JP2541445B2 - Method for producing polymer liquid crystal composite film - Google Patents

Method for producing polymer liquid crystal composite film

Info

Publication number
JP2541445B2
JP2541445B2 JP5093452A JP9345293A JP2541445B2 JP 2541445 B2 JP2541445 B2 JP 2541445B2 JP 5093452 A JP5093452 A JP 5093452A JP 9345293 A JP9345293 A JP 9345293A JP 2541445 B2 JP2541445 B2 JP 2541445B2
Authority
JP
Japan
Prior art keywords
liquid crystal
polymer
thin film
film
manufactured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5093452A
Other languages
Japanese (ja)
Other versions
JPH06308465A (en
Inventor
大作 中田
秀哉 村井
智久 五藤
悦雄 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP5093452A priority Critical patent/JP2541445B2/en
Publication of JPH06308465A publication Critical patent/JPH06308465A/en
Application granted granted Critical
Publication of JP2541445B2 publication Critical patent/JP2541445B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、文字、図形等を表示す
る表示装置、入射光の透過ー遮断を制御する調光フィル
ム、光シャッター等に利用される液晶光学素子に用いら
れる高分子液晶複合膜の製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention displays characters, figures, etc.
Display device, dimming filter that controls transmission / blocking of incident light
Used for liquid crystal optical elements used in optical shutters, optical shutters, etc.
The present invention relates to a method for producing a polymer liquid crystal composite film .

【0002】[0002]

【従来の技術】液晶光学素子は、従来ネマチック液晶を
使用したTN型や、STN型のものが実用化されてい
る。しかしこれらは偏光板を要するため、明るさ、コン
トラストにおいて制限を受けるという欠点を有してい
る。一方、特開昭58−501631号公報に開示され
た、液晶材料をカプセル化し、高分子物質中に分散する
方法で得られる光学素子(高分子分散液晶素子)では、
偏光板を要しないため光の減衰が少ないという利点を有
している。この開示技術においてはカプセル材の屈折
率を電圧印加下の液晶材料の屈折率と等しく設定するこ
とによって、電圧印加下では透明に、電圧を除いた時に
は、光を散乱し不透明になる光学素子が得られている。
液晶材料の屈折率の変化を利用した同様の素子として液
晶材料を熱硬化性のエポキシ樹脂に分散したもの(特開
昭61−502128号公報)、紫外線硬化樹脂中に分
散したもの(特開昭62−2231号公報)、多孔質膜
の空孔に液晶を含浸したもの(特開平3−59515号
公報)等が知られている。 また、発明者らは既に特願
平03−308627号明細書において空孔径、分布が
制御された多孔性高分子薄膜および多孔(空孔)への液
晶の充填により得られる新しい液晶光学素子およびその
製造方法を発明し出願している。
2. Description of the Related Art Conventionally, liquid crystal optical elements of TN type or STN type using nematic liquid crystals have been put into practical use. However, since these require polarizing plates, they have the drawback of being limited in brightness and contrast. On the other hand, in an optical element (polymer dispersed liquid crystal element) obtained by a method of encapsulating a liquid crystal material and dispersing it in a polymer substance, which is disclosed in JP-A-58-501631,
Since it does not require a polarizing plate, it has an advantage of less light attenuation. In this disclosed technique, by setting equal to the refractive index of the liquid crystal material under the voltage application the refractive index of the encapsulant, transparent under voltage application, the time except the voltage, optical element becomes opaque scatter light Has been obtained.
As a similar device utilizing the change in the refractive index of the liquid crystal material, one in which the liquid crystal material is dispersed in a thermosetting epoxy resin (Japanese Patent Laid-Open No. 61-502128) and one in which it is dispersed in an ultraviolet curable resin (Japanese Patent Laid-Open No. 62-2231) , porous membrane
Liquid crystal impregnated into the pores of the same (Japanese Patent Laid-Open No. 3-59515)
Gazette) etc. are known. In addition, the inventors have already disclosed in Japanese Patent Application No. 03-308627 that the pore diameter and distribution are
A new liquid crystal optical element obtained by filling a liquid crystal into a controlled porous polymer thin film and pores (voids) and a method for producing the same have been invented and applied for.

【0003】[0003]

【発明が解決しようとする課題】上記のごとき高分子液
晶複合膜ではその光学素子としての機能が分散されてい
る液晶滴と高分子界面との相互作用、液晶滴の大きさ及
び分布に大きく依存することが知られている。それらの
制御が機能向上にきわめて重要であるにも拘らず界面の
相互作用及び液晶滴の大きさ、分布を制御することは作
製条件上、困難である。例えば紫外線硬化法では、微妙
な温度変化に基づく相分離変化を液晶材料の粒径や分布
制御に利用するため、狭い面積の膜以外では膜全体の温
度を均一に制御することが困難であった。また、この作
製法では膜全体の液晶材料と高分子前駆体とをあらかじ
め均一に混合したのち液晶材料を相分離させて複合膜を
形成する。従って界面の相互作用は高分子物質−液晶材
料の相溶性に大きく依存するため、使用した液晶材料と
高分子前駆体との組み合わせで殆ど決定される。よって
同一の組み合わせで相互作用のみを変化させ、特性向上
を謀ることは技術的に困難である。
In the polymer liquid crystal composite film as described above, the function as an optical element is dispersed, the interaction between the liquid crystal droplet and the polymer interface, the size of the liquid crystal droplet, and the like.
It is known that it greatly depends on the distribution and the distribution . It is difficult to control the interaction at the interface and the size and distribution of the liquid crystal droplets under the manufacturing conditions, though their control is extremely important for improving the function. For example, in the ultraviolet curing method, subtle
The phase separation change caused by various temperature changes can be controlled by the particle size and distribution of the liquid crystal material.
Since it is used for control, the temperature of the entire
It was difficult to control the degree uniformly. Also this work
In the manufacturing method, the liquid crystal material of the entire film and the polymer precursor are uniformly mixed in advance, and then the liquid crystal material is phase-separated to form a composite film. Therefore, the interaction at the interface largely depends on the compatibility between the polymer substance and the liquid crystal material, and is almost determined by the combination of the liquid crystal material and the polymer precursor used. Therefore, it is technically difficult to try to improve the characteristics by changing only the interaction with the same combination.

【0004】一方、発明者らによる特願平03−308
627号明細書にて記述した液晶光学素子およびその製
造方法は、複合膜形成に相分離過程が含まれず上記の相
分離法における特性向上の技術的困難さを克服できる。
よって前記した特徴を有効利用し、電気−光学特性の優
れた液晶光学素子を開発すべく鋭意研究を重ねた結果、
多孔性高分子薄膜を予め化学修飾剤にて処理することに
よってその目的を達成し得ることを見いだしこの知見に
基づいて本発明をなすに至った。
On the other hand, Japanese Patent Application No. 03-308 filed by the inventors.
The liquid crystal optical element and the method for manufacturing the same described in Japanese Patent No. 627 can overcome the technical difficulty of improving the characteristics in the above-mentioned phase separation method because the composite film formation does not include a phase separation process.
Therefore, by effectively utilizing the above characteristics, as a result of earnest research to develop a liquid crystal optical element having excellent electro-optical characteristics,
It was found that the object can be achieved by previously treating the porous polymer thin film with a chemical modifier, and the present invention has been completed based on this finding.

【0005】本発明の目的は、特願平03−30862
7号で製造される液晶光学素子の電気―光学特性を改善
する方法を含む新規な製造方法を提供することにある。
An object of the present invention is to provide a Japanese Patent Application No. 03-30862.
It is to provide a novel manufacturing method including a method for improving electro-optical characteristics of a liquid crystal optical element manufactured in No. 7.

【0006】[0006]

【課題を解決するための手段】本発明の製造方法による
高分子液晶複合膜は多孔性高分子薄膜の空孔に液晶材料
を充填させてなる高分子液晶複合膜において、多孔性高
分子薄膜の空孔に液晶を充填させてなる高分子液晶複合
膜の製造方法であって、高分子物質中に微小粒子を分散
させて薄膜を形成した後、微小粒子のみ可溶な溶剤を用
いて微小粒子のみを溶出させた多孔性高分子薄膜を、予
め化学修飾剤にて処理したのち、液晶を充填すること
より電気光学特性を向上したものである。
According to the manufacturing method of the present invention
In the polymer liquid crystal composite film polymer liquid crystal composite film made by filling a liquid crystal material into the pores of the porous polymer film, porous high
Polymer-liquid crystal composite prepared by filling the pores of a molecular thin film with liquid crystal
A method of manufacturing a membrane, in which fine particles are dispersed in a polymer substance.
After forming a thin film, use a solvent in which only fine particles are soluble.
The porous polymer thin film, which has only the fine particles eluted, is
Therefore , the electro-optical characteristics are improved by filling the liquid crystal after the treatment with the chemical modifier .

【0007】またその具体的な製造方法は反応性基を有
する高分物質子に微小粒子を分散させ高分子複合膜を形
成したのち前記微小粒子を溶解できかつ高分子物質を溶
解し得ない溶剤で処理することにより前記微小粒子を除
去して得られる多孔性高分子薄膜を、反応性基と結合す
る基を有する化学修飾剤との結合反応により表面修飾を
行い高分子表面の特性を調節したのち、薄膜中の空孔内
に液晶材料を注入することによって製造することを特徴
とする。
Further , a specific manufacturing method thereof is a solvent capable of dissolving the fine particles after forming the polymer composite film by dispersing the fine particles in the high molecular weight material having a reactive group and not dissolving the polymer substance. The surface of the porous polymer thin film obtained by removing the fine particles by the treatment with is modified by a binding reaction with a chemical modifier having a group that binds to a reactive group to adjust the characteristics of the polymer surface. After that, it is manufactured by injecting a liquid crystal material into the holes in the thin film.

【0008】反応性基を有する高分子としては化学反応
基を有するモノマーまたはオリゴマー、あるいはこれら
の混合物が利用できる。化学反応基としてはたとえば水
酸基、カルボニル基、アクリロイル基、メタアクリロイ
ル基、スチリル基などのビニル基あるいはエポキシ基な
ど挙げられる。
As the polymer having a reactive group, a monomer or oligomer having a chemically reactive group, or a mixture thereof can be used. Examples of the chemically reactive group include a hydroxyl group, a carbonyl group, an acryloyl group, a methacryloyl group, a vinyl group such as a styryl group, or an epoxy group.

【0009】本発明に用いられる化学修飾剤は、高分子
物質の表面を修飾する物なら何でも良い。例えば高分子
物質としてポリビニルアルコールを用いた場合、化学修
飾剤としてシラン化合物(トリメチルクロロシラン、ヘ
キサメチルジシラザン,トリメチルシリアミド類(ビス
(トリメチルシリル)アセトアミド、ビス(トリメチル
シリル)トリフロロアセトアミド、等)、トリメチルシ
リル尿素類(ビス(トリメチルシリル)ウレア、N−ト
リメチルシリル−N,N’−ジフェニルウレア、等)、
トリメチルシリルアミン類(ジフェニルアミノトリメチ
ルシラン、ジフェニルアミノメチルシラン、トリメチル
シリルイミダゾール、等)、トリメチルシリルスルフェ
ート類(ビス(トリメチルシリル)サルフェート、トリ
メチルシリルトリフルオロメチルスルフォネート、
等)、t−ブチルジメチルクロロシラン、t−ブチルジ
フェニルクロロシラン、トリイソプロピルクロロシラ
ン、また、上記のシリル化修飾以外にもアルキルエーテ
ル化修飾、フルオロアルキルエーテル化修飾、アルキル
エステル化修飾、フルオロアルキルエステル化修飾等が
挙げられる。
The chemical modifier used in the present invention may be any agent as long as it modifies the surface of the polymer substance. For example, when polyvinyl alcohol is used as the polymer substance, silane compounds (trimethylchlorosilane, hexamethyldisilazane, trimethylserialamides (bis (trimethylsilyl) acetamide, bis (trimethylsilyl) trifluoroacetamide, etc.), trimethylsilyl are used as chemical modifiers. Ureas (bis (trimethylsilyl) urea, N-trimethylsilyl-N, N'-diphenylurea, etc.),
Trimethylsilylamines (diphenylaminotrimethylsilane, diphenylaminomethylsilane, trimethylsilylimidazole, etc.), trimethylsilyl sulfates (bis (trimethylsilyl) sulfate, trimethylsilyltrifluoromethylsulfonate,
Etc.), t-butyldimethylchlorosilane, t-butyldiphenylchlorosilane, triisopropylchlorosilane, and alkyletherification modification, fluoroalkyletherification modification, alkylesterification modification, fluoroalkylesterification modification other than the above silylation modification. Etc.

【0010】本発明に用いられる微小粒子と高分子物質
の組合せは、微小粒子が高分子物質の少なくとも一種の
溶媒に溶解せず、かつ高分子物質の少なくとも一種の貧
溶媒に溶解するものの組み合わせであればどういうもの
でも良い。
The combination of the fine particles and the polymer substance used in the present invention is a combination of the fine particles which are insoluble in at least one solvent of the polymer substance and soluble in at least one poor solvent of the polymer substance. Anything will do as long as it exists.

【0011】例えば、高分子物質にポリビニルアルコー
ル、多糖等の水溶性高分子物質を使用した場合は、微小
粒子の構成材料としてポリスチレン、ポリメタクリル酸
メチル等が使用できる。この際、微小粒子の溶媒として
は、クロロホルム、テトラヒドロフラン、ベンゼン等の
有機溶媒が有効であるが、微小粒子が溶解し高分子物質
が溶解しない溶媒ならばいずれのものも構わない。
For example, when a water-soluble polymer substance such as polyvinyl alcohol or polysaccharide is used as the polymer substance, polystyrene, polymethylmethacrylate or the like can be used as a constituent material of the fine particles. At this time, an organic solvent such as chloroform, tetrahydrofuran, or benzene is effective as a solvent for the fine particles, but any solvent may be used as long as it can dissolve the fine particles and the high molecular substance.

【0012】また高分子物質にポリスチレン、ポリメタ
クリル酸メチル等のクロロホルム、テトラヒドロフラ
ン,ベンゼン等の有機溶媒に可溶な物質を使用した場
合、微小粒子の構成材料としてポリビニルアルコール、
多糖、ポリオキシエチレン、ポリ(N−メチルピロリド
ン)、ポリ(アキリルアミド)等の水溶性高分子物質が
使用できる。この際、微小粒子の溶媒としては、水が有
効であるが、微小粒子が溶解し高分子物質が溶解しない
溶媒ならばいずれのものでも構わない。
When a substance soluble in an organic solvent such as chloroform or tetrahydrofuran or benzene such as polystyrene or polymethylmethacrylate is used as the polymer substance, polyvinyl alcohol is used as a constituent material of the fine particles.
Water-soluble polymer substances such as polysaccharides, polyoxyethylene, poly (N-methylpyrrolidone), and poly (acrylamide) can be used. At this time, water is effective as the solvent for the fine particles, but any solvent may be used as long as it dissolves the fine particles and does not dissolve the polymer substance.

【0013】上記に記載の高分子物質の分子量の範囲
は、膜を形成できる範囲ならいくつでも良いが、500
0〜1000000程度が望ましい。
The range of the molecular weight of the above-mentioned polymer substance may be any range as long as a film can be formed, but it is 500
About 0 to 1,000,000 is desirable.

【0014】上記に記載の微小粒子の平均粒径は、膜厚
及び使用目的に応じて0.1μm〜300μm程度が好
ましい。また粒径分布は、一般的に狭い方が望ましい
が、使用用途に依存する。
The average particle size of the fine particles described above is preferably about 0.1 μm to 300 μm depending on the film thickness and the purpose of use. Further, it is generally desirable for the particle size distribution to be narrow, but it depends on the intended use.

【0015】本発明の微小粒子の形状は、必ずしも球形
である必要はないが球形に近いことが望ましい。その粒
径は高分子複合膜の膜厚以下であれば良い。高分子複合
膜の膜厚は、用途によって異なるが、1μm〜3mm程
度が好ましい。
The shape of the fine particles of the present invention is not necessarily spherical, but is preferably close to spherical. The particle size may be equal to or smaller than the film thickness of the polymer composite film. The thickness of the polymer composite film varies depending on the application, but is preferably about 1 μm to 3 mm.

【0016】本発明の高分子複合膜中の微小粒子の体積
としては、微小粒子の溶出および多孔性高分子薄膜の強
度の点から20〜80%が好ましい。
The volume of the fine particles in the polymer composite film of the present invention is preferably 20 to 80% from the viewpoint of elution of the fine particles and the strength of the porous polymer thin film.

【0017】本発明の微小粒子を構造する成分が高分子
化合物の場合には、その分子量範囲として、球形を保持
でき、かつ溶媒に可溶な範囲であればいくつでも良い
が、5000〜1000000程度が望ましい。
When the component constituting the fine particles of the present invention is a polymer compound, the molecular weight range thereof is not limited as long as it can maintain a spherical shape and is soluble in a solvent, but about 5,000 to 1,000,000. Is desirable.

【0018】基板への膜の塗布は、ディップコーター、
スピンコーター、バーコーター、ロールコーター,印刷
法等の一般的な塗布手法を利用して行うことができる。
The coating of the film on the substrate is carried out by a dip coater,
It can be performed using a general coating method such as a spin coater, a bar coater, a roll coater, or a printing method.

【0019】一対の電極付き基板に高分子液晶複合膜を
挟持した液晶光学素子の作成方法として、例えばあらか
じめ1枚の基板上に高分子複合膜をキャストした状態で
作成し、もう1枚の基板で挟むことにより作成する方法
が利用できる。また基板から剥し、別の2枚の基板間に
挟持しても構わない。
As a method for producing a liquid crystal optical element in which a polymer liquid crystal composite film is sandwiched between a pair of substrates with electrodes, for example, a polymer composite film is cast in advance on one substrate, and then another substrate is prepared. You can use the method of creating by sandwiching between. Further, it may be peeled from the substrate and sandwiched between two other substrates.

【0020】本発明に用いられる基板は、ITO等の透
明性の高い電極層を表面に有する少なくとも一方が透明
な基板であり、ガラス、プラスチック、金属等が使用で
きる。2枚の基板は、電極が高分子複合膜側になるよう
に設置する。電極層は基板に一様に形成されたも良い
が、対向基板間で短冊状に構成されたそれぞれの電極が
直行するように配置した単純マトリックス構成や、画素
単位でアクティブ素子を付加したアクティブマトリック
ス構成としてもよい。本発明に用いられる液晶材料とし
ては、液晶材料であれば特に限定されず、ネマチック液
晶、スメクチック液晶、コレステリック液晶等いずれを
用いることもできる。また単一または複数の色素を混入
したゲスト−ホスト型液晶によりカラー化することもで
きる。
The substrate used in the present invention is a substrate having a highly transparent electrode layer such as ITO on the surface and at least one of which is transparent, and glass, plastic, metal or the like can be used. The two substrates are installed so that the electrodes are on the polymer composite film side. The electrode layer may be formed uniformly on the substrate, but a simple matrix configuration in which strip-shaped electrodes are arranged orthogonally between opposed substrates, or an active matrix in which active elements are added in pixel units It may be configured. The liquid crystal material used in the present invention is not particularly limited as long as it is a liquid crystal material, and any of nematic liquid crystal, smectic liquid crystal, cholesteric liquid crystal and the like can be used. Further, a guest-host liquid crystal mixed with a single or a plurality of dyes can be used for colorization.

【0021】本発明で構成した液晶光学素子に印可する
電圧は本研究では矩形交流波電圧を用いたが、正弦波な
どの他の波形でも利用できる事はいうまでもない。
As the voltage applied to the liquid crystal optical element constructed according to the present invention, a rectangular AC voltage is used in this research, but it goes without saying that other waveforms such as a sine wave can also be used.

【0022】[0022]

【実施例】 (実施例1)ポリビニルアルコール[Aldrich社
製,けん化率80%平均分子量9,000〜10,00
0]20wt% 水溶液 5部と、ポリメチルメタクリ
レート微小粒子MP−1600[綜研化学株式会社製,
粒径0.6〜0.8μm]1部とを、よく攪拌し、均一
な混合液を調製した。混合液を一枚の電極付きガラス基
板上に滴下、ドクターブレードYD−5(ヨシミツ精機
株式会社製)にて膜厚60μmの薄膜を調製した。室温
にて8時間乾燥させた後、40℃にて12時間減圧乾燥
させた。この薄膜付き基板をジクロロメタンに漬け、室
温にて攪拌処理を5分間行い、ポリメチルメタクリレー
ト微小粒子のみを溶出させた。SEM観察で、ポリビニ
ルアルコール膜中に直径1μm程度の空孔を確認した。
得られたポリビニルアルコール多孔性薄膜の厚さは約7
μmであった。この多孔性薄膜を室温下、密閉容器中に
てヘキサメチルジシラザン[Aldrich社製、品番
37,921−2]中に浸たし、そのまま30分放置さ
せた。多孔性薄膜を取り出したのち、真空中で液晶E−
8(BDH社製)中に基板ごと浸漬させ、空孔内に分散
材料として充填し、図1に模式的に示すように表面修飾
剤3で表面が修飾された多孔性高分子物質1の中に分散
材料2が均一に充填されているものを得た。その後、も
う1枚の基板と重ね合わせ図2に示すように液晶材料6
を多孔性高分子物質1に充填したものが透明電極4が設
けられた透明基板4で両側から挟まれた液晶セルを作成
した。得られた液晶セルの光の透過率は0%であった。
この液晶セルを20℃に保ち、100Hz、30Vの矩
形波の交流電圧を印加すると光の透過率は、85%とな
った。(但し、空気の透過率を100%とする)。電圧
の印加を除くと、この透過率は0%に戻った。この様子
を図3に表す。この操作を繰り返しても同様な結果を示
した。 (実施例2)ポリビニルアルコール[Aldrich社
製,けん化率80%,平均分子量9,000〜10,0
00]20wt% 水溶液 5部と、ポリスチレン微小
粒子SP−35[綜研化学株式会社製、粒径3.5μ
m]1部とをよく攪拌し、均一な混合液を調製した。混
合液を一枚の電極付きガラス基板上に滴下、ドクターブ
レードYD−5(ヨシミツ精機株式会社製)にて膜厚6
0μmの薄膜を調製した。室温にて8時間乾燥させた
後、40℃にて12時間減圧乾燥させた。この薄膜付き
基板をクロロホルムに漬け、攪拌処理を5分間行い、ポ
リスチレン微小粒子のみを溶出させた。SEM観察で、
ポリビニルアルコール膜中に直径3.5μm程度の空孔
を確認した。得られたポリビニルアルコール多孔性薄膜
の厚さは約10μmであった。この多孔性薄膜を室温
下、密閉容器中にてトリメチルクロロシラン1Mジクロ
ロメタン溶液[Aldrich社製、品番38,543
−3]中に浸たし、そのまま30分放置させた。多孔性
薄膜を取り出したのち、真空中で液晶E−8(BDH社
製)中に基板ごと浸漬させ、もう1枚の基板と重ね合わ
せて液晶セルを作成した。得られた液晶セルの光の透過
率は1%であった。この液晶セルを20℃に保ち、10
0Hz、30Vの矩形波の交流電圧を印加すると光の透
過率は、84%となった。(但し、空気の透過率を10
0%とする)。電圧の印加を除くと、この透過率は1%
に戻った。この操作を繰り返しても同様な結果を示し
た。 (実施例3)ポリビニルアルコール[Aldrich社
製,けん化率80%,平均分子量9,000〜10,0
00]20wt% 水溶液 5部と、ポリメチルメタク
リレート微小粒子MP−1400[綜研化学株式会社
製、粒径1.5μm]1部とをよく攪拌し、均一な混合
液を調製した。混合液を一枚の電極付きガラス基板上に
滴下、ドクターブレードYD−5(ヨシミツ精機株式会
社製)にて膜厚60μmの薄膜を調製した。室温にて8
時間乾燥させた後、40℃にて12時間減圧乾燥させ
た。この薄膜付き基板をジクロロメタンに漬け、室温に
て攪拌処理を5分間行い、ポリメチルメタクリレート微
小粒子のみを溶出させた。SEM観察で、ポリビニルア
ルコール膜中に直径1.5μm程度の空孔を確認した。
得られたポリビニルアルコール多孔性薄膜の厚さは約8
μmであった。この多孔性薄膜を、室温下、密閉容器中
にてヘキサメチルジシラザン[Aldrich社製、品
番37,921−2]中に浸たし、そのまま30分放置
させた。多孔性薄膜を取り出し、真空中において黒色色
素S−344(三井東圧化学株式会社製)と液晶E−8
(BDH社製)の混合溶液中に基板ごと浸漬させたの
ち、もう1枚の基板と重ね合わせ、液晶セルを作成し
た。得られた液晶セルの光の透過率は0.1%であっ
た。この液晶セルを20℃に保ち、100Hz、50V
の矩形波の交流電圧を印加すると光の透過率は、65%
となった。(但し、空気の透過率を100%とする)。
電圧の印加を除くと、この透過率は1%に戻った。この
操作を繰り返しても同様な結果を示した。 (実施例4)ポリビニルアルコール[Aldrich社
製,けん化率80%,平均分子量9,000〜10,0
00]20wt% 水溶液 5部と、ポリメチルメタク
リレート微小粒子MP−1400[綜研化学株式会社
製、粒径1.5μm]1部とをよく攪拌し、均一な混合
液を調製した。混合液を一枚の電極付きガラス基板上に
滴下、ドクターブレードYD−5(ヨシミツ精機株式会
社製)にて膜厚60μmの薄膜を調製した。室温にて8
時間乾燥させた後、40℃にて12時間減圧乾燥させ
た。この薄膜付き基板をジクロロメタンに漬け、室温に
て攪拌処理を5分間行い、ポメチルメタクリレート微小
粒子のみを溶出させた。SEM観察で、ポリビニルアル
コール膜中に直径1.5μm程度の空孔を確認した。得
られたポリビニルアルコール多孔性薄膜の厚さは約8μ
mであった。この多孔性薄膜を、室温下、密閉容器中に
てヘキサメチルジシラザン[Aldrich社製、品番
37,921−2]中に浸たし、そのまま30分放置さ
せた。多孔性薄膜を取り出し、真空中で二周波駆動液晶
NR1013XX(チッソ石油化学(株)社製)中に基
板ごと浸漬させたのち、もう1枚の基板と重ね合わせ、
液晶セルを作成した。得られた液晶セルの光の透過率は
2%であった。この液晶セルを20℃に保ち、100H
z、30Vの矩形波の交流電圧を印加すると光の透過率
は、86%となった。(但し、空気の透過率を100%
とする)。電圧の印加を除くと、この透過率は2%に戻
った。この操作を繰り返しても同様な結果を示した。 (比較例1)ポリビニルアルコール[Aldrich社
製,けん化率80%,平均分子量9,000〜10,0
00]20wt% 水溶液 5部と、ポリスチレン微小
粒子PS−35[綜研化学株式会社製、粒径3.5μ
m]1部とをよく攪拌し、均一な混合液を調製した。混
合液を一枚の電極付きガラス基板上に滴下、ドクターブ
レードYD−5(ヨシミツ精機株式会社製)にて膜厚6
0μmの薄膜を調製した。室温にて8時間乾燥させた
後、40℃にて12時間減圧乾燥させた。この薄膜付き
基板をクロロホルムに漬け、攪拌処理を5分間行い、ポ
リスチレン微小粒子のみを溶出させた。SEM観察で、
ポリビニルアルコール膜中に直径3.5μm程度の空孔
を確認した。得られたポリビニルアルコール多孔性薄膜
の厚さは約10μmであった。この多孔性薄膜を表面処
理することなく真空中で液晶E−8(BDH社製)中に
基板ごと浸漬させ、もう1枚の基板と重ね合わせて液晶
セルを作製した。得られた液晶セルの光の透過率は1%
であった。(但し、空気の透過率を100%とする)。
この液晶セルは、透過率が85%に達するのに40Vの
交流電圧を必要とした。
Example 1 Polyvinyl alcohol [manufactured by Aldrich, saponification rate 80%, average molecular weight 9,000 to 10,000]
0] 5 parts of 20 wt% aqueous solution and polymethylmethacrylate fine particles MP-1600 [manufactured by Soken Chemical Industry Co., Ltd.,
Particle size 0.6 to 0.8 μm] 1 part was thoroughly stirred to prepare a uniform mixed solution. The mixed solution was dropped on one glass substrate with an electrode, and a thin film having a film thickness of 60 μm was prepared with a doctor blade YD-5 (manufactured by Yoshimitsu Seiki Co., Ltd.). After drying at room temperature for 8 hours, it was dried under reduced pressure at 40 ° C. for 12 hours. This substrate with a thin film was immersed in dichloromethane and stirred at room temperature for 5 minutes to elute only the polymethylmethacrylate microparticles. By SEM observation, holes having a diameter of about 1 μm were confirmed in the polyvinyl alcohol film.
The thickness of the obtained polyvinyl alcohol porous thin film is about 7
μm. This porous thin film was immersed in hexamethyldisilazane [manufactured by Aldrich, product number 37,921-2] at room temperature in a closed container, and left as it was for 30 minutes. After taking out the porous thin film, the liquid crystal E-
8 (manufactured by BDH) together with the substrate, filled in the pores as a dispersion material, and in the porous polymer substance 1 whose surface is modified with the surface modifier 3 as schematically shown in FIG. The dispersion material 2 was uniformly filled in. After that, the liquid crystal material 6 is placed on another substrate as shown in FIG.
A liquid crystal cell was prepared in which the porous polymer substance 1 was filled in with the transparent substrate 4 provided with the transparent electrode 4 and sandwiched from both sides. The light transmittance of the obtained liquid crystal cell was 0%.
When this liquid crystal cell was maintained at 20 ° C. and a rectangular wave AC voltage of 100 Hz and 30 V was applied, the light transmittance was 85%. (However, the air permeability is 100%). When the voltage was not applied, this transmittance returned to 0%. This state is shown in FIG. Repeating this operation showed similar results. (Example 2) Polyvinyl alcohol [manufactured by Aldrich, saponification rate 80%, average molecular weight 9,000 to 10,000]
00] 5 parts of 20 wt% aqueous solution and polystyrene fine particles SP-35 [manufactured by Soken Chemical Industry Co., Ltd., particle size 3.5 μm
m] 1 part was thoroughly stirred to prepare a uniform mixed solution. The mixed solution was dropped on one glass substrate with an electrode, and the film thickness was 6 with a doctor blade YD-5 (manufactured by Yoshimitsu Seiki Co., Ltd.).
A 0 μm thin film was prepared. After drying at room temperature for 8 hours, it was dried under reduced pressure at 40 ° C. for 12 hours. This substrate with a thin film was immersed in chloroform and stirred for 5 minutes to elute only polystyrene microparticles. With SEM observation,
Holes having a diameter of about 3.5 μm were confirmed in the polyvinyl alcohol film. The thickness of the obtained polyvinyl alcohol porous thin film was about 10 μm. This porous thin film was placed in a closed container at room temperature in a closed container, and trimethylchlorosilane 1M dichloromethane solution [manufactured by Aldrich, product number 38,543].
-3], and allowed to stand for 30 minutes. After taking out the porous thin film, the substrate was immersed in a liquid crystal E-8 (manufactured by BDH) in a vacuum, and the liquid crystal cell was prepared by stacking the substrate on another substrate. The light transmittance of the obtained liquid crystal cell was 1%. Keep this liquid crystal cell at 20 ° C.
When a rectangular wave AC voltage of 0 Hz and 30 V was applied, the light transmittance was 84%. (However, the air permeability is 10
0%). This transmittance is 1% excluding the application of voltage.
Returned to. Repeating this operation showed similar results. (Example 3) Polyvinyl alcohol [manufactured by Aldrich, saponification rate 80%, average molecular weight 9,000 to 10,000]
00] 5 parts of 20 wt% aqueous solution and 1 part of polymethylmethacrylate fine particles MP-1400 [manufactured by Soken Chemical Industry Co., Ltd., particle size 1.5 μm] were well stirred to prepare a uniform mixed solution. The mixed solution was dropped on one glass substrate with an electrode, and a thin film having a film thickness of 60 μm was prepared with a doctor blade YD-5 (manufactured by Yoshimitsu Seiki Co., Ltd.). 8 at room temperature
After drying for an hour, it was dried under reduced pressure at 40 ° C. for 12 hours. This substrate with a thin film was immersed in dichloromethane and stirred at room temperature for 5 minutes to elute only the polymethylmethacrylate microparticles. By SEM observation, pores with a diameter of about 1.5 μm were confirmed in the polyvinyl alcohol film.
The thickness of the obtained polyvinyl alcohol porous thin film is about 8
μm. This porous thin film was soaked in hexamethyldisilazane [manufactured by Aldrich, product number 37,921-2] in a closed container at room temperature and left as it was for 30 minutes. The porous thin film was taken out, and the black dye S-344 (manufactured by Mitsui Toatsu Chemicals, Inc.) and liquid crystal E-8 in vacuum.
The substrate was immersed in a mixed solution (manufactured by BDH) together with another substrate, and was then superposed on another substrate to prepare a liquid crystal cell. The light transmittance of the obtained liquid crystal cell was 0.1%. Keep this liquid crystal cell at 20 ℃, 100Hz, 50V
When a rectangular wave AC voltage is applied, the light transmittance is 65%.
Became. (However, the air permeability is 100%).
When the voltage was not applied, the transmittance returned to 1%. Repeating this operation showed similar results. (Example 4) Polyvinyl alcohol [manufactured by Aldrich, saponification rate 80%, average molecular weight 9,000 to 10,000]
00] 5 parts of 20 wt% aqueous solution and 1 part of polymethylmethacrylate fine particles MP-1400 [manufactured by Soken Chemical Industry Co., Ltd., particle size 1.5 μm] were well stirred to prepare a uniform mixed solution. The mixed solution was dropped on one glass substrate with an electrode, and a thin film having a film thickness of 60 μm was prepared with a doctor blade YD-5 (manufactured by Yoshimitsu Seiki Co., Ltd.). 8 at room temperature
After drying for an hour, it was dried under reduced pressure at 40 ° C. for 12 hours. This substrate with a thin film was immersed in dichloromethane and stirred at room temperature for 5 minutes to elute only the polymethylmethacrylate microparticles. By SEM observation, pores with a diameter of about 1.5 μm were confirmed in the polyvinyl alcohol film. The thickness of the obtained polyvinyl alcohol porous thin film is about 8μ.
It was m. This porous thin film was soaked in hexamethyldisilazane [manufactured by Aldrich, product number 37,921-2] in a closed container at room temperature and left as it was for 30 minutes. The porous thin film was taken out, immersed in a dual frequency liquid crystal NR1013XX (manufactured by Chisso Petrochemical Co., Ltd.) together with the substrate in a vacuum, and then laminated with another substrate,
A liquid crystal cell was created. The light transmittance of the obtained liquid crystal cell was 2%. Keep this liquid crystal cell at 20 ℃ for 100H
When a rectangular wave alternating voltage of z and 30 V was applied, the light transmittance was 86%. (However, the air permeability is 100%
And). When the voltage was removed, the transmittance returned to 2%. Repeating this operation showed similar results. (Comparative Example 1) Polyvinyl alcohol [manufactured by Aldrich, saponification rate 80%, average molecular weight 9,000-10,0]
00] 5 parts of 20 wt% aqueous solution and polystyrene fine particles PS-35 [manufactured by Soken Chemical Industry Co., Ltd., particle size 3.5 μm]
m] 1 part was thoroughly stirred to prepare a uniform mixed solution. The mixed solution was dropped on one glass substrate with an electrode, and the film thickness was 6 with a doctor blade YD-5 (manufactured by Yoshimitsu Seiki Co., Ltd.).
A 0 μm thin film was prepared. After drying at room temperature for 8 hours, it was dried under reduced pressure at 40 ° C. for 12 hours. This substrate with a thin film was immersed in chloroform and stirred for 5 minutes to elute only polystyrene microparticles. With SEM observation,
Holes having a diameter of about 3.5 μm were confirmed in the polyvinyl alcohol film. The thickness of the obtained polyvinyl alcohol porous thin film was about 10 μm. This porous thin film was immersed in a liquid crystal E-8 (manufactured by BDH) together with the substrate in a vacuum without surface treatment, and was superposed on another substrate to prepare a liquid crystal cell. The light transmittance of the obtained liquid crystal cell is 1%.
Met. (However, the air permeability is 100%).
This liquid crystal cell required an AC voltage of 40 V to reach a transmittance of 85%.

【0023】[0023]

【発明の効果】以上説明したように、本発明の製造方法
による高分子複合膜、高分子マトリックスと液晶材料
間の相互作用の調節が容易であり、使用する液晶材料の
性質に制限されることなく高分子液晶複合膜を作製で
き、高分子物質―液晶材料間の微妙な相互作用やアンカ
リング強度を調節できるため低駆動電圧、高速応答、低
ヒステリシス等の電気光学特性向上が可能となる。
As described above, according to the present invention, polymer composite film according to the manufacturing method <br/> of the present invention is easy to adjust the interaction between the polymer matrix and the liquid crystal material, the nature of the liquid crystal material used The polymer liquid crystal composite film can be produced without being limited to the above, and the delicate interaction between the polymer substance and the liquid crystal material and the anchoring strength can be adjusted to improve the electro-optical characteristics such as low driving voltage, high speed response and low hysteresis. Is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる高分子複合膜の断面図である。FIG. 1 is a cross-sectional view of a polymer composite film according to the present invention.

【図2】本発明に係わる液晶光学素子の断面図である。FIG. 2 is a cross-sectional view of a liquid crystal optical element according to the present invention.

【図3】本発明の液晶光学素子に印加する矩形交流電圧
および液晶光学素子の光透過率のグラフである。
FIG. 3 is a graph of rectangular alternating voltage applied to the liquid crystal optical element of the present invention and light transmittance of the liquid crystal optical element.

【符号の説明】[Explanation of symbols]

1 多孔性高分子物質 2 分散材料 3 表面修飾剤 4 透明基板 5 透明電極 6 液晶材料 1 Porous polymer substance 2 Dispersion material 3 Surface modifier 4 Transparent substrate 5 Transparent electrode 6 Liquid crystal material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷川 悦雄 東京都港区芝五丁目7番1号日本電気株 式会社内 (56)参考文献 特開 平3−59515(JP,A) 特開 平4−254821(JP,A) 特開 平4−204517(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Etsuo Hasegawa 5-7-1, Shiba, Minato-ku, Tokyo Inside NEC Corporation (56) Reference JP-A-3-59515 (JP, A) JP-A 4-254821 (JP, A) JP-A-4-204517 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】多孔性高分子薄膜の空孔に液晶を充填させ
てなる高分子液晶複合膜の製造方法であって、高分子物
質中に微小粒子を分散させて薄膜を形成した後、微小粒
子のみ可溶な溶剤を用いて微小粒子のみを溶出させた多
孔性高分子薄膜を、予め化学修飾剤にて処理したのち、
液晶を充填することを特徴とする高分子液晶複合膜の製
造方法。
1. A liquid crystal is filled in the pores of a porous polymer thin film.
A method for producing a polymer liquid crystal composite film comprising
After forming fine film by dispersing fine particles in the matrix,
Only the microparticles were eluted using a solvent in which only the particles were soluble.
After treating the porous polymer thin film with a chemical modifier in advance,
Preparation of polymer liquid crystal composite film characterized by filling liquid crystal
Build method.
JP5093452A 1993-04-21 1993-04-21 Method for producing polymer liquid crystal composite film Expired - Lifetime JP2541445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5093452A JP2541445B2 (en) 1993-04-21 1993-04-21 Method for producing polymer liquid crystal composite film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5093452A JP2541445B2 (en) 1993-04-21 1993-04-21 Method for producing polymer liquid crystal composite film

Publications (2)

Publication Number Publication Date
JPH06308465A JPH06308465A (en) 1994-11-04
JP2541445B2 true JP2541445B2 (en) 1996-10-09

Family

ID=14082722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5093452A Expired - Lifetime JP2541445B2 (en) 1993-04-21 1993-04-21 Method for producing polymer liquid crystal composite film

Country Status (1)

Country Link
JP (1) JP2541445B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1927640B1 (en) * 2006-11-30 2009-08-12 Sony Deutschland Gmbh A method of preparing a polymer dispersed liquid crystal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2567704B2 (en) * 1989-07-28 1996-12-25 宇部興産株式会社 Liquid crystal composite film
JPH04204517A (en) * 1990-11-30 1992-07-24 Nec Corp Liquid crystal display element
JP2803071B2 (en) * 1991-02-06 1998-09-24 日立電線株式会社 Liquid crystal film and manufacturing method thereof

Also Published As

Publication number Publication date
JPH06308465A (en) 1994-11-04

Similar Documents

Publication Publication Date Title
EP0769544A1 (en) Particles and droplets containing liquid crystal domains and method for forming in an aqueous medium
JP2001004986A (en) Liquid crystal optical device and its production
WO2018078078A1 (en) Nanocapsules comprising a liquid-crystalline medium
JPH0611701A (en) Porous polymer film, its production, polymer composite film using that, and production of polymer composite film
JP2586529B2 (en) Liquid crystal display
JP2541445B2 (en) Method for producing polymer liquid crystal composite film
JPH0346621A (en) Liquid crystal device
JP3231087B2 (en) Manufacturing method of liquid crystal optical element, microencapsulated liquid crystal and manufacturing method thereof
JP3708983B2 (en) Liquid crystal-containing / polymer microcapsule and liquid crystal electro-optical element
JP3137275B2 (en) Liquid crystal display device and method of manufacturing the same
JP3142961B2 (en) Liquid crystal display
JP2785668B2 (en) Method for producing polymer liquid crystal composite film
JPH05119301A (en) Production of liquid crystal display element
JPH06308466A (en) Polymer liquid crystal composite film and liquid crystal optical element using the same
US5525381A (en) Electro-optical material based on polymer-dispersed liquid crystal, method for the preparation thereof by chemical modification of the interface and device based on this material
JPH05264970A (en) High-polymer composite film and its production and liquid crystal optical element formed by using the same
CN115480419B (en) Color-changing device of ionic liquid doped polymer dispersed liquid crystal and preparation method thereof
JPH07120732A (en) Liquid crystal/polymer composite type optical element
JPH08201780A (en) Liquid crystal display medium
JPH0634950A (en) Liquid crystal display element
JP3232139B2 (en) Liquid crystal optical element and manufacturing method thereof
JPH06222343A (en) Liquid crystal display element and production of this element
JPH07281158A (en) Production of liquid crystal optical modulation element
JPH02205821A (en) Liquid crystal device
JPH06242420A (en) Manufacture of emulsion for liquid crystal film and manufacture of liquid crystal cell

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070725

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 17

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 17

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 17

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term