JP2535876B2 - Fluid catalyst for mixed alcohol synthesis - Google Patents

Fluid catalyst for mixed alcohol synthesis

Info

Publication number
JP2535876B2
JP2535876B2 JP62043020A JP4302087A JP2535876B2 JP 2535876 B2 JP2535876 B2 JP 2535876B2 JP 62043020 A JP62043020 A JP 62043020A JP 4302087 A JP4302087 A JP 4302087A JP 2535876 B2 JP2535876 B2 JP 2535876B2
Authority
JP
Japan
Prior art keywords
catalyst
zinc
ion
solution
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62043020A
Other languages
Japanese (ja)
Other versions
JPS63209754A (en
Inventor
宣雄 磯貝
実 大杉
聡 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP62043020A priority Critical patent/JP2535876B2/en
Publication of JPS63209754A publication Critical patent/JPS63209754A/en
Application granted granted Critical
Publication of JP2535876B2 publication Critical patent/JP2535876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はメタノールを主成分とする混合アルコール合
成用触媒、特に流動層反応器に好適に用いられる混合ア
ルコール合成用触媒に関する。
Description: TECHNICAL FIELD The present invention relates to a mixed alcohol synthesis catalyst containing methanol as a main component, and particularly to a mixed alcohol synthesis catalyst suitably used in a fluidized bed reactor.

(従来の技術) 近年各種燃料の多様化が図られているが、その一環と
してアルコールの燃料化あるいはアルコールと炭化水素
のブレンド品の燃料化が検討されている。これらに適用
できるアルコールとしては、炭化水素との相溶性などを
考慮すると、メタノールに炭素数2以上のアルコールが
含まれているものが好ましく、これらに用いられる触媒
としては、特開昭58-104635号、特開昭58-180437号、特
開昭60-97048号および特開昭60-248636号などが開示さ
れている。
(Prior Art) In recent years, various fuels have been diversified, and as a part thereof, the use of alcohol as a fuel or a blended product of alcohol and hydrocarbon as a fuel has been studied. The alcohol applicable to these is preferably an alcohol containing an alcohol having 2 or more carbon atoms in methanol in consideration of compatibility with hydrocarbons and the like, and a catalyst used therein is JP-A-58-104635. JP-A-58-180437, JP-A-60-97048 and JP-A-60-248636 are disclosed.

一方メタノール合成装置の大型化などを指向しての流
動層プロセスに関しての検討も続けられており、その触
媒としては、特開昭60-84142号、特開昭60-106534号お
よび特開昭60-122040号が開示されている。
On the other hand, studies on a fluidized bed process aiming at upsizing of a methanol synthesizer are being continued, and catalysts thereof are disclosed in JP-A-60-84142, JP-A-60-106534 and JP-A-60-106534. -122040 is disclosed.

(発明が解決しようとする問題点) 混合アルコール合成用触媒としては、上述の如く多く
の触媒が知られているが、これらには反応条件が厳し
く、アルコールの選択性が悪いなどの欠点があり、特に
メタン、エタン等の炭化水素および炭酸ガスの生成が多
く炭素効率を低下させている。また全アルコールの生産
性についても十分でない。
(Problems to be Solved by the Invention) As catalysts for mixed alcohol synthesis, many catalysts are known as described above, but they have drawbacks such as severe reaction conditions and poor alcohol selectivity. In particular, a large amount of hydrocarbons such as methane and ethane and carbon dioxide gas are generated, which lowers carbon efficiency. Also, the productivity of total alcohol is not sufficient.

一方流動層プロセスによるメタノールの合成について
の検討もなされているが、本プロセスで混合アルコール
を合成する方法は未だ知られていない。
On the other hand, although the synthesis of methanol by the fluidized bed process has been studied, the method for synthesizing the mixed alcohol by this process is not yet known.

本発明は、上記混合アルコールにおける問題点を解決
すると同時に、流動層に使用し得る触媒を提供するもの
である。
The present invention solves the above problems in mixed alcohols and, at the same time, provides a catalyst that can be used in a fluidized bed.

(問題点を解決するための手段) 発明者等は、先に流動層メタノール合成に用いられる
触媒として、ジルコニウムやアルミニウム酸化物を骨剤
とした銅、亜鉛系触媒を開発した。
(Means for Solving Problems) The inventors have previously developed a copper / zinc-based catalyst using zirconium or aluminum oxide as an skeleton as a catalyst used for fluidized bed methanol synthesis.

発明者等はこの流動層メタノール合成触媒にアルカリ
金属またはアルカリ土類金属化合物を加えることによ
り、優れた混合アルコール合成用触媒として流動層で使
用できることを見出し本発明に至った。
The present inventors have found that by adding an alkali metal or alkaline earth metal compound to this fluidized bed methanol synthesis catalyst, it can be used as an excellent mixed alcohol synthesis catalyst in a fluidized bed, leading to the present invention.

即ち本発明は、銅化合物、亜鉛化合物およびジルコニ
ウム酸化物からなり、ジルコニウム酸化物の含量が30重
量%以上である触媒前駆体に周期律表第1族アルカリ金
属または第2族アルカリ土類金属から選ばれた1種もし
くは2種以上の化合物を加えることを特徴とする混合ア
ルコール合成用触媒である。
That is, the present invention relates to a catalyst precursor comprising a copper compound, a zinc compound and a zirconium oxide, the zirconium oxide content of which is 30% by weight or more, and a group 1 alkali metal or a group 2 alkaline earth metal of the periodic table. It is a mixed alcohol synthesis catalyst characterized in that one or more selected compounds are added.

特に周期律表第1族アルカリ金属としては、カリウ
ム、ルビジウムおよびセシウムが選ばれる。
In particular, potassium, rubidium and cesium are selected as the alkali metal of Group 1 of the periodic table.

本発明において流動層触媒として必要な耐摩耗性を得
るには最低30wt%以上のジルコニム酸化物及び/又はア
ルミニウム酸化物を含有することが必要である。またジ
ルコニウム酸化物及び/又はアルミニウム酸化物が70wt
%以上であるときは、有効活性成分量が少なくなり、メ
タノールの空時収量が低下するので工業的に有利でな
い。
In the present invention, it is necessary to contain at least 30 wt% of zirconium oxide and / or aluminum oxide in order to obtain the wear resistance required as a fluidized bed catalyst. 70wt% zirconium oxide and / or aluminum oxide
When it is at least%, the amount of the active ingredient becomes small and the space-time yield of methanol decreases, which is not industrially advantageous.

本発明触媒中の銅及び亜鉛化合物の量は、亜鉛に対す
る銅が0.5〜20.0原子比、好ましくは0.8〜15.0の範囲で
ある。またアルカリ金属及びアルカリ土類金属化合物の
量は、亜鉛に対し0.001〜0.1原子比、好ましくは0.005
〜0.05の範囲である。
The amount of copper and zinc compounds in the catalyst of the present invention is in the range of 0.5 to 20.0 atomic ratio of copper to zinc, preferably 0.8 to 15.0. The amount of the alkali metal and alkaline earth metal compounds is 0.001 to 0.1 atomic ratio with respect to zinc, preferably 0.005.
The range is from ~ 0.05.

本発明触媒を製造するには、銅及び亜鉛成分について
は水溶性銅塩及び水溶性亜鉛塩の水溶液にアルカリを加
え同時に沈澱させる方法、あるいは銅及び亜鉛の沈澱物
をそれぞれ別々に調製し混合する方法、さらには酸化亜
鉛あるいは水酸化亜鉛のスラリー溶液に炭酸ガスを吹き
込む方法など、従来から公知のいずれの方法を用いても
良い。
In order to produce the catalyst of the present invention, for the copper and zinc components, a method of simultaneously adding an alkali to an aqueous solution of a water-soluble copper salt and a water-soluble zinc salt and simultaneously precipitating it, or precipitating copper and zinc separately and mixing them respectively Any conventionally known method such as a method, or a method of blowing carbon dioxide gas into a zinc oxide or zinc hydroxide slurry solution may be used.

本発明に用いられる水溶性銅塩及び水溶性亜鉛塩とし
ては、例えば硝酸塩、シュウ酸塩、酢酸塩等の水溶性塩
が挙げられるが、中でもハロゲンやイオウなどの触媒毒
となるような元素を含まない塩が好ましく、硝酸塩が特
に適している。
Examples of the water-soluble copper salt and the water-soluble zinc salt used in the present invention include water-soluble salts such as nitrates, oxalates and acetates. Among them, elements such as halogens and sulfur that become catalyst poisons are listed. Salts free of salt are preferred, with nitrates being particularly suitable.

かかる水溶性塩の水溶液中における濃度は、臨界的で
なく、用いる塩に応じて広範囲に変え得るが、一般的に
は0.1〜1モル/lの濃度とするのが有利である。
The concentration of such a water-soluble salt in the aqueous solution is not critical and can be varied over a wide range depending on the salt used, but it is generally advantageous to set the concentration to 0.1 to 1 mol / l.

この水溶性銅塩及び水溶性亜鉛塩の水溶液から銅成分
及び亜鉛成分を不溶性固体として沈澱させるための沈澱
剤としては、炭酸ソーダ、炭酸アンモニウム、水酸化ナ
トリウム、水酸化カリウム、アンモニアなどを用いるこ
とができる。これらの沈澱剤は、銅塩及び亜鉛塩に対し
少なくとも0.8倍当量、好ましくは1.0〜2.0倍当量、更
に好ましくは1.0〜1.3倍当量の割合で使用するのが有利
である。
Use sodium carbonate, ammonium carbonate, sodium hydroxide, potassium hydroxide, ammonia or the like as a precipitant for precipitating the copper component and the zinc component as an insoluble solid from the aqueous solution of the water-soluble copper salt and the water-soluble zinc salt. You can These precipitants are advantageously used in a ratio of at least 0.8 times equivalent, preferably 1.0 to 2.0 times equivalent, and more preferably 1.0 to 1.3 times equivalent to the copper salt and zinc salt.

上記沈澱反応は常温において行っても良く、又適宜10
0℃までの温度の加温下で行っても良い。かかる条件下
に沈澱反応は極めて円滑に進行し、通常15分以内にほぼ
定量的に反応を完了させることができる。
The precipitation reaction may be carried out at room temperature, or may be carried out at an appropriate temperature.
The heating may be performed at a temperature up to 0 ° C. Under such conditions, the precipitation reaction proceeds extremely smoothly, and usually the reaction can be completed almost quantitatively within 15 minutes.

一方亜鉛成分の原料に酸化亜鉛、水酸化亜鉛などの水
不溶性の固体粉末を用いて炭酸ガスを吹き込む方法によ
る場合、亜鉛原料をそのままの形で銅のスラリー溶液
(アルカリ成分で沈澱させた溶液)に加えても良いが、
あらかじめ水と混合してスラリーとなし、溶液中での分
散を良くした状態で加える方が好ましい。この場合、亜
鉛成分と水の混合割合は特に制限されるものではない
が、亜鉛分が5〜30wt%になるように調製するのが好ま
しい。
On the other hand, when a carbon dioxide gas is blown into the raw material of the zinc component by using water-insoluble solid powder such as zinc oxide or zinc hydroxide, the zinc raw material is a copper slurry solution as it is (solution obtained by precipitating with the alkaline component). Can be added to
It is preferable to add it in a state of being well dispersed in the solution by mixing it with water beforehand to form a slurry. In this case, the mixing ratio of the zinc component and water is not particularly limited, but it is preferable that the zinc content is adjusted to 5 to 30 wt%.

亜鉛成分と銅沈澱物との水性スラリー溶液に炭酸ガス
を吹き込む工程は、常温〜100℃の温度範囲で行うこと
ができる。また使用する炭酸ガスは液化炭酸ガスを気化
して吹き込む方法が好適である。炭酸ガスの吹込量は亜
鉛に対するモル比(炭酸ガス/亜鉛)で0.3〜2.0、好ま
しくは0.4〜1.0が適している。
The step of blowing carbon dioxide gas into the aqueous slurry solution of the zinc component and the copper precipitate can be performed in the temperature range of room temperature to 100 ° C. The carbon dioxide gas used is preferably a method in which liquefied carbon dioxide gas is vaporized and blown. The blowing amount of carbon dioxide is 0.3 to 2.0, preferably 0.4 to 1.0, in terms of molar ratio to zinc (carbon dioxide / zinc).

ジルコニウム酸化物の原料としては、適当な溶媒に可
溶で適切な条件で沈殿するものであれば、いかなる化合
物を用いても良いが、実用的な観点からジルコニウムア
ルコキシド、オキシ硝酸ジルコニウム、酢酸ジルコニウ
ムの如きジルコニウム塩が用いられる。
As the raw material of the zirconium oxide, any compound may be used as long as it is soluble in a suitable solvent and precipitates under suitable conditions, but from a practical point of view, zirconium alkoxide, zirconium oxynitrate, zirconium acetate can be used. Zirconium salts such as

なおジルコニウム酸化物に代えてアルニウム酸化物も
使用できるが、アルミニウム酸化物の場合には流動触媒
の強度(耐摩耗性等)を保つために含有量を上げる必要
があり、アルニウム酸化物は比重が小さく粒子捕集系の
負荷が大きくなることからも流動触媒としては有利とな
らない(参考例1)。
Although aluminum oxide can be used in place of zirconium oxide, in the case of aluminum oxide, it is necessary to increase the content in order to maintain the strength (wear resistance, etc.) of the fluidized catalyst. Since it is small and the load on the particle collecting system is large, it is not advantageous as a fluidized catalyst (Reference Example 1).

また本発明触媒では触媒成分の銅化合物、亜鉛化合物
およびジルコニウム酸化物の他にクロム、マグネシウ
ム、ホウ素などの反応促進物質を微量添加することもで
きる。また担体となる上述の酸化物の原料となる化合物
溶液からの沈澱生成剤としては特に限定はなく、水酸化
アルカリ、(重)炭酸アルカリ、(重)炭酸アンモニウ
ムの如きアルカリ性物質が用いられる。
Further, in the catalyst of the present invention, in addition to the copper compound, the zinc compound and the zirconium oxide which are the catalyst components, a trace amount of a reaction accelerating substance such as chromium, magnesium or boron can be added. There is no particular limitation on the precipitation-producing agent from the compound solution which is the raw material of the above oxide serving as a carrier, and alkaline substances such as alkali hydroxide, alkali (bi) carbonate and ammonium (bi) carbonate are used.

ジルコニウム成分の添加方法としては、上記銅、亜鉛
沈澱物生成時に同時に沈澱を生成させる方法、あるいは
銅、亜鉛沈澱物にジルコニウム沈澱物を添加する方法等
を用いることができる。
As a method of adding the zirconium component, a method of simultaneously forming a precipitate when the copper or zinc precipitate is formed, a method of adding a zirconium precipitate to the copper or zinc precipitate, and the like can be used.

アルカリ金属又はアルカリ土類金属化合物としては、
適当な溶媒に可溶であればいかなる化合物を用いても良
いが、実用的観点から水溶性の硝酸塩、塩化物、水酸化
物、炭酸塩、有機酸塩などを用いることができる。これ
らの添加方法は上記銅・亜鉛・ジルコニウム成分に含浸
あるいは混練などにより混合させることができる。
As the alkali metal or alkaline earth metal compound,
Any compound may be used as long as it is soluble in a suitable solvent, but from a practical viewpoint, water-soluble nitrates, chlorides, hydroxides, carbonates, organic acid salts and the like can be used. These additives can be mixed by impregnating or kneading the above copper, zinc and zirconium components.

このようにして得られた触媒前駆体は、適当な濃度の
スラリーとし、このスラリー溶液を噴霧乾燥するか、あ
るいは油中滴下するにことにより、球状の微粉末とする
ことができる。
The catalyst precursor thus obtained can be made into a spherical fine powder by forming a slurry having an appropriate concentration and spray-drying this slurry solution or dropping it in oil.

触媒粉末は、通常の流動層反応器に用いられる5〜30
00ミクロンの間の粒子径の粒子を用いることができる
が、気相流動層反応に用いる場合には500ミクロン以上
の粒子が大量に存在すると往々にして良好な流動化状態
が損なわれる場合も多く、通常は適正な粒度分布を持っ
た200ミクロンから20ミクロンの間の球状に近い粒子が
好ましい。
The catalyst powder is used in a conventional fluidized bed reactor in an amount of 5 to 30
Particles with a particle size between 00 microns can be used, but when used in a gas phase fluidized bed reaction, the presence of a large amount of particles of 500 microns or more often impairs a good fluidization state. Usually, near spherical particles between 200 and 20 microns with proper particle size distribution are preferred.

本発明にかかわる流動層用触媒により混合アルコール
を製造する際の反応条件は、原料ガス中の一酸化炭素お
よび/または二酸化炭素と水素の濃度や、触媒中の活性
成分の含有量などにより異なってくるが、おおむね反応
圧力20〜300kg/cm2、好ましくは30〜200kg/cm2であり、
反応温度は150〜400℃、好ましくは250〜350℃である。
また空間速度は1000〜8X104hr-1の範囲にあるが、特に
気相流動層方式で用いる場合は、触媒粒子が十分流動す
るようにガス空塔速度も考慮されるべきである。
The reaction conditions for producing the mixed alcohol by the fluidized bed catalyst according to the present invention are different depending on the concentrations of carbon monoxide and / or carbon dioxide and hydrogen in the raw material gas, the content of the active component in the catalyst, and the like. However, the reaction pressure is generally 20 to 300 kg / cm 2 , preferably 30 to 200 kg / cm 2 .
The reaction temperature is 150 to 400 ° C, preferably 250 to 350 ° C.
Although the space velocity is in the range of 1000 to 8 × 10 4 hr -1 , the superficial velocity of the gas should be taken into consideration so that the catalyst particles can flow sufficiently, especially when used in the gas phase fluidized bed system.

(実施例) 次に実施例により本発明を具体的に説明する。(Examples) Next, the present invention will be specifically described with reference to examples.

実施例1 硝酸銅(三水塩)321.3g、硝酸亜鉛(六水塩)297.5g
およびオキシ硝酸ジルコニウム(二水塩)374.2gを10l
のイオン交換水に溶解し、60℃に保持した。この溶液を
重炭酸アンモニウム631gを30lのイオン交換水に溶解し6
0℃に保持した溶液中に撹拌下に注加し、不溶性沈澱を
生成させた。この沈澱溶液を60℃で1時間撹拌したの
ち、80℃まで30分間で昇温し、その後更に30分間撹拌を
続けた。その後放冷し濾過を行った後、10lのイオン交
換水で4回洗浄を行った。
Example 1 Copper nitrate (trihydrate) 321.3 g, zinc nitrate (hexahydrate) 297.5 g
And zirconium oxynitrate (dihydrate) 374.2g 10l
Was dissolved in ion-exchanged water and maintained at 60 ° C. Dissolve 631 g of ammonium bicarbonate in 30 l of deionized water and
It was poured into the solution kept at 0 ° C. with stirring to form an insoluble precipitate. This precipitation solution was stirred at 60 ° C. for 1 hour, then heated to 80 ° C. in 30 minutes, and then stirred for another 30 minutes. Then, the mixture was allowed to cool, filtered, and washed with 10 l of ion-exchanged water four times.

こうして得られた沈澱ケーキに、炭酸セシウム1.6gを
10mlのイオン交換水に溶解した水溶液を加え、更にイオ
ン交換水を加えてスラリー中の固形分濃度が25wt%にな
るように調整し、1時間擂潰した。次にこのスラリーを
噴霧乾燥機により乾燥空気入口温度250℃で乾燥し、球
状粉粒体を得た。更にこの粉粒体を空気流通、流動下38
0℃で1.5時間焼成して350gの触媒1を得た。
1.6 g of cesium carbonate was added to the precipitate cake thus obtained.
An aqueous solution dissolved in 10 ml of ion-exchanged water was added, and further ion-exchanged water was added to adjust the solid content concentration in the slurry to 25 wt%, and the mixture was crushed for 1 hour. Next, this slurry was dried with a spray dryer at a dry air inlet temperature of 250 ° C. to obtain spherical powdery particles. Furthermore, this powder and granules are passed through air and
It was calcined at 0 ° C. for 1.5 hours to obtain 350 g of catalyst 1.

実施例2 重炭酸アンモニウム180.0gを10lのイオン交換水に溶
解し40℃に保持した。これにオキシ硝酸ジルコニウム26
7.3gを5lのイオン交換水に溶解し40℃とした溶液を撹拌
下に注加し、沈澱を生成させた。次いでこれに重炭酸ア
ンモニウム400gを20lのイオン交換水に溶解した溶液を
加え、30分間撹拌した後、硝酸銅(三水塩)321.3g、硝
酸亜鉛(六水塩)297.5gを5lのイオン交換水に溶解した
溶液を注加し、40分間かけて80℃まで昇温し、30分間熟
成した。その後濾過、洗浄を行い、得られたケーキに炭
酸ルビジウム5.8gを20mlのイオン交換水に溶解した水溶
液を加え、更にイオン交換水を加えてスラリー中の固形
分濃度が25wt%になるように調整し、1時間擂潰した。
以下実施例1と同様に噴霧乾燥、焼成を行い、300gの触
媒2を得た。
Example 2 180.0 g of ammonium bicarbonate was dissolved in 10 l of ion-exchanged water and kept at 40 ° C. Zirconium oxynitrate 26
A solution in which 7.3 g was dissolved in 5 l of ion-exchanged water and kept at 40 ° C was added with stirring to form a precipitate. Next, add a solution prepared by dissolving 400 g of ammonium bicarbonate in 20 liters of ion-exchanged water and stirring for 30 minutes, followed by ion-exchange of 51.3 liters of copper nitrate (trihydrate) 321.3 g and zinc nitrate (hexahydrate) 297.5 g. A solution dissolved in water was added, the temperature was raised to 80 ° C over 40 minutes, and the mixture was aged for 30 minutes. After filtering and washing, add an aqueous solution of 5.8 g of rubidium carbonate dissolved in 20 ml of ion-exchanged water to the cake obtained, and further add ion-exchanged water to adjust the solid content concentration in the slurry to 25 wt%. And crushed for 1 hour.
Thereafter, spray drying and calcination were performed in the same manner as in Example 1 to obtain 300 g of Catalyst 2.

実施例3 炭酸ナトリウム270gを20lのイオン交換水に溶解し50
℃とし、これに硝酸銅(三水塩)241.6g、硝酸亜鉛(六
水塩)297.5gを5lのイオン交換水に溶解し50℃に保持し
た溶液を撹拌下に注加し、沈澱を生成させた後30分間で
80℃まで昇温した。30分間熟成したのち55℃まで放冷
し、これにオキシ硝酸ジルコニウム(二水塩)427.6gを
溶解し30℃に保持された溶液5lと、炭酸ナトリウム180g
を溶解し40℃に保持された溶液10lを同時に注加し、更
に30分間撹拌を続けた。生成した不溶性沈澱を濾過、洗
浄して得られたケーキを炭酸カリウム0.4gと炭酸セシウ
ム0.3gを10mlのイオン交換水に溶解した水溶液を加え、
更にイオン交換水でスラリー固形分濃度が25wt%になる
ように調整し1時間擂潰した。以下実施例1と同様に噴
霧乾燥、焼成を行い、340gの触媒3を得た。
Example 3 270 g of sodium carbonate was dissolved in 20 liters of ion-exchanged water to obtain 50
C., and 241.6 g of copper nitrate (trihydrate) and 297.5 g of zinc nitrate (hexahydrate) were dissolved in 5 liters of deionized water, and the solution kept at 50.degree. C. was added under stirring to form a precipitate. 30 minutes after letting
The temperature was raised to 80 ° C. After aging for 30 minutes, the mixture was allowed to cool to 55 ° C, 427.6 g of zirconium oxynitrate (dihydrate) was dissolved in it, and 5 l of the solution kept at 30 ° C and 180 g of sodium carbonate were added.
Was dissolved and 10 l of a solution kept at 40 ° C. was added at the same time, and stirring was continued for another 30 minutes. The resulting insoluble precipitate was filtered, and a cake obtained by washing was added with an aqueous solution of 0.4 g of potassium carbonate and 0.3 g of cesium carbonate dissolved in 10 ml of ion-exchanged water,
Furthermore, the slurry solid content concentration was adjusted to 25 wt% with ion-exchanged water and crushed for 1 hour. Thereafter, spray drying and calcination were performed in the same manner as in Example 1 to obtain 340 g of Catalyst 3.

参考例1 重炭酸アンモニウム240.0gを10lのイオン交換水に溶
解し40℃に保持した。これにオキシ硝酸ジルコニウム17
2.5gを5lのイオン交換水に溶解し40℃とした溶液を撹拌
下に注加し、沈澱を生成させた。一方重炭酸アンモニウ
ム545.0gを20lのイオン交換水に溶解し40℃に保持した
後、これに硝酸銅(三水塩)483.2g、硝酸亜鉛(六水
塩)297.5gを5lのイオン交換水に溶解し40℃に保持した
溶液を注加した。次に35分間で80℃まで昇温し30分間熟
成した後、55℃まで放冷却した。
Reference Example 1 240.0 g of ammonium bicarbonate was dissolved in 10 l of ion-exchanged water and kept at 40 ° C. Zirconium oxynitrate 17
A solution of 2.5 g dissolved in 5 l of ion-exchanged water and adjusted to 40 ° C. was poured under stirring to form a precipitate. On the other hand, 545.0 g of ammonium bicarbonate was dissolved in 20 liters of ion-exchanged water and kept at 40 ° C, and then 483.2 g of copper nitrate (trihydrate) and 297.5 g of zinc nitrate (hexahydrate) were added to 5 liters of ion-exchanged water. The solution which melt | dissolved and was hold | maintained at 40 degreeC was added. Next, the temperature was raised to 80 ° C. in 35 minutes, aged for 30 minutes, and then allowed to cool to 55 ° C.

この溶液と先に調整したジルコニウムの沈澱を含む溶
液を撹拌下に混合し30分間激しく撹拌したのち濾過、洗
浄して得られたケーキに、炭酸セシウム3.3gを20mlのイ
オン交換水に溶解した水溶液を加え、イオン交換水でス
ラリー固形分濃度が25wt%になるように調整し、1時間
擂潰した。以下実施例1と同様に噴霧乾燥、焼成を行
い、395gの触媒4を得た。
This solution and the previously prepared solution containing the precipitate of zirconium were mixed with stirring and vigorously stirred for 30 minutes, then filtered and washed to obtain a cake, and 3.3 g of cesium carbonate was dissolved in 20 ml of ion-exchanged water. Was added to adjust the slurry solid content to be 25 wt% with ion-exchanged water, and the mixture was crushed for 1 hour. Thereafter, spray drying and firing were carried out in the same manner as in Example 1 to obtain 395 g of catalyst 4.

実施例4 重炭酸アンモニウム216.6gを6lのイオン交換水に溶解
し50℃に保持した。これに硝酸銅(三水塩)171.5g、硝
酸亜鉛(六水塩)158.9gを3lのイオン交換水に溶解し50
℃とした溶液を注加し沈澱させた。その後80℃に昇温し
この温度で30分間保持したのち40℃まで降温した。
Example 4 216.6 g of ammonium bicarbonate was dissolved in 6 l of ion-exchanged water and kept at 50 ° C. 171.5 g of copper nitrate (trihydrate) and 158.9 g of zinc nitrate (hexahydrate) were dissolved in 3 l of deionized water.
The solution was heated to ℃ for pouring. After that, the temperature was raised to 80 ° C., kept at this temperature for 30 minutes, and then lowered to 40 ° C.

硝酸アルミニウム(九水塩)1103.8gをイオン交換水1
0lに溶解し40℃とした溶液と、水酸化ナトリム353.08g
をイオン交換水30lに溶解し40℃とした溶液とを先の溶
液中に撹拌下に注加し沈澱させ、この温度にて30分間保
持した。その後放冷し、実施例1と同様に噴霧乾燥、焼
成を行った後、得られたケーキに炭酸セシウム0.4g、硝
酸カルシウム(四水塩)2.5gを20mlのイオン交換水に溶
解した水溶液を加え、イオン交換水でスラリー固形分濃
度が25wt%になるように調整し、1時間擂潰した。以下
実施例1と同様に噴霧乾燥、焼成を行い、180gの触媒5
を得た。
1103.8 g of aluminum nitrate (decahydrate) is added to ion-exchanged water 1
Solution dissolved in 0l and brought to 40 ° C, and sodium hydroxide 353.08g
Was dissolved in 30 liters of ion-exchanged water and brought to 40 ° C., and the solution was poured into the above solution under stirring to cause precipitation, and the mixture was kept at this temperature for 30 minutes. Thereafter, the mixture was allowed to cool, spray-dried and calcined in the same manner as in Example 1, and then the obtained cake was dissolved in 20 ml of ion-exchanged water containing 0.4 g of cesium carbonate and 2.5 g of calcium nitrate (tetrahydrate). In addition, the slurry solid content concentration was adjusted to 25 wt% with ion-exchanged water and crushed for 1 hour. Thereafter, spray drying and calcination were carried out in the same manner as in Example 1 to obtain 180 g of catalyst 5
I got

比較例1 銅、亜鉛及びジルコニウム化合物の触媒前駆体ケーキ
を実施例1と同様に調整し、炭酸セシウムを加えずその
ままでスラリー固形分濃度が25wt%になるように調整し
た後、以下実施例1と同様に噴霧乾燥、焼成を行い、35
0gの触媒6を得た。
Comparative Example 1 A catalyst precursor cake of copper, zinc and zirconium compounds was prepared in the same manner as in Example 1, and the slurry solid content concentration was adjusted to 25 wt% as it was without adding cesium carbonate. Perform spray drying and firing in the same manner as
0 g of catalyst 6 was obtained.

この触媒は、触媒前駆体にアルカリ金属またはアルカ
リ土類金属化合物を加えないので、メタノル以外のアル
コール生成量が少なくなる。
Since this catalyst does not add an alkali metal or alkaline earth metal compound to the catalyst precursor, the amount of alcohol other than methanol produced is small.

比較例2 硝酸銅(三水塩)321.3g、硝酸亜鉛(六水塩)297.5g
およびオキシ硝酸ジルコニウム(二水塩)160.3gをイオ
ン交換水1に溶解し60℃に保持した。この溶液を重炭
酸アンモニウム510.0gを30lのイオン交換水に溶解し60
℃に保持した溶液中に撹拌下に注加し沈澱を生成させ
た。以下実施例1と同様に撹拌、昇温、放冷、濾過、洗
浄を行い沈澱ケーキを得た。得られたケーキに炭酸セシ
ウム3.3g含有水溶液を加え、以下実施例4と同様にして
250gの触媒7を得た。
Comparative Example 2 Copper nitrate (trihydrate) 321.3 g, Zinc nitrate (hexahydrate) 297.5 g
And 160.3 g of zirconium oxynitrate (dihydrate) was dissolved in ion-exchanged water 1 and kept at 60 ° C. This solution was prepared by dissolving 510.0 g of ammonium bicarbonate in 30 l of deionized water.
A precipitate was formed by pouring into the solution kept at 0 ° C. with stirring. Thereafter, stirring, heating, cooling, filtration and washing were carried out in the same manner as in Example 1 to obtain a precipitate cake. An aqueous solution containing 3.3 g of cesium carbonate was added to the obtained cake, and the same procedure as in Example 4 was performed below.
250 g of catalyst 7 was obtained.

上記のようにして得られた触媒の組成と平均粒径を第
1表に示す。
Table 1 shows the composition and average particle diameter of the catalyst obtained as described above.

試験例1(活性試験) 下部に焼結金属製フィルターを備えたステンレス製反
応器に触媒焼成品100mlを充填し、反応器下部フィルタ
ーを通して窒素ガスを導入し140℃に保った。
Test Example 1 (Activity Test) A stainless reactor equipped with a sintered metal filter at the bottom was filled with 100 ml of the calcined catalyst product, and nitrogen gas was introduced through the reactor lower filter to keep the temperature at 140 ° C.

次いで徐々に窒素ガスを水素ガスに代えながら約5時
間かけて窒素ガスの全量を水素ガスに置き換えた後、24
0℃に3時間保持し、触媒の還元を行った。
Then, while gradually replacing the nitrogen gas with the hydrogen gas, the total amount of the nitrogen gas was replaced with the hydrogen gas over a period of about 5 hours.
The catalyst was reduced by holding it at 0 ° C. for 3 hours.

次に水素67.4%、一酸化炭素24.0%、二酸化炭素6.6
%、メタン1.5%、窒素0.5%よりなる合成ガスを用い、
反応圧力70kg/cm2、反応温度340℃、空間速度(SV)1.0
X104〜2.0X104Hr-1の条件下、触媒の活性試験を行っ
た。結果を第2表に示す。
Next, hydrogen 67.4%, carbon monoxide 24.0%, carbon dioxide 6.6
%, Methane 1.5%, nitrogen 0.5%, using a syngas,
Reaction pressure 70kg / cm 2 , reaction temperature 340 ℃, space velocity (SV) 1.0
Conditions of X10 4 ~2.0X10 4 Hr -1, were tested for activity of the catalyst. The results are shown in Table 2.

試験例2(摩耗性試験) 各実施例で得られた触媒50gを窒素気流中で流動化さ
せ140℃に保持した。次に窒素ガスを徐々に水素に代え
ながら、約5時間かけて窒素ガスの全量を水素ガスに置
き換えた後、240℃に3時間保持し触媒の還元を行っ
た。
Test Example 2 (Abrasion test) 50 g of the catalyst obtained in each example was fluidized in a nitrogen stream and kept at 140 ° C. Next, while gradually replacing the nitrogen gas with hydrogen, the entire amount of the nitrogen gas was replaced with hydrogen gas over about 5 hours, and then the temperature was maintained at 240 ° C. for 3 hours to reduce the catalyst.

下部に0.4mm径の***の開いたステンレス板を備えた
内径27.0mmの肉厚ガラス管に、上記により還元した触媒
を充填し、ガラス管上部に触媒粉末が系外に飛び出さな
いように円筒濾紙を備えた排気管を挿入した。
A thick glass tube with an inner diameter of 27.0 mm equipped with a stainless steel plate with a 0.4 mm diameter hole at the bottom is filled with the catalyst reduced as described above, and a cylinder is placed at the top of the glass tube to prevent catalyst powder from jumping out of the system. An exhaust tube with filter paper was inserted.

次いで下部***より510l/Hrの速度で窒素ガスを1時
間噴出させ、触媒粒子を摩耗させた後、窒素ガスを止
め、空気を少しづつ15時間流しながら触媒を再酸化し、
粉末のほぼ全量を回収した。
Next, nitrogen gas is spouted from the lower small hole at a rate of 510 l / Hr for 1 hour to wear out the catalyst particles, then stop the nitrogen gas and re-oxidize the catalyst while flowing air little by little for 15 hours,
Almost all of the powder was recovered.

この試験の前後に触媒粒子の粒度分布を音波式ハンド
シフター(筒井理化学器械(株)、SW-20型)により測
定し、次式により摩耗速度を求めた。
Before and after this test, the particle size distribution of the catalyst particles was measured by a sonic hand shifter (Tsutsui Rikagaku Kikai Co., Ltd., SW-20 type), and the wear rate was calculated by the following formula.

AR(−20)=(A−B)/CX100(%) AR(−20):20ミクロン以下の粒子割合の変化より求め
た摩耗速度(%) A:摩耗試験後に回収された触媒粒子(再酸化品中に占め
る粒径20ミクロン以下の粒子の割合(%) B:焼成品粒子中に占める粒径20ミクロン以下の粒子の割
合(%) C:焼成品粒子中に占める粒径20ミクロン以上の粒子の割
合(%) こうして得られた摩耗性試験結果を第3表に示す。
AR (−20) = (A−B) / CX100 (%) AR (−20): Abrasion rate (%) obtained from the change of the particle ratio of 20 microns or less A: Catalyst particles recovered after the abrasion test Proportion of particles having a particle size of 20 microns or less in the oxidized product (%) B: Proportion of particles having a particle size of 20 microns or less in the baked product particles (%) C: Particle size of 20 microns or more in the baked product particles Table 3 shows the results of the abrasion test thus obtained.

なお参考例として、触媒化成(株)製FCC用シリカ・
アルミナ触媒L.A型の摩耗試験結果は20.6%であり、同
社製同触媒SZ−H型触媒の摩耗試験結果は29.1%であっ
た。
As a reference example, Silica for FCC manufactured by Catalyst Kasei Co., Ltd.
The wear test result of the alumina catalyst LA type was 20.6%, and the wear test result of the same catalyst SZ-H type catalyst manufactured by the same was 29.1%.

試験例2−7はジルコニウム酸化物の含有量が30wt%
より低い場合であり、摩耗速度が低い。
Test Example 2-7 has a zirconium oxide content of 30 wt%
In the lower case, the wear rate is low.

試験例1および試験例2の結果より、本発明の方法に
よる混合アルコール用触媒は、高活性で且つアルコール
の選択率が高く、しかも市販の他の反応に用いられてい
る気相流動層用触媒と比較しても遜色のない耐摩耗性を
有した触媒であることが分かる。
From the results of Test Example 1 and Test Example 2, the catalyst for mixed alcohols according to the method of the present invention has high activity and high alcohol selectivity, and is a catalyst for gas phase fluidized bed used in other commercially available reactions. It can be seen that the catalyst has abrasion resistance comparable to that of the catalyst.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】銅化合物、亜鉛化合物およびジルコニウム
酸化物からなり、ジルコニウム酸化物の含量が30重量%
以上である触媒前駆体に周期律表第1族アルカリ金属ま
たは第2族アルカリ土類金属から選ばれた1種もしくは
2種以上の化合物を加えることを特徴とする混合アルコ
ール合成用触媒。
1. A copper compound, a zinc compound and a zirconium oxide, wherein the content of the zirconium oxide is 30% by weight.
A catalyst for mixed alcohol synthesis, comprising one or more compounds selected from Group 1 alkali metals or Group 2 alkaline earth metals of the Periodic Table added to the above catalyst precursor.
【請求項2】粒子径が5〜3000ミクロンであり、流動層
反応器に用いられる請求項1記載の混合アルコール合成
用触媒。
2. The catalyst for mixed alcohol synthesis according to claim 1, which has a particle diameter of 5 to 3000 μm and is used in a fluidized bed reactor.
JP62043020A 1987-02-27 1987-02-27 Fluid catalyst for mixed alcohol synthesis Expired - Lifetime JP2535876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62043020A JP2535876B2 (en) 1987-02-27 1987-02-27 Fluid catalyst for mixed alcohol synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62043020A JP2535876B2 (en) 1987-02-27 1987-02-27 Fluid catalyst for mixed alcohol synthesis

Publications (2)

Publication Number Publication Date
JPS63209754A JPS63209754A (en) 1988-08-31
JP2535876B2 true JP2535876B2 (en) 1996-09-18

Family

ID=12652280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62043020A Expired - Lifetime JP2535876B2 (en) 1987-02-27 1987-02-27 Fluid catalyst for mixed alcohol synthesis

Country Status (1)

Country Link
JP (1) JP2535876B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3932331A1 (en) * 1989-09-28 1991-04-11 Hoechst Ag PROCESS FOR PRODUCING ALCOHOLS (TWO-STAGE)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52120809A (en) * 1976-04-05 1977-10-11 Hitachi Ltd Magnetic head
DE3005551A1 (en) * 1980-02-14 1981-08-20 Süd-Chemie AG, 8000 München CATALYST FOR THE SYNTHESIS OF METHANOL AND ALCOHOL MIXTURES CONTAINING HIGHER ALCOHOLS
DE3403491A1 (en) * 1984-02-02 1985-08-14 Süd-Chemie AG, 8000 München CATALYST FOR THE SYNTHESIS OF METHANOL AND ALCOHOL MIXTURES CONTAINING HIGHER ALCOHOLS

Also Published As

Publication number Publication date
JPS63209754A (en) 1988-08-31

Similar Documents

Publication Publication Date Title
JPH0470946B2 (en)
EP0845294B1 (en) Catalyst for dimethyl ether, method of producing catalyst and method of producing dimethyl ether
US5254520A (en) Catalyst for the synthesis of methanol
EP0146165B1 (en) Modified copper- and zinc-containing catalyst and process for producing methanol using said catalyst
US4177167A (en) Catalyst for the preparation of dimethyl ether
US7563747B2 (en) Fischer-Tropsch catalyst
JPH0336571B2 (en)
EP0057796B1 (en) Catalyst, catalyst support and oxychlorination process
CN100584454C (en) Ferrihydrite and aluminium-containing fischer-tropsch synthetic catalysts
JP5269892B2 (en) Process for the preparation of cobalt-zinc oxide Fischer-Tropsch catalyst
JP3865848B2 (en) Catalyst for methanol synthesis
JP4467675B2 (en) Dimethyl ether synthesis catalyst and synthesis method
EP0255295B1 (en) Process for producing fluidized catalyst for synthesis of methanol
JP2535876B2 (en) Fluid catalyst for mixed alcohol synthesis
JPS647974B2 (en)
JP3341808B2 (en) Catalyst for producing dimethyl ether and method for producing dimethyl ether
JPH06254414A (en) Preparation of catalyst
JPH0526543B2 (en)
JPH09173845A (en) Catalyst for manufacturing dimethyl ether, manufacture thereof and manufacture of dimethyl ether
JPH0613094B2 (en) Method for producing fluidized catalyst for synthesizing methanol
JP3867305B2 (en) Carbon monoxide conversion catalyst
JPS6361931B2 (en)
JPH0219098B2 (en)
JPH09173848A (en) Catalyst for manufacturing dimethyl ether, manufacture thereof and manufacture of dimethyl ether
JPS5927836A (en) Production of hydrocarbon