JP2549889B2 - Process for producing bis (trichloromethyl) diphenyl ether - Google Patents

Process for producing bis (trichloromethyl) diphenyl ether

Info

Publication number
JP2549889B2
JP2549889B2 JP63089574A JP8957488A JP2549889B2 JP 2549889 B2 JP2549889 B2 JP 2549889B2 JP 63089574 A JP63089574 A JP 63089574A JP 8957488 A JP8957488 A JP 8957488A JP 2549889 B2 JP2549889 B2 JP 2549889B2
Authority
JP
Japan
Prior art keywords
reaction
chlorine
trichloromethyl
diphenyl ether
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63089574A
Other languages
Japanese (ja)
Other versions
JPH01261342A (en
Inventor
貞夫 高桑
哲也 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP63089574A priority Critical patent/JP2549889B2/en
Publication of JPH01261342A publication Critical patent/JPH01261342A/en
Application granted granted Critical
Publication of JP2549889B2 publication Critical patent/JP2549889B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ビス(トリクロロメチル)ジフェニルエー
テルを高純度で製造する方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing bis (trichloromethyl) diphenyl ether with high purity.

ビス(トリクロロメチル)ジフェニルエーテルは非常
に反応性に富むトリクロロメチル基を有し、例えばこれ
より容易に誘導できるジカルボン酸は耐熱性樹脂あるい
は高分子液晶の原料として非常に有用な化合物である。
Bis (trichloromethyl) diphenyl ether has a highly reactive trichloromethyl group, and for example, a dicarboxylic acid that can be easily derived from it is a very useful compound as a heat resistant resin or a raw material for polymer liquid crystals.

(従来の技術) メチル置換基を有する芳香族化合物の側鎖はラジカル
反応開始剤の添加又は光照射等によるラジカル反応によ
って選択的に塩素化されることはよく知られている。こ
の反応は逐次反応であり、メチル基に塩素が導入されて
いくに従って反応速度は大幅に減少し、そのためトリク
ロロメチル化合物を製造する際にはラジカル源として強
力な光源等を用い、比較的高温で塩素化を行うことが必
要とされてきた。
(Prior Art) It is well known that a side chain of an aromatic compound having a methyl substituent is selectively chlorinated by a radical reaction such as addition of a radical reaction initiator or light irradiation. This reaction is a sequential reaction, and the reaction rate greatly decreases as chlorine is introduced into the methyl group.Therefore, when a trichloromethyl compound is produced, a strong light source or the like is used as a radical source and it is used at a relatively high temperature. It has been required to perform chlorination.

従来ビス(トリクロロメチル)ジフェニルエーテルの
製造法としては次のような方法が知られている。
The following methods are known as conventional methods for producing bis (trichloromethyl) diphenyl ether.

(1)米国特許 第3376350号 ジフェニルエーテルをクロロメチル化してビス(クロ
ロメチル)ジフェニルエーテルとした後、四塩化炭素中
太陽灯照射下で塩素化を行う方法。
(1) US Pat. No. 3,376,350 A method in which diphenyl ether is chloromethylated to bis (chloromethyl) diphenyl ether and then chlorinated in carbon tetrachloride under irradiation of a solar lamp.

(2)ソビエト特許 第245061号 ジメチルジフェニルエーテルに五塩化燐を添加し、11
0〜250℃で紫外線を照射しながら塩素化を行う方法。
(2) Soviet Patent No. 245061 Addition of phosphorus pentachloride to dimethyldiphenyl ether
A method of chlorinating while irradiating ultraviolet rays at 0 to 250 ° C.

(3)ソビエト特許 第273186号 ジメチルジフェニルエーテルに脂肪族ニトロエステル
を添加し高温に加熱して塩素化を行う方法。
(3) Soviet Patent No. 273186 A method in which an aliphatic nitroester is added to dimethyldiphenyl ether and heated to a high temperature for chlorination.

また、ビス(トリクロロメチル)ジフェニルエーテル
の製造を目的とするものではないが、ジメチルジフェニ
ルエーテルの側鎖塩素化に際してラジカル反応開始剤を
用いる従来法として以下のものが知られている。
Although not intended for the production of bis (trichloromethyl) diphenyl ether, the following is known as a conventional method using a radical reaction initiator for side-chain chlorination of dimethyldiphenyl ether.

(4)特開昭55−89237号 ジメチルジフェニルエーテルを含窒素化合物及び含硫
黄化合物とラジカル反応開始剤の共存下で塩素化して主
としてジクロロメチル側鎖を有する化合物を得る方法。
(4) JP-A-55-89237 A method of chlorinating dimethyldiphenyl ether in the presence of a nitrogen-containing compound and a sulfur-containing compound and a radical reaction initiator to obtain a compound mainly having a dichloromethyl side chain.

(5)特開昭56−125326号 ジメチルジフェニルエーテルを含硫黄化合物とラジカ
ル反応開始剤の共存下で塩素化して主としてジクロロメ
チル側鎖を有する化合物を得る方法。
(5) JP-A-56-125326 A method of chlorinating dimethyldiphenyl ether in the presence of a sulfur-containing compound and a radical reaction initiator to obtain a compound mainly having a dichloromethyl side chain.

(発明が解決しようとする課題) 上記(1),(2)の反応初期から紫外線を照射する
方法及び(3)の高温塩素化を行う方法のいずれも得ら
れるビス(トリクロロメチル)ジフェニルエーテルは黒
色のタール状副生物で著しく汚染されている。これは分
子内のエーテル結合によって活性化されたベンゼン環に
より引き起こされる副反応(例えば脱塩化水素によるタ
ール状オリゴマー生成、核塩素化、環化反応等)に起因
するものと考えられる。上記従来の光塩素化法の場合、
反応開始当初からタール状副生物の生成により反応液が
着色するため反応が進行すると共に光の透過が悪くな
り、反応速度の減少、暗黒反応による副生物の増加、最
悪の場合には反応あを完結することができないという事
態が生じた。しかもこれらの方法によって得られた反応
液からビス(トリクロロメチル)ジフェニルエーテルを
得るためには蒸留あるいは再結晶などの精製の手段が不
可欠である。
(Problems to be Solved by the Invention) Bis (trichloromethyl) diphenyl ether which is obtained by both the method of irradiating ultraviolet rays from the initial stage of the reaction of (1) and (2) and the method of high temperature chlorination of (3) is black. It is heavily contaminated with the tar-like by-products of. It is considered that this is due to a side reaction (for example, tar-like oligomer formation by dehydrochlorination, nuclear chlorination, cyclization reaction, etc.) caused by a benzene ring activated by an ether bond in the molecule. In the case of the above conventional photochlorination method,
Since the reaction solution is colored from the beginning of the reaction due to the generation of tar-like by-products, the reaction proceeds and the light transmission deteriorates, the reaction rate decreases, the by-products increase due to the dark reaction, and in the worst case, the reaction increases. There was a situation where it could not be completed. Moreover, in order to obtain bis (trichloromethyl) diphenyl ether from the reaction solution obtained by these methods, purification means such as distillation or recrystallization is indispensable.

また、従来法の上記(4),(5)の方法は、主とし
てジクロロメチル側鎖を有する化合物の製造を目的とす
るものであるが、このような第三物質を添加する方法は
生成物中にこれらが残存し、これを分離除去せねばなら
ないという問題が残っている。
Further, the above-mentioned conventional methods (4) and (5) are mainly aimed at the production of a compound having a dichloromethyl side chain, but the method of adding such a third substance is However, there remains a problem that they must be separated and removed.

一方、上記含窒素化合物や含硫黄化合物の如き第三物
質を共存させずにラジカル反応開始剤のみによって側鎖
塩素化する方法も考えられるが、この方法は、反応を完
結させるために長時間を要するという難点がある。ま
た、この方法は反応後期における反応速度の急激な低下
をラジカル反応開始剤の逐次添加によって補わねばなら
ないといった煩わしさがあるし、この大量に添加したラ
ジカル反応開始剤を分離除去せねばならないといった精
製処理上の問題もある。
On the other hand, a method of chlorinating a side chain only with a radical reaction initiator without coexisting a third substance such as the above-mentioned nitrogen-containing compound or sulfur-containing compound is also conceivable, but this method requires a long time to complete the reaction. There is a drawback that it costs. In addition, this method has the inconvenience that a rapid decrease in the reaction rate in the latter half of the reaction must be compensated by the sequential addition of radical reaction initiators, and the radical reaction initiators added in large amounts must be separated and removed. There are also processing problems.

一般にビス(トリクロロメチル)ジフェニルエーテル
は、(i)沸点が高く、熱に対して不安定である、(i
i)融点は低く、有機溶媒には易溶である、(iii)求核
性を有する化合物と容易に反応する、等の性質が知られ
ており、上記従来法によって得られた反応液を通常の精
製法、例えば蒸留を行うと、上記(i)の性質のため蒸
留中熱分解を起こしたり、また再結晶による精製を行う
には、上記(ii),(iii)のため使用可能な溶媒が限
定されるなど、精製に大きな損失を伴うことは避けられ
なかった。また上記従来(1)〜(3)の場合反応液は
タール状副生物のために過が困難であるなど操作上の
不利もあった。
In general, bis (trichloromethyl) diphenyl ether has a high boiling point (i) and is unstable to heat.
It is known that i) it has a low melting point, is easily soluble in an organic solvent, and (iii) easily reacts with a compound having a nucleophilic property. When the purification method of (1) is performed, for example, pyrolysis occurs during distillation due to the property of (i) above, and in order to perform purification by recrystallization, a solvent usable for (ii) and (iii) above is used. However, it was unavoidable that the purification was accompanied by a large loss, such as the limitation of Further, in the cases of the above-mentioned conventional methods (1) to (3), the reaction liquid has a disadvantage in operation such that it is difficult to keep it because it is a tar-like by-product.

(課題を解決するための手段) 本発明者らは、ビス(トリクロロメチル)ジフェニル
エーテルの製造法において、反応後反応液を蒸留もしく
は再結晶などの精製工程を加えることなく、減圧濃縮等
の簡便な操作のみで高純度な目的物を得るためには、上
記副反応を最小限に抑制することが工業生産上重要であ
ると考え、核塩素化物あるいはタール状副生物の生成を
如何に抑えるかに主眼をおいて鋭意検討を行った。その
結果、ラジカル反応開始剤を用いる塩素化方法はタール
状副生物の生成を抑える最良の方法であること、光照射
によるタール状副生物の生成は反応初期において最も起
こり易いものであること、更に側鎖メチル基に塩素が導
入されていくに従ってタール状副生物、核塩素化物等の
副反応は起こり難くなっていくこと等を見出した。そこ
で原料のジメチルジフェニルエーテルを不活性溶媒で稀
釈し、先ずラジカル反応開始剤の存在下に塩素化を行っ
て側鎖に塩素を導入し、然る後に光照射を開始して塩素
化を続行して反応を完結せしめる方法を採用したとこ
ろ、光塩素化法に特有のタール状副生物の生成は認めら
れす、かつ高収率、高純度でしかも短時間で目的物を製
造できることが分かった。
(Means for Solving the Problems) In the method for producing bis (trichloromethyl) diphenyl ether, the inventors of the present invention can perform simple methods such as vacuum concentration without adding a purification step such as distillation or recrystallization to the reaction solution after the reaction. In order to obtain a high-purity target product only by operation, it is important to suppress the above side reactions to the minimum in industrial production, and how to suppress the formation of nuclear chlorinated products or tar-like by-products We conducted a thorough study with a focus on the main points. As a result, the chlorination method using a radical reaction initiator is the best method for suppressing the formation of tar-like by-products, and the formation of tar-like by-products by light irradiation is the most likely to occur at the initial stage of the reaction. It has been found that as chlorine is introduced into the side chain methyl group, side reactions such as tar-like by-products and nuclear chlorinated compounds become less likely to occur. Therefore, the raw material dimethyldiphenyl ether was diluted with an inert solvent, first chlorinated in the presence of a radical reaction initiator to introduce chlorine into the side chain, and then light irradiation was started to continue chlorination. When a method for completing the reaction was adopted, it was found that a tar-like by-product peculiar to the photochlorination method was observed, and that the target product could be produced in high yield and high purity in a short time.

すなわち、本発明は、下記一般式(I) (但し、上記(I)式中メチル基はメタ位又はパラ位に
位置する) で表わされる化合物を不活性溶媒で上記化合物に対して
重量で10〜50倍に稀釈し、ラジカル反応開始剤の存在下
で塩素を導入して上記化合物の側鎖メチル基の塩素化率
が70〜90%まで塩素化する第一工程と、光照射下で塩素
を導入して反応を完結する第二工程とからなることを特
徴とする一般式(II) (但し、上記(II)式中トリクロロメチル基はメタ位又
はパラ位に位置する) で表わされるビス(トリクロロメチル)ジフェニルエー
テルの製法である。
That is, the present invention provides the following general formula (I) (However, the methyl group in the above formula (I) is located at the meta or para position) is diluted with an inert solvent in an amount of 10 to 50 times by weight with respect to the above compound to prepare a radical reaction initiator. A first step in which chlorine is introduced in the presence to chlorinate the side chain methyl group of the compound to 70 to 90%, and a second step in which chlorine is introduced under light irradiation to complete the reaction. The general formula (II) is characterized by (However, in the formula (II), the trichloromethyl group is located at the meta position or the para position) is a process for producing bis (trichloromethyl) diphenyl ether.

本発明は、ラジカル反応開始剤による塩素化と光照射
による塩素化とをそれぞれ相補的に組合せた方法であ
り、特に光塩素化の致命的欠点というべきタール状副生
物の生成を、反応初期にラジカル反応開始剤を用いるこ
とによって抑制し、反応後期において該開始剤が消費さ
れることにより低下する反応速度を光照射によって促進
させる効果を有する。すなわち、本発明の目的物の製法
にように反応初期における反応条件の設定が製品の純度
に大きく影響するような場合、光塩素化のみでは光量、
反応容器の形状等の解析は複雑であり、これに着色の要
因が加わるため装置のスケールアップには大きな困難を
伴うものであるが、反応を完結する最終段階において光
照射を行う方法を採れば、たとえ光照射下に過剰の塩素
を供給したとしてもタール状副生物、核塩素化物の副生
は殆んど認められず、従って装置のスケールアップは容
易に行うことができる。ラジカル反応開始剤のみでも長
時間かけて反応を行うことは可能ではあるが、本発明法
によれば最短の反応時間、最小のラジカル反応開始剤に
より反応を遂行することができる。生成物中のラジカル
反応開始剤の分解物は、本発明の目的物であるビス(ト
リクロロメチル)ジフェニルエーテルとの間に大きな沸
点差があり、精留を行うまでもなく、単なる減圧濃縮操
作だけで容易に反応混合物から除くことができる。
The present invention is a method in which chlorination by a radical reaction initiator and chlorination by light irradiation are respectively combined in a complementary manner. It has the effect of suppressing the use of a radical reaction initiator and accelerating the reaction rate by irradiation with light, which is reduced by the consumption of the initiator in the latter stage of the reaction. That is, when the reaction conditions in the initial stage of the reaction greatly affect the purity of the product, as in the method for producing the object of the present invention, the amount of light by photochlorination alone,
The analysis of the shape of the reaction vessel is complicated, and it is difficult to scale up the device because coloring factors are added to this, but if the method of performing light irradiation at the final stage of completing the reaction is adopted. However, even if an excessive amount of chlorine is supplied under light irradiation, almost no tar-like by-products and nuclear chlorinated by-products are observed, and therefore the apparatus can be easily scaled up. Although it is possible to carry out the reaction for a long time with only the radical reaction initiator, according to the method of the present invention, the reaction can be carried out with the shortest reaction time and the shortest radical reaction initiator. The decomposed product of the radical reaction initiator in the product has a large boiling point difference with the target product of the present invention, bis (trichloromethyl) diphenyl ether, and does not have to be rectified. It can be easily removed from the reaction mixture.

本発明に用いられる上記式(I)の化合物の具体例と
しては、3,3′−ジメチルフェニルエーテル,3,4′−ジ
メチルフェニルエーテル及び4,4′−ジメチルジフェニ
ルエーテル等の前記(I)式中のメチル基がメタ位又は
パラ位に位置する化合物が挙げられる。
Specific examples of the compound of the above formula (I) used in the present invention include the above formula (I) such as 3,3′-dimethylphenyl ether, 3,4′-dimethylphenyl ether and 4,4′-dimethyldiphenyl ether. Examples thereof include compounds in which the methyl group is located at the meta position or the para position.

本発明に用いられる不活性溶媒としては、例えば四塩
化炭素,モノクロロベンゼン,ジクロロベンゼン等の塩
素化に対して不活性なものが挙げられる。
Examples of the inert solvent used in the present invention include those which are inert to chlorination such as carbon tetrachloride, monochlorobenzene and dichlorobenzene.

反応に際しての原料ジメチルジフェニルエーテルの濃
度は製品の純度に大きく影響し、濃度が10重量%を超え
ると目的物の純度は大きく低下し始め、30重量%以上で
は殆んどが核塩素化物となることが確められた。従って
溶媒の使用量は式(I)原料化合物に対して重量で10倍
以上、好ましくは10〜50倍、更に好ましくは13〜30倍の
範囲が適当である。
The concentration of the starting material dimethyldiphenyl ether during the reaction has a great influence on the purity of the product, and when the concentration exceeds 10% by weight, the purity of the target substance begins to decrease greatly, and when it exceeds 30% by weight, most of it becomes a nuclear chlorinated product. Was confirmed. Therefore, the amount of the solvent used is 10 times or more, preferably 10 to 50 times, and more preferably 13 to 30 times by weight of the raw material compound of the formula (I).

本発明に用いられるラジカル反応開始剤としては、ベ
ンゾイルパーオキサイドに代表される有機過酸化物やア
ゾビスイソブチロニトリルに代表されるアゾ化合物が挙
げられ、ラジカル反応開始剤と溶媒との組合せは反応温
度と該開始剤の半減期を考慮して適宜選択される。ラジ
カル反応開始剤の添加量は、実施に際して反応初期に過
剰の塩素を発生させず、また第一工程における最適塩素
導入量を考慮して定められるが、通常原料ジメチルジフ
ェニルエーテルに対して0.1〜10重量%、好ましくは1
〜5重量%の範囲である。
Examples of the radical reaction initiator used in the present invention include organic peroxides typified by benzoyl peroxide and azo compounds typified by azobisisobutyronitrile. A combination of a radical reaction initiator and a solvent is It is appropriately selected in consideration of the reaction temperature and the half-life of the initiator. The amount of the radical reaction initiator added is determined in consideration of the optimum chlorine introduction amount in the first step without generating excessive chlorine in the initial stage of the reaction, and is usually 0.1 to 10% by weight with respect to the starting material dimethyldiphenyl ether. %, Preferably 1
Is in the range of up to 5% by weight.

本発明の実施において、第一工程のラジカル反応開始
剤存在下での塩素化は、原料化合物を溶かした不活性溶
媒中に塩素を導入して原料化合物の側鎖の塩素化率が70
%以上、好ましくは70〜90%に達するまで行われる。特
に塩素化された原料化合物からベンジルプロトンが消失
したときに第二工程の光照射下での塩素化を開始するの
が好ましい。この段階での側鎖塩素化率は反応条件によ
って異なるが、通常75〜85%の範囲にある。従って、第
一工程におけるラジカル反応開始剤の添加量は反応初期
に過剰の塩素を発生させず、しかも側鎖に70%以上の塩
素を導入しうる量である。第一工程における塩素の導入
量が側鎖塩素化率70%未満のときは、低次塩素化物(例
えば、メチル及びベンジルプロトンを有するもの)の占
める割合が多く、第二工程での光塩素化時に副反応を起
こしし易いので好ましくない。また塩素の導入量が90%
を超えるときは、反応速度の減少によって反応に長時間
を要する結果となり、更に系内に過剰の塩素が蓄積する
ために第二工程での光照射時に爆発的な反応が起こり操
作上好ましくない。
In the practice of the present invention, the chlorination in the presence of the radical reaction initiator in the first step is carried out by introducing chlorine into an inert solvent in which the raw material compound is dissolved, so that the chlorination ratio of the side chain of the raw material compound is 70.
% Or more, preferably 70 to 90%. In particular, it is preferable to start the chlorination under the light irradiation in the second step when the benzyl proton disappears from the chlorinated raw material compound. The side chain chlorination rate at this stage varies depending on the reaction conditions, but is usually in the range of 75 to 85%. Therefore, the addition amount of the radical reaction initiator in the first step is an amount that does not generate excessive chlorine in the initial stage of the reaction and can introduce 70% or more chlorine into the side chain. When the amount of chlorine introduced in the first step is less than 70% side chain chlorination, the proportion of low-order chlorinated compounds (for example, those having methyl and benzyl protons) is high, and photochlorination in the second step It is not preferable because it sometimes causes a side reaction. In addition, the amount of chlorine introduced is 90%
If it exceeds, the reaction will take a long time due to a decrease in the reaction rate, and excessive chlorine will be accumulated in the system to cause an explosive reaction during the light irradiation in the second step, which is not preferable in terms of operation.

第二工程で用いられる光源は350〜500nm程度の通常の
紫外線が用いられ、高圧水銀灯を用いるのが好適であ
る。第二工程での光塩素化の開始は、上記したとおり、
原料化合物の側鎖塩素化率が70%以上のときである。
As the light source used in the second step, ordinary ultraviolet light having a wavelength of about 350 to 500 nm is used, and it is preferable to use a high pressure mercury lamp. The initiation of photochlorination in the second step is as described above.
It is when the side chain chlorination rate of the raw material compound is 70% or more.

反応はバッチ式で行われるが、例えば第一工程のラジ
カル反応槽と第二工程の光反応槽の二槽で連続式に行う
ことも可能である。
The reaction is carried out in a batch system, but it is also possible to carry out the reaction in a continuous system in two tanks, for example, a radical reaction tank in the first step and a photoreaction tank in the second step.

反応によって生成する塩化水素は核塩素化の触媒効果
をもつことが知られており、反応温度が低いと塩化水素
の溶解量が増大するため製品純度は低下する。従って本
発明における第一工程及び第二工程での好適な反応温度
は50〜150℃の範囲、特に反応系が緩やかに還流する温
度で行うとよい。また窒素ガスの如き不活性ガスを導入
して反応系から塩素水素を追い出しながら反応を行って
もよい。
It is known that hydrogen chloride produced by the reaction has a catalytic effect on nuclear chlorination, and when the reaction temperature is low, the amount of dissolved hydrogen chloride increases, so that the product purity decreases. Therefore, the preferred reaction temperature in the first step and the second step in the present invention is in the range of 50 to 150 ° C., particularly at a temperature at which the reaction system gently refluxes. Further, the reaction may be carried out while purging hydrogen chloride from the reaction system by introducing an inert gas such as nitrogen gas.

反応時間は、塩素導入速度によっても異なるが、通常
第一工程及び第二工程を通して1〜30時間の範囲であ
る。特に反応初期では塩素の過剰供給が製品の純度を大
きく低下させることになるので、反応初期は系外に過剰
の塩素を排出させないように塩素導入量を調節して反応
時間を設定することが目的物を高純度で製造する上で重
要である。また使用する塩素及び溶媒は乾燥しているこ
とが好ましい。核塩素化の触媒となり得る重金属をマス
キングするために反応系内にアミド系化合物等を添加す
る方法が知られているが、本発明においてもかようなマ
スキング剤を添加することは勿論可能であり、反応の遂
行上何ら問題はない。
Although the reaction time varies depending on the chlorine introduction rate, it is usually in the range of 1 to 30 hours throughout the first step and the second step. Especially in the initial stage of the reaction, excessive supply of chlorine will significantly reduce the purity of the product.Therefore, in the initial stage of the reaction, the purpose of setting the reaction time is to adjust the amount of chlorine introduced so that excessive chlorine is not discharged out of the system. It is important for producing the product with high purity. The chlorine and solvent used are preferably dry. A method of adding an amide compound or the like to the reaction system in order to mask a heavy metal that can be a catalyst for nuclear chlorination is known, but it is of course possible to add such a masking agent also in the present invention. , There is no problem in carrying out the reaction.

反応中の撹拌は局部的な塩素の高濃度化を防ぐために
重量であり、塩素の導入方法等は目的物の純度に影響を
与えるが、これらは実施に際し実験等により容易に定め
ることができる。
The stirring during the reaction is a weight in order to prevent the local concentration of chlorine from increasing, and the method of introducing chlorine, etc. affects the purity of the target product, but these can be easily determined by experiments or the like when carrying out.

(実施例) 実施例1 100W高圧水銀灯照射装置を内部に備えた反応器に、3,
4′−ジメチルジフェニルエーテル58.5g(0.29モル)、
四塩化炭素915g及びベンゾイルパーオキサイド1.8gを仕
込み、系が緩やかに還流するまで加熱した。まず水銀灯
非点灯下でガス導入管より塩素ガスを140ml/minの割合
で導入し塩素化を行った。約4時間後NMRによりベンジ
ルプロトンの消失がほぼ確認できたので(この時点での
側鎖塩素化率はガスクロマトグラフィ分析によると83%
であった)、高圧水銀灯を点灯し光照射下で更に塩素化
を続行した。反応開始より5時間30分後にNMRでベンザ
ルプロトンの消失が確認できたので塩素導入を停止し反
応を終了した。系に窒素ガスを導入して溶存する塩化水
素及び塩素ガスを追い出した後濃縮し、更に80℃、2mmH
gで減圧濃縮して無色油状物120gを得た。ガスクロマト
グラフィで分析したところ、3,4′−ビス(トリクロロ
メチル)ジフェニルエーテル98.5重量%及び核塩素化物
1.5重量%の割合で生成していた。
(Example) Example 1 A reactor equipped with a 100 W high-pressure mercury lamp irradiation device inside,
5'-Dimethyldiphenyl ether 58.5 g (0.29 mol),
Carbon tetrachloride (915 g) and benzoyl peroxide (1.8 g) were charged and heated until the system gently refluxed. First, chlorine gas was introduced from a gas inlet tube at a rate of 140 ml / min to chlorinate the lamp without turning on the mercury lamp. Approximately 4 hours later, the disappearance of the benzylic protons was almost confirmed by NMR. (The side chain chlorination rate at this point was 83% according to gas chromatography analysis.
The high pressure mercury lamp was turned on and the chlorination was continued under the irradiation of light. After 5 hours and 30 minutes from the start of the reaction, disappearance of the benzal proton was confirmed by NMR, so the introduction of chlorine was stopped and the reaction was terminated. Nitrogen gas was introduced into the system to expel dissolved hydrogen chloride and chlorine gas and then concentrated, and further 80 ° C, 2 mmH
Concentration under reduced pressure with g gave 120 g of a colorless oil. When analyzed by gas chromatography, 98.5% by weight of 3,4'-bis (trichloromethyl) diphenyl ether and nuclear chlorinated product
It was produced at a rate of 1.5% by weight.

比較例1 100Wの高圧水銀灯照射装置を内部に備えた反応器に3,
4′−ジメチルジフェニルエーテル58.5g(0.29モル)、
四塩化炭素916gを仕込んだ。系を緩やかに還流させて水
銀灯照射下で塩素を140ml/minの速度で導入して塩素化
を行った。反応開始と共に反応液は次第に褐色を帯び、
反応後半は反応速度が著しく低下したが、反応開始から
7時間30分後、NMRによりベンザルプロトンの消失が確
認されたのでこの時点で反応を終了した。
Comparative Example 1 A reactor equipped with a 100 W high pressure mercury lamp irradiation device was used in a reactor.
5'-Dimethyldiphenyl ether 58.5 g (0.29 mol),
Charged 916 g of carbon tetrachloride. Chlorination was performed by gently refluxing the system and introducing chlorine at a rate of 140 ml / min under irradiation of a mercury lamp. With the start of the reaction, the reaction solution gradually turns brown,
Although the reaction rate decreased remarkably in the latter half of the reaction, the disappearance of the benzal proton was confirmed by NMR 7 hours and 30 minutes after the start of the reaction, so the reaction was terminated at this point.

反応後、窒素ガスを導入して溶存する塩化水素、塩素
ガスを追い出した後減圧濃縮して粘稠な黒褐色油状物12
3gを得た。これをガスクロマトグラフィを用いて分析し
ところ、3,4′−ビス(トリクロロメチル)ジフェニル
エーテル92.5重量%、核塩素化物3.4重量%、その他高
沸点物4.1重量%の割合で生成していた。
After the reaction, nitrogen gas was introduced to dissolve dissolved hydrogen chloride and chlorine gas, and the mixture was concentrated under reduced pressure to give a viscous black-brown oily substance 12
3g was obtained. When this was analyzed using gas chromatography, it was found that 92.5% by weight of 3,4'-bis (trichloromethyl) diphenyl ether, 3.4% by weight of the nuclear chlorinated product and 4.1% by weight of other high-boiling substances were produced.

比較例2 3,4′−ジメチルジフェニルエーテル58.2g(0.29モ
ル)、ベンゾイルパーオキサイド2.9gを四塩化炭素916g
に溶解し、系を緩やかに還流させた。これに塩素を140m
l/minの速度で導入しNMRで反応を追跡した。反応開始よ
り8時間目にベンザルプロトンが消失したので反応を終
了した。
Comparative Example 2 3,4'-Dimethyldiphenyl ether 58.2 g (0.29 mol), benzoyl peroxide 2.9 g and carbon tetrachloride 916 g
, And the system was gently refluxed. 140m chlorine to this
It was introduced at a rate of 1 / min and the reaction was followed by NMR. The benzal proton disappeared 8 hours after the start of the reaction, so the reaction was terminated.

反応後、系に窒素ガスを導入して溶存する塩化水素、
塩素ガスを追い出した後、減圧濃縮して淡黄色油状物12
1gを得た。これをガスクロマトグラフィで分析したとこ
ろ、3,4′−ビス(トリクロロメチル)ジフェニルエー
テル97.0重量%、核塩素化物3.0重量%の割合で生成し
ていた。
After the reaction, nitrogen gas is introduced into the system to dissolve hydrogen chloride,
After purging chlorine gas, it was concentrated under reduced pressure to give a pale yellow oil.
1 g was obtained. When this was analyzed by gas chromatography, it was found that 97.0% by weight of 3,4'-bis (trichloromethyl) diphenyl ether and 3.0% by weight of a nuclear chlorinated product were formed.

(発明の効果) 本発明は、穏和な条件で、しかも何らの装置上あるい
は工程上の煩雑さはなく、簡便で、しかも短時間で高純
度な目的物を高収率で得ることができる。得られた目的
物は耐熱性樹脂、高分子液晶の原料としてそのまま使用
することができる。
(Effects of the Invention) The present invention makes it possible to obtain a high-purity target product in a simple condition in a short time, under mild conditions, without any complicated apparatus or process. The obtained target product can be used as it is as a raw material for a heat resistant resin and a polymer liquid crystal.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記一般式(I) (但し、上記(I)式中メチル基はメタ位又はパラ位に
位置する) で表わされる化合物を不活性溶媒で上記化合物に対して
重量で10〜50倍に稀釈し、ラジカル反応開始剤の存在下
で塩素を導入して上記化合物の側鎖メチル基の塩素化率
が70〜90%まで塩素化する第一工程と、光照射下で塩素
を導入して反応を完結する第二工程とからなることを特
徴とする一般式(II) (但し、上記(II)式中トリクロロメチル基はメタ位、
又はパラ位に位置する) で表わされるビス(トリクロロメチル)ジフェニルエー
テルの製法。
1. The following general formula (I): (However, the methyl group in the above formula (I) is located at the meta or para position) is diluted with an inert solvent in an amount of 10 to 50 times by weight with respect to the above compound to prepare a radical reaction initiator. A first step in which chlorine is introduced in the presence to chlorinate the side chain methyl group of the compound to 70 to 90%, and a second step in which chlorine is introduced under light irradiation to complete the reaction. The general formula (II) is characterized by (However, the trichloromethyl group in the above formula (II) is in the meta position,
Alternatively, a method for producing bis (trichloromethyl) diphenyl ether represented by
JP63089574A 1988-04-12 1988-04-12 Process for producing bis (trichloromethyl) diphenyl ether Expired - Lifetime JP2549889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63089574A JP2549889B2 (en) 1988-04-12 1988-04-12 Process for producing bis (trichloromethyl) diphenyl ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63089574A JP2549889B2 (en) 1988-04-12 1988-04-12 Process for producing bis (trichloromethyl) diphenyl ether

Publications (2)

Publication Number Publication Date
JPH01261342A JPH01261342A (en) 1989-10-18
JP2549889B2 true JP2549889B2 (en) 1996-10-30

Family

ID=13974573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63089574A Expired - Lifetime JP2549889B2 (en) 1988-04-12 1988-04-12 Process for producing bis (trichloromethyl) diphenyl ether

Country Status (1)

Country Link
JP (1) JP2549889B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840934B2 (en) * 1978-12-25 1983-09-08 朝日化学工業株式会社 Highly selective production method of chlorinated phenoxytoluenes
JPS5840935B2 (en) * 1979-12-19 1983-09-08 朝日化学工業株式会社 Highly selective production method of chlorinated phenoxytoluenes
JPS56125326A (en) * 1980-03-07 1981-10-01 Asahi Kagaku Kogyo Kk Preparation of chlorinated phenoxytoluenes in high selectivity
JPH062697B2 (en) * 1986-06-04 1994-01-12 帝人株式会社 Process for producing trichloromethyl-substituted phenyl ethers

Also Published As

Publication number Publication date
JPH01261342A (en) 1989-10-18

Similar Documents

Publication Publication Date Title
JPH062681B2 (en) Method for carrying out substitutional chlorination reaction of organic compound and initiator thereof
JP2839483B2 (en) Method for producing trichloromethoxybenzene
WO1998005614A1 (en) Preparation of 1,1,1,3,3-pentachloropropane by photochlorination of 1,1,1,3-tetrachloropropane
JP2549889B2 (en) Process for producing bis (trichloromethyl) diphenyl ether
JP2549890B2 (en) Process for producing bis (trichloromethyl) diphenyl ether
WO2018186460A1 (en) Method for purifying trifluoromethylpyridine compound
JP3059717B2 (en) Continuous production method of mono and / or bis (mono and / or di and / or trichloromethyl) benzene
EP0849253B1 (en) Process for producing benzoyl chlorides
JP3125956B2 (en) Method for chlorinating side chains of aromatic compounds
JPH0665225A (en) Method of alpha-chlorination of aryl ether
US8030528B2 (en) Process for producing 1,2,3,4-tetrachlorohexafluorobutane
US3265603A (en) Process for the chlorination of 2-chloro-6-nitro-benzonitrile
US3637479A (en) Halogenation process using ultraviolet light
US3963751A (en) Chlorination of butadiene sulfone to 3,3,4,4-tetrachlorotetrahydrothiophene-1,1-dioxide
US6174415B1 (en) Chlorinating side chains of aromatic compounds
JP3882855B2 (en) Method for producing alkylbenzoyl chloride
US6093858A (en) Method for producing bis (trifluoromethyl) benzene
JPH01149740A (en) Production of 4,4'-dibromobiphenyl
WO2023054644A1 (en) Method for producing fluorenone
KR101885110B1 (en) METHOD OF PREPARING p-PHENYLENEDIAMINE
JP5250199B2 (en) Method for producing trichloromethanesulfonyl chloride
JPS6372632A (en) Production of alpha,alpha'-dichloroxylene
JPS6215048B2 (en)
WO2022102502A1 (en) Method for producing fluorenone
JP4076618B2 (en) Method for producing 3-chlorocycloalkene