoroethylene were mixed in the ratio of 100: 10: 7.

【0061】電解液をエチレンカーボネートとジエチル
カーボネートとの1:1混合溶媒に1mol/lのリン
フッ化リチウムを溶解したものを用いた以外は実施例1
と同様に電極の評価を行った。その結果を表2に示す。
さらに図4にも示す。自己放電の評価のために、別の電
極にて、上記の条件で充放電を10回繰り返した後、充
電を行い、20℃にて30日放置した後の保持容量を測
定し、容量保持率を求めた。その結果を比表面積の関係
として図5に示す。
Example 1 except that 1 mol / l of lithium phosphorus fluoride was dissolved in a 1: 1 mixed solvent of ethylene carbonate and diethyl carbonate was used as the electrolytic solution.
The electrodes were evaluated in the same manner as in. The results are shown in Table 2.
Further shown in FIG. In order to evaluate self-discharge, charging and discharging were repeated 10 times under the above conditions with another electrode, charging was performed, and the storage capacity after standing for 30 days at 20 ° C. was measured. I asked. The results are shown in FIG. 5 as the relationship of the specific surface area.

【0062】(実施例8)主発原料を酸化リチウム(L
2O)と酸化ニッケル(NiO)にした以外は実施例
1と同様に活物質を合成し、実施例1と同様の方法でリ
ートベルト解析を行って得られた結果を表1に示す。さ
らに粉末X線回折より求められるパラメータI(00
3)/I(104)またはI(104)/I(003)
((003)面の強度と(104)面の強度比)、(0
03)面のピークに対する半価幅、化学分析(ICP発
光分光分析)により求めたLi/Ni比、窒素吸着BE
T法により求めた比表面積も表1に示す。
Example 8 The main raw material was lithium oxide (L
Table 1 shows the results obtained by synthesizing an active material in the same manner as in Example 1 except that i 2 O) and nickel oxide (NiO) were used and performing Rietveld analysis in the same manner as in Example 1. Furthermore, the parameter I (00
3) / I (104) or I (104) / I (003)
(Ratio of strength of (003) plane to strength of (104) plane), (0
03) Full width at half maximum with respect to the surface peak, Li / Ni ratio determined by chemical analysis (ICP emission spectroscopy), nitrogen adsorption BE
Table 1 also shows the specific surface area obtained by the T method.

【0063】活物質とアセチレンブラック、ポリテトラ
フルオロエチレンを100:15:10の割合にした以
外は実施例1と同様に電極を作製した。
An electrode was prepared in the same manner as in Example 1 except that the active material, acetylene black and polytetrafluoroethylene were mixed in the ratio of 100: 15: 10.

【0064】電解液をエチレンカーボネートとジエチル
カーボネートとの1:1混合溶媒に1mol/lのリン
フッ化リチウムを溶解したものを用いた以外は実施例1
と同様に電極の評価を行った。その結果を表2に示す。
さらに図4にも示す。自己放電の評価のために、別の電
極にて、上記の条件で充放電を10回繰り返した後、充
電を行い、20℃にて30日放置した後の保持容量を測
定し、容量保持率を求めた。その結果を比表面積の関係
として図5に示す。
Example 1 except that the electrolytic solution used was a 1: 1 mixed solvent of ethylene carbonate and diethyl carbonate in which 1 mol / l of lithium phosphorus fluoride was dissolved.
The electrodes were evaluated in the same manner as in. The results are shown in Table 2.
Further shown in FIG. In order to evaluate self-discharge, charging and discharging were repeated 10 times under the above conditions with another electrode, charging was performed, and the storage capacity after standing for 30 days at 20 ° C. was measured. I asked. The results are shown in FIG. 5 as the relationship of the specific surface area.

【0065】(実施例9)焼成温度と時間を、800℃
で7時間にした以外は実施例3と同様に活物質を合成
し、実施例1と同様の方法でリートベルト解析を行って
得られた結果を表1に示す。さらに粉末X線回折より求
められるパラメータI(003)/I(104)または
I(104)/I(003)((003)面の強度と
(104)面の強度比)、(003)面のピークに対す
る半価幅、化学分析(ICP発光分光分析)により求め
たLi/Ni比、窒素吸着BET法により求めた比表面
積も表1に示す。
(Example 9) The firing temperature and time were set to 800 ° C.
Table 1 shows the results obtained by synthesizing the active material in the same manner as in Example 3 except that the heating time was changed to 7 hours and conducting Rietveld analysis in the same manner as in Example 1. Furthermore, the parameters I (003) / I (104) or I (104) / I (003) (the intensity ratio of the (003) plane and the intensity of the (104) plane) obtained by powder X-ray diffraction, of the (003) plane Table 1 also shows the full width at half maximum with respect to the peak, the Li / Ni ratio determined by chemical analysis (ICP emission spectroscopy), and the specific surface area determined by the nitrogen adsorption BET method.

【0066】活物質とアセチレンブラック、ポリテトラ
フルオロエチレンを100:4:3の割合にした以外は
実施例1と同様に電極を作製した。
An electrode was prepared in the same manner as in Example 1 except that the active material, acetylene black and polytetrafluoroethylene were mixed at a ratio of 100: 4: 3.

【0067】電解液をプロピレンカーボネートとジメチ
ルカーボネートとの1:1混合溶媒に1mol/lのリ
ンフッ化リチウムを溶解したものを用いた以外は実施例
1と同様に電極の評価を行った。その結果を表2に示
す。さらに図4にも示す。自己放電の評価のために、別
の電極にて、上記の条件で充放電を10回繰り返した
後、充電を行い、20℃にて30日放置した後の保持容
量を測定し、容量保持率を求めた。その結果を比表面積
の関係として図5に示す。
The electrodes were evaluated in the same manner as in Example 1 except that 1 mol / l lithium phosphorus fluoride was dissolved in a 1: 1 mixed solvent of propylene carbonate and dimethyl carbonate as the electrolytic solution. The results are shown in Table 2. Further shown in FIG. In order to evaluate self-discharge, charging and discharging were repeated 10 times under the above conditions with another electrode, charging was performed, and the storage capacity after standing for 30 days at 20 ° C. was measured. I asked. The results are shown in FIG. 5 as the relationship of the specific surface area.

【0068】(比較例1)焼成温度と時間を、650℃
で5時間にした以外は実施例1と同様に活物質を合成
し、実施例1と同様の方法でリートベルト解析を行って
得られた結果を表1に示す。さらに粉末X線回折より求
められるパラメータI(003)/I(104)または
I(104)/I(003)((003)面の強度と
(104)面の強度比)、(003)面のピークに対す
る半価幅、化学分析(ICP発光分光分析)により求め
たLi/Ni比、窒素吸着BET法により求めた比表面
積も表1に示す。
(Comparative Example 1) The firing temperature and time were set to 650 ° C.
Table 1 shows the results obtained by synthesizing the active material in the same manner as in Example 1 except that the heating time was 5 hours, and performing Rietveld analysis in the same manner as in Example 1. Furthermore, the parameters I (003) / I (104) or I (104) / I (003) (the intensity ratio of the (003) plane and the intensity of the (104) plane) obtained by powder X-ray diffraction, of the (003) plane Table 1 also shows the full width at half maximum with respect to the peak, the Li / Ni ratio determined by chemical analysis (ICP emission spectroscopy), and the specific surface area determined by the nitrogen adsorption BET method.

【0069】活物質とアセチレンブラック、ポリテトラ
フルオロエチレンを100:10:10の割合にした以
外は実施例1と同様に電極を作製した。
An electrode was prepared in the same manner as in Example 1 except that the active material, acetylene black and polytetrafluoroethylene were mixed in the ratio of 100: 10: 10.

【0070】電解液をエチレンカーボネートとジエチル
カーボネートとの1:1混合溶媒に1mol/lの過塩
素酸リチウムを溶解したものを用いた以外は実施例1と
同様に電極の評価を行った。その結果を表2に示す。さ
らに図4にも示す。
The electrodes were evaluated in the same manner as in Example 1 except that 1 mol / l of lithium perchlorate was dissolved in a 1: 1 mixed solvent of ethylene carbonate and diethyl carbonate as the electrolytic solution. The results are shown in Table 2. Further shown in FIG.

【0071】(比較例2)リチウムとニッケルの比L
i:Niが1.2:1になるようにし、焼成温度と時間
を、600℃で15時間にした以外は実施例1と同様に
活物質を合成し、実施例1と同様の方法でリートベルト
解析を行って得られた結果を表1に示す。さらに粉末X
線回折より求められるパラメータI(003)/I(1
04)またはI(104)/I(003)((003)
面の強度と(104)面の強度比)、(003)面のピ
ークに対する半価幅、化学分析(ICP発光分光分析)
により求めたLi/Ni比、窒素吸着BET法により求
めた比表面積も表1に示す。
Comparative Example 2 Lithium to Nickel Ratio L
An active material was synthesized in the same manner as in Example 1 except that i: Ni was 1.2: 1, and the firing temperature and time were 600 ° C. for 15 hours. Table 1 shows the results obtained by performing the belt analysis. Further powder X
Parameter I (003) / I (1
04) or I (104) / I (003) ((003)
Plane intensity and (104) plane intensity ratio), full width at half maximum with respect to (003) plane peak, chemical analysis (ICP emission spectroscopy)
Table 1 also shows the Li / Ni ratio obtained by the above and the specific surface area obtained by the nitrogen adsorption BET method.

【0072】活物質とアセチレンブラック、ポリテトラ
フルオロエチレンを100:10:10の割合にした以
外は実施例1と同様に電極を作製した。
An electrode was prepared in the same manner as in Example 1 except that the ratio of the active material, acetylene black and polytetrafluoroethylene was 100: 10: 10.

【0073】電解液をエチレンカーボネートとジメチル
カーボネートとの1:1混合溶媒に1mol/lの過塩
素酸リチウムを溶解したものを用いた以外は実施例1と
同様に電極の評価を行った。その結果を表2に示す。さ
らに図4にも示す。
Electrodes were evaluated in the same manner as in Example 1 except that 1 mol / l of lithium perchlorate was dissolved in a 1: 1 mixed solvent of ethylene carbonate and dimethyl carbonate as the electrolytic solution. The results are shown in Table 2. Further shown in FIG.

【0074】(比較例3)焼成温度と時間を、650℃
で15時間にした以外は実施例7と同様に活物質を合成
し、実施例1と同様の方法でリートベルト解析を行って
得られた結果を表1に示す。さらに粉末X線回折より求
められるパラメータI(003)/I(104)または
I(104)/I(003)((003)面の強度と
(104)面の強度比)、(003)面のピークに対す
る半価幅、化学分析(ICP発光分光分析)により求め
たLi/Ni比、窒素吸着BET法により求めた比表面
積も表1に示す。
(Comparative Example 3) The firing temperature and time were set to 650 ° C.
Table 1 shows the results obtained by synthesizing the active material in the same manner as in Example 7 except that the heating time was 15 hours, and performing Rietveld analysis in the same manner as in Example 1. Furthermore, the parameters I (003) / I (104) or I (104) / I (003) (the intensity ratio of the (003) plane and the intensity of the (104) plane) obtained by powder X-ray diffraction, of the (003) plane Table 1 also shows the full width at half maximum with respect to the peak, the Li / Ni ratio determined by chemical analysis (ICP emission spectroscopy), and the specific surface area determined by the nitrogen adsorption BET method.

【0075】活物質とアセチレンブラック、ポリテトラ
フルオロエチレンを100:10:10の割合にした以
外は実施例1と同様に電極を作製した。
An electrode was prepared in the same manner as in Example 1 except that the active material, acetylene black and polytetrafluoroethylene were mixed in the ratio of 100: 10: 10.

【0076】電解液をプロピレンカーボネートとジエチ
ルカーボネートとの1:1混合溶媒に1mol/lの過
塩素酸リチウムを溶解したものを用いた以外は実施例1
と同様に電極の評価を行った。その結果を表2に示す。
さらに図4にも示す。
Example 1 except that 1 mol / l of lithium perchlorate was dissolved in a 1: 1 mixed solvent of propylene carbonate and diethyl carbonate was used as the electrolytic solution.
The electrodes were evaluated in the same manner as in. The results are shown in Table 2.
Further shown in FIG.

【0077】(比較例4)焼成温度と時間を、650℃
で10時間にした以外は実施例3と同様に活物質を合成
し、実施例1と同様の方法でリートベルト解析を行って
得られた結果を表1に示す。さらに粉末X線回折より求
められるパラメータI(003)/I(104)または
I(104)/I(003)((003)面の強度と
(104)面の強度比)、(003)面のピークに対す
る半価幅、化学分析(ICP発光分光分析)により求め
たLi/Ni比、窒素吸着BET法により求めた比表面
積も表1に示す。
(Comparative Example 4) The firing temperature and time were set to 650 ° C.
Table 1 shows the results obtained by synthesizing the active material in the same manner as in Example 3 except that the heating time was 10 hours, and performing Rietveld analysis in the same manner as in Example 1. Furthermore, the parameters I (003) / I (104) or I (104) / I (003) (the intensity ratio of the (003) plane and the intensity of the (104) plane) obtained by powder X-ray diffraction, of the (003) plane Table 1 also shows the full width at half maximum with respect to the peak, the Li / Ni ratio determined by chemical analysis (ICP emission spectroscopy), and the specific surface area determined by the nitrogen adsorption BET method.

【0078】活物質とアセチレンブラック、ポリテトラ
フルオロエチレンを100:10:10の割合にした以
外は実施例1と同様に電極を作製した。
An electrode was prepared in the same manner as in Example 1 except that the active material, acetylene black and polytetrafluoroethylene were mixed in the ratio of 100: 10: 10.

【0079】電解液をプロピレンカーボネートとジエチ
ルカーボネートとの1:1混合溶媒に1mol/lのリ
ンフッ化リチウムを溶解したものを用いた以外は実施例
1と同様に電極の評価を行った。その結果を表2に示
す。さらに図4にも示す。
The electrodes were evaluated in the same manner as in Example 1 except that 1 mol / l of lithium phosphorus fluoride was dissolved in a 1: 1 mixed solvent of propylene carbonate and diethyl carbonate as the electrolytic solution. The results are shown in Table 2. Further shown in FIG.

【0080】(比較例5)焼成温度と時間を、900℃
で15時間にした以外は実施例7と同様に活物質を合成
し、実施例1と同様の方法でリートベルト解析を行って
得られた結果を表1に示す。さらに粉末X線回折より求
められるパラメータI(003)/I(104)または
I(104)/I(003)((003)面の強度と
(104)面の強度比)、(003)面のピークに対す
る半価幅、化学分析(ICP発光分光分析)により求め
たLi/Ni比、窒素吸着BET法により求めた比表面
積も表1に示す。
(Comparative Example 5) The firing temperature and time were set to 900 ° C.
Table 1 shows the results obtained by synthesizing the active material in the same manner as in Example 7 except that the heating time was 15 hours, and performing Rietveld analysis in the same manner as in Example 1. Furthermore, the parameters I (003) / I (104) or I (104) / I (003) (the intensity ratio of the (003) plane and the intensity of the (104) plane) obtained by powder X-ray diffraction, of the (003) plane Table 1 also shows the full width at half maximum with respect to the peak, the Li / Ni ratio determined by chemical analysis (ICP emission spectroscopy), and the specific surface area determined by the nitrogen adsorption BET method.

【0081】活物質とアセチレンブラック、ポリテトラ
フルオロエチレンを100:10:10の割合にした以
外は実施例1と同様に電極を作製した。
An electrode was prepared in the same manner as in Example 1 except that the active material, acetylene black and polytetrafluoroethylene were mixed in the ratio of 100: 10: 10.

【0082】電解液をプロピレンカーボネートとジメチ
ルカーボネートとの1:1混合溶媒に1mol/lのリ
ンフッ化リチウムを溶解したものを用いた以外は実施例
1と同様に電極の評価を行った。その結果を表2に示
す。さらに図4にも示す。
Electrodes were evaluated in the same manner as in Example 1 except that 1 mol / l lithium phosphorus fluoride was dissolved in a 1: 1 mixed solvent of propylene carbonate and dimethyl carbonate as the electrolytic solution. The results are shown in Table 2. Further shown in FIG.

【0083】(比較例6)リチウムとニッケルの比L
i:Niが1:1になるようにし、焼成温度と時間を、
650℃で24時間にした以外は実施例7と同様に活物
質を合成し、実施例1と同様の方法でリートベルト解析
を行って得られた結果を表1に示す。さらに粉末X線回
折より求められるパラメータI(003)/I(10
4)またはI(104)/I(003)((003)面
の強度と(104)面の強度比)、(003)面のピー
クに対する半価幅、化学分析(ICP発光分光分析)に
より求めたLi/Ni比、窒素吸着BET法により求め
た比表面積も表1に示す。
(Comparative Example 6) Ratio L of lithium to nickel L
i: Ni is 1: 1 and the firing temperature and time are
Table 1 shows the results obtained by synthesizing the active material in the same manner as in Example 7 except that the temperature was 650 ° C. for 24 hours and performing Rietveld analysis in the same manner as in Example 1. Furthermore, the parameter I (003) / I (10
4) or I (104) / I (003) (strength ratio of (003) plane to (104) plane), half width to peak of (003) plane, and chemical analysis (ICP emission spectroscopy) Table 1 also shows the Li / Ni ratio and the specific surface area obtained by the nitrogen adsorption BET method.

【0084】活物質とアセチレンブラック、ポリテトラ
フルオロエチレンを100:10:10の割合にした以
外は実施例1と同様に電極を作製した。
An electrode was prepared in the same manner as in Example 1 except that the active material, acetylene black, and polytetrafluoroethylene were used in the ratio of 100: 10: 10.

【0085】電解液をプロピレンカーボネートとメチル
エチルカーボネートとの1:1混合溶媒に1mol/l
のリンフッ化リチウムを溶解したものを用いた以外は実
施例1と同様に電極の評価を行った。その結果を表2に
示す。さらに図4にも示す。
The electrolytic solution was added to a 1: 1 mixed solvent of propylene carbonate and methyl ethyl carbonate at 1 mol / l.
The electrodes were evaluated in the same manner as in Example 1 except that the one obtained by dissolving the lithium phosphate fluoride was used. The results are shown in Table 2. Further shown in FIG.

【0086】(比較例7)主発原料を水酸化リチウム
(LiOH)と酸化ニッケル(NiOH)とし、リチウ
ムとニッケルの比Li:Niが1.1:1になるように
し、焼成温度と時間を、900℃で3時間にした以外は
実施例1と同様に活物質を合成し、実施例1と同様の方
法でリートベルト解析を行って得られた結果を表1に示
す。さらに粉末X線回折より求められるパラメータI
(003)/I(104)またはI(104)/I(0
03)((003)面の強度と(104)面の強度
比)、(003)面のピークに対する半価幅、化学分析
(ICP発光分光分析)により求めたLi/Ni比、窒
素吸着BET法により求めた比表面積も表1に示す。
Comparative Example 7 Lithium hydroxide (LiOH) and nickel oxide (NiOH) were used as the main raw materials, the ratio Li: Ni of lithium to nickel was set to 1.1: 1, and the firing temperature and time were changed. Table 1 shows the results obtained by synthesizing the active material in the same manner as in Example 1 except that the temperature was set to 900 ° C. for 3 hours and performing Rietveld analysis in the same manner as in Example 1. Further, a parameter I obtained by powder X-ray diffraction
(003) / I (104) or I (104) / I (0
03) (intensity ratio of (003) plane and intensity of (104) plane), half width to peak of (003) plane, Li / Ni ratio determined by chemical analysis (ICP emission spectroscopy), nitrogen adsorption BET method Table 1 also shows the specific surface area obtained by.

【0087】活物質とアセチレンブラック、ポリテトラ
フルオロエチレンを100:10:10の割合にした以
外は実施例1と同様に電極を作製した。
An electrode was prepared in the same manner as in Example 1 except that the active material, acetylene black and polytetrafluoroethylene were mixed in the ratio of 100: 10: 10.

【0088】電解液をプロピレンカーボネートとメチル
エチルカーボネートとの1:1混合溶媒に1mol/l
のリンフッ化リチウムを溶解したものを用いた以外は実
施例1と同様に電極の評価を行った。その結果を表2、
図4に示す。自己放電の評価のために、別の電極にて、
上記の条件で充放電を10回繰り返した後、充電を行い
20℃にて30日放置した後の保持容量を測定し、容量
保持率を求めた。その結果を比表面積の関係として図5
に示す。
The electrolytic solution was added to a 1: 1 mixed solvent of propylene carbonate and methyl ethyl carbonate at 1 mol / l.
The electrodes were evaluated in the same manner as in Example 1 except that the one obtained by dissolving the lithium phosphate fluoride was used. The results are shown in Table 2,
As shown in FIG. For the evaluation of self-discharge, at another electrode,
After repeating charging / discharging 10 times under the above conditions, the battery was charged and allowed to stand at 20 ° C. for 30 days, and the retention capacity was measured to determine the capacity retention rate. The result is shown in FIG.
Shown in

【0089】実施例1〜9、比較例1〜7より本発明の
活物質が大きい放電容量を持ち、優れたサイクル特性を
示すことが判明した。また、比表面積が0.2〜10m
2/gにおいて充放電性能が好ましく、さらに0.2〜
6m2/gのとき、自己放電特性が優れていることが確
認された。
From Examples 1 to 9 and Comparative Examples 1 to 7, it was found that the active material of the present invention has a large discharge capacity and exhibits excellent cycle characteristics. Moreover, the specific surface area is 0.2 to 10 m.
Charge / discharge performance is preferable at 2 / g, and 0.2 to
At 6 m 2 / g, it was confirmed that the self-discharge characteristics were excellent.

【0090】(実施例10) ・正極活物質の合成および正極の作製 実施例1と同様にして正極活物質、ニッケル酸リチウム
の合成および正極の作製を行い、直径15mm、重量5
0mgのペレットを作製した。
Example 10 Synthesis of Positive Electrode Active Material and Production of Positive Electrode A positive electrode active material and lithium nickel oxide were synthesized and a positive electrode was produced in the same manner as in Example 1, and the diameter was 15 mm and the weight was 5 mm.
0 mg pellets were made.

【0091】・負極の作製 負極は熱分解炭素であり、ニッケルを基板(表面積4c
2)とし、プロパンを出発原料とした常圧気相熱分解
法により作製した。この時、750℃にて2時間堆積さ
せた。
Preparation of Negative Electrode The negative electrode is pyrolytic carbon, and nickel is used as a substrate (surface area 4 c
m 2 ), and was produced by the atmospheric pressure gas phase pyrolysis method using propane as a starting material. At this time, it was deposited at 750 ° C. for 2 hours.

【0092】この熱分解炭素はX線回折法により得られ
た(002)面の面間隔d002は0.337nm、
(002)面方向の結晶子厚みLcは15nm、またア
ルゴンレーザーラマンによる1580cm-1付近のピー
クに対する1360cm-1付近のピークの強度比、つま
りR値は0.46である。この電極にニッケル線をスポ
ット溶接し集電を取った。これを水分除去のために20
0℃で減圧乾燥したものを負極として用いた。この負極
の活物質重量は25mgである。
This pyrolytic carbon has a (002) plane spacing d002 of 0.337 nm obtained by X-ray diffraction.
(002) plane direction of the crystallite thickness Lc is 15 nm, also 1360 cm -1 vicinity of the peak intensity ratio of the relative peak around 1580 cm -1 due to the argon laser Raman, i.e. R value is 0.46. A nickel wire was spot-welded to this electrode to collect current. 20 for removing water
What was dried under reduced pressure at 0 ° C. was used as a negative electrode. The weight of the active material of this negative electrode is 25 mg.

【0093】・電池の評価 電池の評価には、ビーカー型セルを用い、正極および負
極に上記で作製したものを用いた。電解液は、プロピレ
ンカーボネートとジエチルカーボネートとの1:1混合
溶媒に1mol/lの過塩素酸リチウムを溶解したもの
を用いた。充放電試験は、0.2mAの電流で初めに
4.2Vまで充電を行い、続いて同じ電流で2.5Vま
で放電を行った。2回目以降も同じ電圧の範囲、電流密
度で充放電を繰り返し、電池の評価を行った。
Evaluation of Battery For the evaluation of the battery, a beaker type cell was used, and the positive electrode and the negative electrode manufactured as described above were used. The electrolyte used was a 1: 1 mixed solvent of propylene carbonate and diethyl carbonate in which 1 mol / l of lithium perchlorate was dissolved. In the charge / discharge test, a current of 0.2 mA was first charged to 4.2 V, and then a discharge of the same current was performed to 2.5 V. After the second time, charging and discharging were repeated in the same voltage range and current density to evaluate the battery.

【0094】その結果、上記のごとく作製した電池の1
回目の放電容量は6.5mAh、100回目の放電容量
は6.0mAhであった。
As a result, one of the batteries produced as described above was
The discharge capacity at the 100th time was 6.5 mAh, and the discharge capacity at the 100th time was 6.0 mAh.

【0095】(実施例11) ・正極活物質の合成および正極の作製 実施例4と同様にして正極活物質、ニッケル酸リチウム
の合成を行い、実施例1と同様にして正極の作製を行
い、直径15mm、厚み0.77mm、活物質の重量2
00mgのペレットを作製した。
Example 11 Synthesis of Positive Electrode Active Material and Production of Positive Electrode A positive electrode active material and lithium nickel oxide were synthesized in the same manner as in Example 4, and a positive electrode was produced in the same manner as in Example 1. Diameter 15 mm, thickness 0.77 mm, weight of active material 2
00 mg pellets were made.

【0096】・負極の作製 負極活物質にマダガスカル産の天然黒鉛(鱗片状、粒径
11μm、d002は0.337nm、Lcは27n
m、Laは17nm、R値は0、比表面積8m2/g)
を用い、ポリテトラフルオロエチレンと共にそれぞれ1
0:1の割合で混合したのち、加圧成形を行って、直径
15mm、厚み0.57mm、活物質の重量90mgの
ペレットを作製した。加圧成形時に、集電体として作用
するニッケルメッシュも入れて作製した。水分除去のた
めに200℃で減圧乾燥したものを負極として用いた。
Preparation of Negative Electrode Negative electrode active material natural graphite from Madagascar (scale, particle size 11 μm, d002 0.337 nm, Lc 27 n
m, La is 17 nm, R value is 0, specific surface area 8 m 2 / g)
1 with polytetrafluoroethylene
After mixing at a ratio of 0: 1, pressure molding was performed to prepare pellets having a diameter of 15 mm, a thickness of 0.57 mm and an active material weight of 90 mg. A nickel mesh that acts as a current collector was also added during pressure molding. What was dried under reduced pressure at 200 ° C. to remove water was used as a negative electrode.

【0097】・電池の組立 図2に示すように、絶縁パッキン8が載置された正極缶
1に、正極集電体2を含んだ正極3を圧着した。次に、
この上にポリプロピレン不織布のセパレータ7を載置
し、エチレンカーボネートとプロピレンカーボネート、
ジエチルカーボネートとの体積比2:1:3の混合溶媒
に電解質塩LiPF6を1mol/lになるように溶解
した電解液を含浸させる。一方、負極缶4の内面に負極
集電体5を含んだ負極6を圧着させるべく、前記セパレ
ータ7の上に負極6を重ねる。そして正極缶1と負極缶
4を絶縁パッキン8を介在させてかしめ、密封してコイ
ン型電池を作製する。
Battery Assembly As shown in FIG. 2, the positive electrode 3 including the positive electrode current collector 2 was pressure bonded to the positive electrode can 1 on which the insulating packing 8 was placed. next,
A polypropylene non-woven separator 7 is placed on this, ethylene carbonate and propylene carbonate,
An electrolyte solution in which an electrolyte salt LiPF 6 is dissolved in a mixed solvent of diethyl carbonate at a volume ratio of 2: 1: 3 so as to be 1 mol / l is impregnated. On the other hand, the negative electrode 6 is stacked on the separator 7 so that the negative electrode 6 including the negative electrode current collector 5 is pressure-bonded to the inner surface of the negative electrode can 4. Then, the positive electrode can 1 and the negative electrode can 4 are caulked with the insulating packing 8 interposed therebetween and hermetically sealed to manufacture a coin-type battery.

【0098】・電池の評価 作製したコイン型電池はすべて、充放電電流1mAで、
充電上限電圧4.2Vまで充電を行い、続いて放電の下
限電圧2.5Vまで放電を行った。評価には電池の放電
容量測定を行った。2回目以降も同じ電圧の範囲、電流
密度で充放電を繰り返し、電池の評価を行った。
-Evaluation of batteries All the coin-type batteries prepared were charged and discharged at a current of 1 mA.
The battery was charged up to a charge upper limit voltage of 4.2 V and subsequently discharged up to a discharge lower limit voltage of 2.5 V. For evaluation, the discharge capacity of the battery was measured. After the second time, charging and discharging were repeated in the same voltage range and current density to evaluate the battery.

【0099】その結果、1サイクル目の放電における放
電容量は25.8mAhは、100サイクル目の放電容
量は22.5mAhであった。
As a result, the discharge capacity in the first cycle discharge was 25.8 mAh and the discharge capacity in the 100th cycle was 22.5 mAh.

【0100】(実施例12)図3に示す円筒形電池を以
下のようにして作製した。
Example 12 The cylindrical battery shown in FIG. 3 was manufactured as follows.

【0101】正極は、実施例1で合成した正極活物質で
あるニッケル酸リチウムを用い、正極活物質100重量
部と、導電材としてアセチレンブラック粉末7重量部と
結着剤としてポリフッ化ビニリデン10重量部を、N−
メチル−2−ピロリドンを分散剤として混合し、正極ペ
ーストとした。そして、この正極ペーストを厚さ20μ
mのアルミニウム箔の集電体の両面に塗布し乾燥したの
ち、圧延し、短冊状に切断した。
For the positive electrode, the positive electrode active material lithium nickel oxide synthesized in Example 1 was used, and 100 parts by weight of the positive electrode active material, 7 parts by weight of acetylene black powder as a conductive material, and 10 parts by weight of polyvinylidene fluoride as a binder were used. Part, N-
Methyl-2-pyrrolidone was mixed as a dispersant to obtain a positive electrode paste. Then, this positive electrode paste has a thickness of 20 μm.
The aluminum foil of m was coated on both sides of the current collector, dried, rolled, and cut into strips.

【0102】切断した電極の一方の端部に正極リード1
5のアルミニウムタブをスポット溶接にて取り付け正極
14を得た。前記正極中の正極活物質であるニッケル酸
リチウムは、40mg/cm2である。
The positive electrode lead 1 is attached to one end of the cut electrode.
The aluminum tab of No. 5 was attached by spot welding to obtain the positive electrode 14. The positive electrode active material in the positive electrode, lithium nickel oxide, was 40 mg / cm 2 .

【0103】負極は、負極活物質である人造黒鉛(粒径
8μm、d002は0.337nm、Lcは25nm、
Laは13nm、R値は0、比表面積12m2/g)1
00重量部と、結着剤としてポリフッ化ビニリデン10
重量部を、N−メチル−2−ピロリドンを分散剤として
混合し、負極ペーストとした。そして、この負極ペース
トを厚さ18μmの銅箔の集電体の両面に塗布し、乾燥
したのち、圧延し、短冊状に切断した。
The negative electrode was made of artificial graphite (particle diameter 8 μm, d002 was 0.337 nm, Lc was 25 nm,
La is 13 nm, R value is 0, specific surface area is 12 m 2 / g) 1
00 parts by weight and polyvinylidene fluoride 10 as a binder
By weight, N-methyl-2-pyrrolidone was mixed as a dispersant to prepare a negative electrode paste. Then, this negative electrode paste was applied to both surfaces of a copper foil current collector having a thickness of 18 μm, dried, rolled, and cut into strips.

【0104】切断した電極の一方の端部に負極リード1
7のニッケルタブをスポット溶接にて取り付け負極16
を得た。前記負極中の負極活物質である黒鉛は、18m
g/cm2である。
The negative electrode lead 1 is attached to one end of the cut electrode.
The nickel tab of 7 is attached by spot welding and the negative electrode 16
I got The negative electrode active material in the negative electrode, graphite, is 18 m
g / cm 2 .

【0105】正極14、負極16がポリエチレン製微多
孔質のセパレータ18を挟んで、互いに対向するように
配置し、スパイラル状に巻回し、巻回要素を形成した。
正極リード15を上部に、負極リード17を下部にし、
電池缶13(直径17mm、高さ500mm、ステンレ
ス製)内に挿入し、負極リード17を電池缶13の底に
スポット溶接し、安全弁付き正極蓋11に正極リード1
5をスポット溶接した。巻回要素中心部に、巻き崩れ防
止のためにセンターピン19(直径3.4mm、長さ4
0mmのステンレスチューブ)を挿入した。そののち、
電解質としてリンフッ化リチウムをエチレンカーボネー
トとジエチルカーボネート1:1混合溶媒に1mol/
lの割合で溶解した電解液を注液し、正極蓋11を絶縁
パッキン12を通してカシメ付けることによって円筒形
の電池を作製した。このような電池を20個作製した。
The positive electrode 14 and the negative electrode 16 were arranged so as to face each other with the polyethylene microporous separator 18 interposed therebetween, and were spirally wound to form a winding element.
With the positive electrode lead 15 on the upper side and the negative electrode lead 17 on the lower side,
Insert into a battery can 13 (diameter 17 mm, height 500 mm, made of stainless steel), spot-weld the negative electrode lead 17 to the bottom of the battery can 13, and attach the positive electrode lead 1 to the positive electrode lid 11 with a safety valve.
5 was spot welded. A center pin 19 (diameter: 3.4 mm, length: 4 mm) is provided at the center of the winding element to prevent winding collapse.
0 mm stainless steel tube) was inserted. after that,
Lithium phosphorofluoride as an electrolyte in a 1: 1 mixed solvent of ethylene carbonate and diethyl carbonate at 1 mol /
A cylindrical battery was manufactured by injecting an electrolyte solution dissolved in a ratio of 1 and caulking the positive electrode lid 11 through the insulating packing 12. 20 such batteries were produced.

【0106】充放電試験は、充電が、充電電流500m
A、上限電圧4.2V、3時間の定電流定電圧充電、放
電は、放電電流100mA、下限電圧2.75Vの定電
流放電とし、25℃の恒温槽中で実施した。
In the charge / discharge test, charging is performed with a charging current of 500 m.
A, upper limit voltage 4.2V, constant current constant voltage charge and discharge for 3 hours, discharge current 100mA, lower limit voltage 2.75V constant current discharge, was carried out in a constant temperature bath of 25 ℃.

【0107】その結果、20個の電池の初回の放電容量
は840〜875mAhの範囲にあり、50サイクル経
過後の電池容量も750〜790mAhの範囲にあっ
た。
As a result, the initial discharge capacity of the 20 batteries was in the range of 840 to 875 mAh, and the battery capacity after 50 cycles was in the range of 750 to 790 mAh.

【0108】(比較例8)正極活物質として比較例1で
合成したニッケル酸リチウムを用いた以外は実施例12
と同様にして円筒形の電池を20個作製した。
Comparative Example 8 Example 12 was repeated except that the lithium nickel oxide synthesized in Comparative Example 1 was used as the positive electrode active material.
Twenty cylindrical batteries were prepared in the same manner as in.

【0109】実施例12と同様の方法で評価した。Evaluation was carried out in the same manner as in Example 12.

【0110】その結果、20個の電池の初回の放電容量
は760〜860mAhの広い範囲にあり、50サイク
ル経過後の電池容量も520〜700mAhの広い範囲
にあった。また、実施例12と比較例8より充放電特性
のばらつきが少ない、再現性のある電池を得られること
が判明した。
As a result, the initial discharge capacity of the 20 batteries was in a wide range of 760 to 860 mAh, and the battery capacity after 50 cycles was in a wide range of 520 to 700 mAh. Further, it was found that a battery with less reproducibility in charge / discharge characteristics than Example 12 and Comparative Example 8 can be obtained.

【0111】(実施例13〜20)正極活物質として実
施例1〜9(それぞれ実施例13〜20)で合成したニ
ッケル酸リチウムを用いた以外は実施例11と同様にし
てコイン型電池を作製した。
(Examples 13 to 20) Coin-type batteries were produced in the same manner as in Example 11 except that lithium nickel oxide synthesized in Examples 1 to 9 (respectively Examples 13 to 20) was used as the positive electrode active material. did.

【0112】40℃にて充放電を行った以外は実施例1
1と同様に評価した。
Example 1 except that charging / discharging was performed at 40 ° C.
It evaluated similarly to 1.

【0113】初回の放電容量に対する30回目の放電容
量の放電容量比(30回目の放電容量/初回の放電容
量)とリートベルト解析により求めた3aサイトと3b
サイトを占有しているリチウムとニッケルの比((g1
+g2)/(g3+g4)またはaLi/aNi)の関係を図
6に示す。
The discharge capacity ratio of the 30th discharge capacity to the first discharge capacity (30th discharge capacity / first discharge capacity) and 3a site and 3b obtained by Rietveld analysis.
The ratio of lithium and nickel occupying the site ((g 1
The relationship of + g 2 ) / (g 3 + g 4 ) or a Li / a Ni ) is shown in FIG.

【0114】この結果より、高温における充放電特性
は、リチウムとニッケルの比((g1+g2)/(g3
4)またはaLi/aNi)が0.9〜1.04が好まし
く、さらには1〜1.04が好ましいことが確認され
た。
From these results, the charge / discharge characteristics at high temperature were found to be the ratio of lithium to nickel ((g 1 + g 2 ) / (g 3 +
It was confirmed that g 4 ) or a Li / a Ni ) is preferably 0.9 to 1.04, and more preferably 1 to 1.04.

【0115】[0115]

【発明の効果】本発明によれば、正極の活物質が、R−
3mの空間群に属した層状岩塩型構造を持ち、好ましく
はX線を用いた粉末回折法により得られた回折パターン
をリートベルト解析により求める方法により得られる、
六方晶系による軸長つまり格子定数がa軸では0.28
70〜0.2880nm、c軸では1.4175〜1.
4210nmであり、リチウムの3bサイトの占有率が
0〜0.07、ニッケルの3aサイトの占有率が0〜
0.08、好ましくは0.01〜0.08であり、3a
サイトと3bサイトを占有しているリチウムの合計が
0.92〜1.02、3aサイトと3bサイトを占有し
ているニッケルの合計が0.98〜1.08であるニッ
ケル酸リチウムを含んだ正極を用いることにより、大き
な放電容量を持った、充放電特性にばらつきがない、再
現性のある非水系二次電池が得られる。さらに、充放電
サイクル数の増加に伴う放電容量の低下は小さく、優れ
たサイクル特性を示す。
According to the present invention, the active material of the positive electrode is R-
It has a layered rock-salt structure belonging to a space group of 3 m, and is preferably obtained by a method of obtaining a diffraction pattern obtained by a powder diffraction method using X-rays by Rietveld analysis,
The axial length of the hexagonal system, that is, the lattice constant is 0.28 on the a-axis
70-0.2880 nm, 1.4175-1.
4210 nm, the lithium 3b site occupancy is 0 to 0.07, and the nickel 3a site occupancy is 0 to 0.07.
0.08, preferably 0.01 to 0.08, 3a
Lithium nickelate having a total of 0.92 to 1.02 of lithium occupying sites and 3b sites and a total of 0.98 to 1.08 of nickel occupying 3a sites and 3b sites was included. By using the positive electrode, it is possible to obtain a reproducible non-aqueous secondary battery having a large discharge capacity, no variation in charge / discharge characteristics. Furthermore, the decrease in discharge capacity with the increase in the number of charge / discharge cycles is small, and excellent cycle characteristics are exhibited.

【0116】比表面積が0.2〜6m2/gにすること
により、自己放電特性に優れた活物質及び非水系二次電
池が提供できる。
By setting the specific surface area to 0.2 to 6 m 2 / g, it is possible to provide an active material and a non-aqueous secondary battery having excellent self-discharge characteristics.

【0117】リチウムとニッケルの比((g1+g2)/
(g3+g4)またはaLi/aNi)が0.9〜1.04が
好ましく、さらには1〜1.04にすることにより、高
温における充放電特性に優れた活物質及び非水系二次電
池が提供できる。
Ratio of lithium to nickel ((g 1 + g 2 ) /
(G 3 + g 4 ) or a Li / a Ni ) is preferably 0.9 to 1.04, and by setting it to 1 to 1.04, an active material and a non-aqueous liquid having excellent charge and discharge characteristics at high temperature are used. The next battery can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】六方晶系のR−3mの空間群に属したニッケル
酸リチウムの基本的構造を示す図である。
FIG. 1 is a diagram showing a basic structure of lithium nickelate belonging to a hexagonal R-3m space group.

【図2】実施の形態で用いられたコイン型電池の断面図
である。
FIG. 2 is a cross-sectional view of a coin-type battery used in the embodiment.

【図3】実施の形態で用いられた円筒形電池の断面図で
ある。
FIG. 3 is a sectional view of a cylindrical battery used in the embodiment.

【図4】実施の形態の実施例1〜9、比較例1〜6で得
られた放電容量のサイクル依存性を示す図である。
FIG. 4 is a diagram showing cycle dependence of discharge capacities obtained in Examples 1 to 9 and Comparative Examples 1 to 6 of the embodiment.

【図5】実施の形態の実施例1〜9で得られた自己放電
による容量保存率と比表面積の関係を表す図である。
FIG. 5 is a diagram showing the relationship between the capacity retention rate by self-discharge and the specific surface area obtained in Examples 1 to 9 of the embodiment.

【図6】実施の形態の実施例13〜21で得られた40
℃での充放電における容量比とaLi/aNiとの関係を表
す図である。
[Fig. 6] 40 obtained in Examples 13 to 21 of the embodiment.
Is a diagram representing the relationship between the volume ratio and a Li / a Ni of charging and discharging at ° C..

【符号の説明】[Explanation of symbols]

1 正極缶 2 正極集電体 3 正極 4 負極缶 5 負極集電体 6 負極 7 セパレータ 8 絶縁パッキン 11 安全弁付正極蓋 12 絶縁パッキン 13 電池缶 14 正極 15 正極リード 16 負極 17 負極リード 18 セパレータ 19 センターピン DESCRIPTION OF SYMBOLS 1 Positive electrode can 2 Positive electrode current collector 3 Positive electrode 4 Negative electrode can 5 Negative electrode current collector 6 Negative electrode 7 Separator 8 Insulating packing 11 Positive electrode lid with safety valve 12 Insulating packing 13 Battery can 14 Positive electrode 15 Positive electrode lead 16 Negative electrode 17 Negative electrode lead 18 Separator 19 Center pin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 和夫 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuo Yamada 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極及び非水系のイオン伝導体か
らなる非水系二次電池において、前記負極の活物質がリ
チウムを含む物質或いは、リチウムの挿入・脱離の可能
な物質から形成され、前記正極の活物質が、R−3mの
空間群に属した層状岩塩型構造を持ち、六方晶系による
軸長つまり格子定数がa軸では0.2870〜0.28
80nm、c軸では1.4175〜1.4210nmで
あり、リチウムの3bサイトの占有率が0〜0.07、
ニッケルの3aサイトの占有率が0〜0.08であり、
3aサイトと3bサイトを占有しているリチウムの合計
が0.92〜1.02、3aサイトと3bサイトを占有
しているニッケルの合計が0.98〜1.08であるニ
ッケル酸リチウムを含んだ電極である非水系二次電池。
1. A non-aqueous secondary battery comprising a positive electrode, a negative electrode and a non-aqueous ionic conductor, wherein the negative electrode active material is formed of a lithium-containing material or a lithium intercalation / deintercalation material. The active material of the positive electrode has a layered rock salt type structure belonging to the space group of R-3m, and the axial length of the hexagonal system, that is, the lattice constant is 0.2870 to 0.28 in the a-axis.
80 nm, 1.4175 to 1.4210 nm on the c-axis, and the occupancy of the 3b site of lithium is 0 to 0.07,
The occupancy of the nickel 3a site is 0 to 0.08,
Including lithium nickelate in which the total of lithium occupying 3a site and 3b site is 0.92 to 1.02, and the total of nickel occupying 3a site and 3b site is 0.98 to 1.08 A non-aqueous secondary battery that is an electrode.
【請求項2】 ニッケル酸リチウムのBET法による比
表面積が0.2〜10m2/gである請求項1に記載の
非水系二次電池。
2. The non-aqueous secondary battery according to claim 1, wherein the specific surface area of lithium nickel oxide according to the BET method is 0.2 to 10 m 2 / g.
【請求項3】 ニッケル酸リチウムのニッケルの3aサ
イトの占有率が0.01〜0.08である請求項1また
は2のいずれかに記載の非水系二次電池。
3. The non-aqueous secondary battery according to claim 1, wherein the nickel 3a site of nickel nickelate has an occupation rate of 0.01 to 0.08.
【請求項4】 3aサイトと3bサイトを占有している
リチウムの合計と、3aサイトと3bサイトを占有して
いるニッケルの合計の比((g1+g2)/(g3+g4
またはaLi/aNi)が0.9〜1.04である請求項
1、2または3のいずれかに記載の非水系二次電池。
4. A ratio ((g 1 + g 2 ) / (g 3 + g 4 ) of a total of lithium occupying 3a sites and 3b sites to a total of nickel occupying 3a sites and 3b sites.
Alternatively, a Li / a Ni ) is 0.9 to 1.04, and the non-aqueous secondary battery according to claim 1, 2 or 3.
【請求項5】 リチウムの挿入・脱離の可能な負極活物
質が炭素からなる請求項1、2、3または4のいずれか
に記載の非水系二次電池。
5. The non-aqueous secondary battery according to claim 1, wherein the negative electrode active material capable of inserting and releasing lithium is carbon.
【請求項6】 リチウムの挿入・脱離の可能な負極活物
質がリチウムのインターカレーション/デインターカレ
ーションできる黒鉛からなる請求項1、2、3または4
のいずれかに記載の非水系二次電池。
6. The negative electrode active material capable of inserting and deintercalating lithium is graphite capable of intercalating / deintercalating lithium.
The non-aqueous secondary battery according to any one of 1.
JP9033464A 1996-03-04 1997-02-18 Nonaqueous secondary battery Pending JPH09298061A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9033464A JPH09298061A (en) 1996-03-04 1997-02-18 Nonaqueous secondary battery
US08/810,346 US5792574A (en) 1996-03-04 1997-03-03 Nonaqueous secondary battery
DE69705446T DE69705446T2 (en) 1996-03-04 1997-03-04 Lithium nickelate active compound for use in non-aqueous secondary batteries
EP97301439A EP0794586B1 (en) 1996-03-04 1997-03-04 Lithium nickelate active mass for use in nonaqueous secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-45914 1996-03-04
JP4591496 1996-03-04
JP9033464A JPH09298061A (en) 1996-03-04 1997-02-18 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JPH09298061A true JPH09298061A (en) 1997-11-18

Family

ID=26372167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9033464A Pending JPH09298061A (en) 1996-03-04 1997-02-18 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JPH09298061A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998054773A1 (en) * 1997-05-27 1998-12-03 Tdk Corporation Method of producing electrode for non-aqueous electrolytic cells
JP2006107845A (en) * 2004-10-01 2006-04-20 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using this, and its manufacturing method
JP2007242581A (en) * 2006-02-08 2007-09-20 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2008137837A (en) * 2006-11-30 2008-06-19 Tosoh Corp Lithium-nickel-manganese complex oxide, its manufacturing process and its application
JP2008218122A (en) * 2007-03-02 2008-09-18 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2008257992A (en) * 2007-04-04 2008-10-23 Sumitomo Metal Mining Co Ltd Positive-electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2009274940A (en) * 2008-05-19 2009-11-26 National Institute Of Advanced Industrial & Technology Monoclinic lithium manganese-based compound oxide having cation ordered structure and method for producing the same
JP2014060143A (en) * 2012-08-22 2014-04-03 Sony Corp Positive electrode active material, positive electrode and battery, and battery pack, electronic device, electrically-powered vehicle, power storage device and electric power system
JP2015103331A (en) * 2013-11-22 2015-06-04 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Positive electrode active material, and lithium ion secondary battery
WO2018043302A1 (en) * 2016-08-30 2018-03-08 国立研究開発法人産業技術総合研究所 Lithium-nickel composite oxide and production method therefor
WO2019131234A1 (en) * 2017-12-26 2019-07-04 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
WO2019171623A1 (en) * 2018-03-07 2019-09-12 日立金属株式会社 Positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
WO2019189425A1 (en) * 2018-03-29 2019-10-03 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active substance for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240861A (en) * 1988-06-09 1990-02-09 Saft (Soc Accumulateurs Fixes Traction) Sa Manufacture of cathode material of secondary cell having lithium anode and application of the material
JPH05283076A (en) * 1992-02-07 1993-10-29 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and manufacture of positive electrode active material thereof
JPH05290851A (en) * 1992-04-09 1993-11-05 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH05290845A (en) * 1991-11-07 1993-11-05 Sanyo Electric Co Ltd Lithium battery
JPH0660887A (en) * 1992-08-06 1994-03-04 Sanyo Electric Co Ltd Nonaqueous battery
JPH06111822A (en) * 1992-05-18 1994-04-22 Nippon Telegr & Teleph Corp <Ntt> Lithium battery
JPH06203829A (en) * 1992-10-23 1994-07-22 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH06231767A (en) * 1992-06-04 1994-08-19 Matsushita Electric Ind Co Ltd Lithium secondary battery positive electrode, its manufacture, and non-aqueous electrolyte lithium secondary battery using this electrode
JPH07114915A (en) * 1993-10-15 1995-05-02 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH08319120A (en) * 1995-05-19 1996-12-03 Nippon Chem Ind Co Ltd Lithium double oxide, its production and lithium secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240861A (en) * 1988-06-09 1990-02-09 Saft (Soc Accumulateurs Fixes Traction) Sa Manufacture of cathode material of secondary cell having lithium anode and application of the material
JPH05290845A (en) * 1991-11-07 1993-11-05 Sanyo Electric Co Ltd Lithium battery
JPH05283076A (en) * 1992-02-07 1993-10-29 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and manufacture of positive electrode active material thereof
JPH05290851A (en) * 1992-04-09 1993-11-05 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JPH06111822A (en) * 1992-05-18 1994-04-22 Nippon Telegr & Teleph Corp <Ntt> Lithium battery
JPH06231767A (en) * 1992-06-04 1994-08-19 Matsushita Electric Ind Co Ltd Lithium secondary battery positive electrode, its manufacture, and non-aqueous electrolyte lithium secondary battery using this electrode
JPH0660887A (en) * 1992-08-06 1994-03-04 Sanyo Electric Co Ltd Nonaqueous battery
JPH06203829A (en) * 1992-10-23 1994-07-22 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH07114915A (en) * 1993-10-15 1995-05-02 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH08319120A (en) * 1995-05-19 1996-12-03 Nippon Chem Ind Co Ltd Lithium double oxide, its production and lithium secondary battery

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998054773A1 (en) * 1997-05-27 1998-12-03 Tdk Corporation Method of producing electrode for non-aqueous electrolytic cells
JP2006107845A (en) * 2004-10-01 2006-04-20 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using this, and its manufacturing method
JP4595475B2 (en) * 2004-10-01 2010-12-08 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP2007242581A (en) * 2006-02-08 2007-09-20 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2008137837A (en) * 2006-11-30 2008-06-19 Tosoh Corp Lithium-nickel-manganese complex oxide, its manufacturing process and its application
JP2008218122A (en) * 2007-03-02 2008-09-18 Sumitomo Metal Mining Co Ltd Cathode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2008257992A (en) * 2007-04-04 2008-10-23 Sumitomo Metal Mining Co Ltd Positive-electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2009274940A (en) * 2008-05-19 2009-11-26 National Institute Of Advanced Industrial & Technology Monoclinic lithium manganese-based compound oxide having cation ordered structure and method for producing the same
US10431821B2 (en) 2012-08-22 2019-10-01 Murata Manufacturing Co., Ltd. Cathode active material, cathode, battery, battery pack, electronic apparatus, electric vehicle, electric storage apparatus, and electric power system
JP2014060143A (en) * 2012-08-22 2014-04-03 Sony Corp Positive electrode active material, positive electrode and battery, and battery pack, electronic device, electrically-powered vehicle, power storage device and electric power system
JP2015103331A (en) * 2013-11-22 2015-06-04 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Positive electrode active material, and lithium ion secondary battery
WO2018043302A1 (en) * 2016-08-30 2018-03-08 国立研究開発法人産業技術総合研究所 Lithium-nickel composite oxide and production method therefor
JPWO2018043302A1 (en) * 2016-08-30 2019-06-24 国立研究開発法人産業技術総合研究所 Lithium-nickel based composite oxide and method for producing the same
WO2019131234A1 (en) * 2017-12-26 2019-07-04 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
JPWO2019131234A1 (en) * 2017-12-26 2020-12-24 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
US11831013B2 (en) 2017-12-26 2023-11-28 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
WO2019171623A1 (en) * 2018-03-07 2019-09-12 日立金属株式会社 Positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
EP3579311A4 (en) * 2018-03-07 2021-01-06 Hitachi Metals, Ltd. Positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
US11646412B2 (en) 2018-03-07 2023-05-09 Hitachi Metals, Ltd. Cathode active material used for lithium ion secondary battery and lithium ion secondary battery
WO2019189425A1 (en) * 2018-03-29 2019-10-03 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active substance for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2019172530A (en) * 2018-03-29 2019-10-10 住友化学株式会社 Lithium metal composite oxide powder, cathode active material for lithium secondary battery, cathode for lithium secondary battery, and lithium secondary battery
CN111902366A (en) * 2018-03-29 2020-11-06 住友化学株式会社 Lithium metal composite oxide powder, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
US11961995B2 (en) 2018-03-29 2024-04-16 Sumitomo Chemical Company, Limited Lithium metal composite oxide powder, positive electrode active substance for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery

Similar Documents

Publication Publication Date Title
US8298707B2 (en) Positive active material and nonaqueous electrolyte secondary battery
US5792574A (en) Nonaqueous secondary battery
KR100975773B1 (en) Positive electrode and non-aqueous electrolyte cell
US6156457A (en) Lithium secondary battery and method for manufacturing a negative electrode
US20030134200A1 (en) Positive electrode active material and nonaqueous electrolyte secondary cell
JP3492173B2 (en) Non-aqueous battery
US20110171530A1 (en) Cathode active material, and nonaqueous secondary battery having cathode including cathode active material
JP4100736B2 (en) Method for producing positive electrode active material lithium nickelate for non-aqueous secondary battery
JPH08124559A (en) Manufacture of lithium secondary battery and of negative electrode active material
CA2354754A1 (en) Non-aqueous electrolyte secondary cell
US5702843A (en) Nonaqueous secondary battery
JP2003034534A (en) Carbon-containing lithium iron complex oxide for positive electrode active substance for lithium secondary cell and method for producing the same
JP4882220B2 (en) Secondary battery
KR102289691B1 (en) Positive active material, method of manufacturing the same, and positive electrode and rechargeable lithium battery including the same
JP4032744B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery using the same
US20120100431A1 (en) Cathode active material and nonaqueous secondary battery including cathode having the cathode active material
JPH09298061A (en) Nonaqueous secondary battery
JP2000348722A (en) Nonaqueous electrolyte battery
JP3640545B2 (en) Method for producing positive electrode active material lithium nickelate for non-aqueous secondary battery
JPH10312807A (en) Lithium secondary battery and manufacture of negative electrode
JP3833331B2 (en) Non-aqueous secondary battery
JP4447831B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP2000113886A (en) Manufacture of positive electrode active material for nonaqueous secondary battery, and nonaqueous secondary battery
JPH0945330A (en) Nonaqueous secondary battery
JP3589542B2 (en) Method for producing positive electrode active material and non-aqueous secondary battery