JP2533424B2 - Hot-end inspection method for glass bottles - Google Patents

Hot-end inspection method for glass bottles

Info

Publication number
JP2533424B2
JP2533424B2 JP3330012A JP33001291A JP2533424B2 JP 2533424 B2 JP2533424 B2 JP 2533424B2 JP 3330012 A JP3330012 A JP 3330012A JP 33001291 A JP33001291 A JP 33001291A JP 2533424 B2 JP2533424 B2 JP 2533424B2
Authority
JP
Japan
Prior art keywords
glass bottle
infrared camera
image
hot
inspection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3330012A
Other languages
Japanese (ja)
Other versions
JPH05142172A (en
Inventor
正浩 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishizuka Glass Co Ltd
Original Assignee
Ishizuka Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishizuka Glass Co Ltd filed Critical Ishizuka Glass Co Ltd
Priority to JP3330012A priority Critical patent/JP2533424B2/en
Publication of JPH05142172A publication Critical patent/JPH05142172A/en
Application granted granted Critical
Publication of JP2533424B2 publication Critical patent/JP2533424B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は成形されたガラス壜が徐
冷炉へ入る前に欠陥の有無を検査することができるガラ
ス壜のホットエンド検査方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass bottle hot-end inspection method capable of inspecting a molded glass bottle for defects before entering a slow cooling furnace.

【0002】[0002]

【従来の技術】従来、ガラス壜は成形機を出たのち高温
状態のまま徐冷炉へ送り込まれ、数十分をかけて徐冷さ
れた後に検査機により検査されている。ところがこのよ
うな徐冷後の検査(コールドエンド検査)で発見された
欠陥は数十分前に成形されたガラス壜についてのもので
あるから、検査結果を成形工程にフィードバックして成
形工程を修正するというアクションに遅れを生じ、場合
によっては徐冷炉に入っている全部のガラス壜を不良品
として廃棄しなければならないこともある。
2. Description of the Related Art Conventionally, a glass bottle has been discharged from a molding machine, then sent to a slow cooling furnace in a high temperature state, slowly cooled for several tens of minutes, and then inspected by an inspection machine. However, since the defects found in the inspection after the slow cooling (cold-end inspection) are related to the glass bottle molded several tens of minutes ago, the inspection result is fed back to the molding process to correct the molding process. There is a delay in the action of doing so, and in some cases, all glass bottles in the annealing furnace must be discarded as defective products.

【0003】このような問題を回避するためには、成形
機で成形されたガラス壜が徐冷炉へ入る前(ホットエン
ド)に欠陥の有無を検査することが望ましい。しかし数
百℃のガラス壜の欠陥を的確に検査することはできず、
コンベヤ上を流れて行くガラス壜を肉眼により監視する
か、コンベヤ上から抜き取ったガラス壜を冷却して検査
する以外に方法がなかった。ところがこのような肉眼監
視方法はばらつきが大きい上に成形スピードが速くなる
と監視自体が困難であり、また抜き取り検査方法は全数
検査ができないので欠陥の発生を見逃し易いという問題
があった。
In order to avoid such a problem, it is desirable to inspect the glass bottle molded by a molding machine for defects before entering the annealing furnace (hot end). However, it is impossible to accurately inspect defects in glass bottles at several hundred degrees Celsius,
There was no choice but to monitor the glass bottle flowing on the conveyor with the naked eye, or to cool and inspect the glass bottle drawn from the conveyor. However, such a naked-eye monitoring method has a problem that it is difficult to monitor when the molding speed is high and the sampling inspection method cannot perform 100% inspection, and thus it is easy to overlook the occurrence of defects.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記した従来
の問題点を解消して、成形されたガラス壜の欠陥をホッ
トエンドにおいて高速かつ的確に検査することができる
ガラス壜のホットエンド検査方法を提供するためになさ
れたものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and enables a hot-end inspection method for a glass bottle capable of inspecting a molded glass bottle for defects at a hot end accurately and at high speed. It was made to provide.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めになされた本発明は、成形直後の高温状態にあるガラ
ス壜の外観を赤外線カメラにより撮影し、その画像の温
度分布を画像処理して等温線を演算し、その交叉の有無
により良否を判定することを特徴とするものである。ま
た上記の検査に当たっては、成形直後のガラス壜が赤外
線カメラの設置位置まで移動するに要する時間に応じて
赤外線カメラの感度を自動調節する方式、あるいは赤外
線カメラの画像の輝度レベルの最大値と最小値に応じて
2値化のためのしきい値を自動設定する自動演算方式を
取ることが好ましい。以下に本発明を図示の実施例によ
って更に詳細に説明する。
SUMMARY OF THE INVENTION The present invention, which has been made to solve the above-mentioned problems , is to take an image of the appearance of a glass bottle in a high temperature state immediately after molding with an infrared camera and to display the temperature of the image .
It is characterized in that the degree distribution is subjected to image processing to calculate an isotherm, and the quality is judged by the presence or absence of the intersection. In addition, in the above inspection, the sensitivity of the infrared camera is automatically adjusted according to the time required for the glass bottle immediately after molding to move to the installation position of the infrared camera, or the maximum and minimum brightness levels of the infrared camera image. It is preferable to adopt an automatic calculation method for automatically setting a threshold value for binarization according to the value. Hereinafter, the present invention will be described in more detail with reference to the illustrated embodiments.

【0006】[0006]

【実施例】図1は本発明の実施例を説明する斜視図であ
り、1はガラス成形機の一部であるテイクアウトトン
グ、2は成形機のデッドプレート、3はコンベヤであ
る。ガラス壜Gはテイクアウトトング1によって金型
(図示せず)からデッドプレート2上へ取り出され、更
に図示されない押し出し機構によってコンベヤ3上へ押
し出される。そしてコンベヤ3上のガラス壜Gはクロス
コンベヤ4に乗り移り、スタッカ5によって徐冷炉6の
中へ押し込まれる。
1 is a perspective view for explaining an embodiment of the present invention, in which 1 is a take-out tongue which is a part of a glass molding machine, 2 is a dead plate of the molding machine, and 3 is a conveyor. The glass bottle G is taken out from the mold (not shown) onto the dead plate 2 by the takeout tongs 1 and further pushed onto the conveyor 3 by a pushing mechanism (not shown). Then, the glass bottle G on the conveyor 3 is transferred to the cross conveyor 4 and pushed into the slow cooling furnace 6 by the stacker 5.

【0007】このコンベヤ3の側方にはカメラ取り付け
台7が設けられており、その上に赤外線カメラ8が設置
されている。この赤外線カメラ8はコンベヤ3上を移送
されていく成形直後の高温状態にあるガラス壜の外観を
撮影するためのもので、その画像は画像処理装置9に入
力され、その画像の温度分布から等温線の演算が行われ
る。
A camera mount 7 is provided on the side of the conveyor 3, and an infrared camera 8 is installed on the camera mount 7. This infrared camera 8 is for photographing the appearance of a glass bottle in a high temperature state immediately after molding which is being transferred on the conveyor 3, and its image is input to the image processing device 9 and is isothermal from the temperature distribution of the image. Line calculations are performed.

【0008】図2と図3はこのようにして演算されたガ
ラス壜Gの画像の等温線の例を示すものであり、ガラス
壜Gに欠陥のない場合には例えば図2のような等温線10
が得られる。等温線10の形状自体はガラス壜Gの形状や
肉厚に応じてさまざまであるが、等温線が相互に交叉す
ることはない。
2 and 3 show examples of the isotherms of the image of the glass bottle G calculated in this way. For example, when the glass bottle G has no defect, the isotherm as shown in FIG. Ten
Is obtained. The shape of the isotherm 10 itself varies depending on the shape and thickness of the glass bottle G, but the isotherms do not cross each other.

【0009】ところがガラス壜Gにシワ、ビリ、油カス
のような欠陥がある場合には、図3に示すように欠陥に
より生じた表面状態に局部的な変化により通常の等温線
10を横切るような異常等温線11が発生し、等温線に交叉
が生ずる。そこで画像処理装置9により等温線の交叉の
有無により良否を判定し、不良と判定されたガラス壜G
は赤外線カメラ8の下流側に配置されたノズル12から圧
縮空気を噴出してシュート13中へ落下させる。
However, when the glass bottle G has defects such as wrinkles, creases and oil debris, as shown in FIG. 3, a normal isotherm is generated due to local changes in the surface state caused by the defects.
An abnormal isotherm 11 that crosses 10 is generated, and the isotherm intersects. Therefore, the image processing device 9 determines whether the isotherm is good or bad based on the crossing of the isotherms, and determines that the glass bottle G is defective.
Blows compressed air from a nozzle 12 arranged on the downstream side of the infrared camera 8 and drops it into a chute 13.

【0010】なお当業者間に周知のように、ガラス壜成
形機は多数の同一構造の成形セクションを持ち、各成形
セクションにより成形されたガラス壜Gを同一のコンベ
ヤ3上へ押し出す。このために図1のようにコンベヤ3
上に赤外線カメラ8を設置すると、赤外線カメラ8に近
い成形セクションで成形されたガラス壜Gは比較的高温
であり、一方赤外線カメラ8から遠い成形セクションで
成形されたガラス壜Gは赤外線カメラ8の位置まで来る
間により長い時間がかかるので比較的低温である。この
ために赤外線カメラ8の感度を一定に固定しておくと、
温度差による赤外線輻射量の差によりうまく画像処理が
できなくなる場合がある。
As is well known to those skilled in the art, the glass bottle molding machine has a large number of molding sections having the same structure, and the glass bottle G molded by each molding section is extruded onto the same conveyor 3. For this purpose, as shown in FIG.
When the infrared camera 8 is installed above, the glass bottle G formed in the forming section near the infrared camera 8 has a relatively high temperature, while the glass bottle G formed in the forming section far from the infrared camera 8 is It is relatively cold as it takes longer to get to position. For this reason, if the sensitivity of the infrared camera 8 is fixed,
Image processing may not be performed well due to a difference in infrared radiation amount due to a temperature difference.

【0011】しかしコンベヤ3上を流れてくるガラス壜
Gは常に一定の順序を保っているので、どの成形セクシ
ョンで成形されたガラス壜Gが赤外線カメラ8の前を通
過するかを予め知ることができる。そこで成形直後のガ
ラス壜Gが赤外線カメラ8の設置位置まで移動するに要
する時間に応じて赤外線カメラ8の感度を自動的に調節
することにより、上記した温度差による画像処理の乱れ
を防止することが可能である。
However, since the glass bottles G flowing on the conveyor 3 always maintain a fixed order, it is possible to know in advance which molding section the glass bottles G formed pass in front of the infrared camera 8. it can. Therefore, by automatically adjusting the sensitivity of the infrared camera 8 according to the time required for the glass bottle G immediately after molding to move to the installation position of the infrared camera 8, it is possible to prevent the image processing from being disturbed due to the temperature difference. Is possible.

【0012】またこのほか、自動演算処理方式によって
温度差の影響を防止することもできる。これはガラス壜
Gの温度差による赤外線カメラの画像の輝度レベルの最
大値と最小値に応じて2値化のためのしきい値を自動設
定する方式である。一般に画像処理装置では図4に示す
ようにカメラからの映像信号をA/D変換器により多諧
調にデジタル化し、更にある2値化レベルをしきい値と
して白黒の2諧調に変換して処理を行う。この赤外線カ
メラの画像の輝度レベルはガラス壜Gの温度によって異
なるので、従来のようにしきい値を固定して処理を行う
と等温線の演算に支障が生ずる。
In addition to this, it is possible to prevent the influence of the temperature difference by an automatic calculation processing method. This is a method of automatically setting a threshold value for binarization according to the maximum value and the minimum value of the brightness level of the image of the infrared camera due to the temperature difference of the glass bottle G. Generally, in an image processing apparatus, as shown in FIG. 4, a video signal from a camera is digitized in multiple gradations by an A / D converter, and further converted into black and white two gradations with a certain binarization level as a threshold value for processing. To do. Since the brightness level of the image of the infrared camera varies depending on the temperature of the glass bottle G, if the threshold value is fixed as in the conventional processing, the calculation of the isotherm will be hindered.

【0013】そこで図5に示すような画像の輝度レベル
の変化に対応して、最適な2値化レベルを画像のウイン
ドウ毎に決定する。そのための計算式は次の通りであ
る。 最適な2値化レベル=X+(Y−X)×α ここでXは輝度レベルの最小値、Yは輝度レベルの最大
値、αは1以下の正の少数であり、例えば0.5 である。
この方式によれば、ガラス壜Gの温度が一定でなくても
自動的に最適のしきい値を演算することができ、安定し
た画像処理が可能となる。
Therefore, the optimum binarization level is determined for each window of the image in response to the change in the luminance level of the image as shown in FIG. The calculation formula for that is as follows. Optimal binarization level = X + (Y−X) × α Here, X is the minimum value of the brightness level, Y is the maximum value of the brightness level, and α is a positive small number of 1 or less, for example, 0.5.
According to this method, the optimum threshold value can be automatically calculated even if the temperature of the glass bottle G is not constant, and stable image processing can be performed.

【0014】なお実施例のように1台の赤外線カメラ8
のみを使用した場合にはガラス壜Gの片面しか検査する
ことができないが、赤外線カメラ8の設置台数を増加す
ることによりガラス壜Gのすべての部分の欠陥を検査す
ることができる。また冷却工程において発生する欠陥は
当然にこの方法では知ることができないので、本発明は
従来のコールドエンドにおける検査と併用することが好
ましいことはいうまでもないことである。
One infrared camera 8 as in the embodiment
When only the glass bottle G is used, only one side of the glass bottle G can be inspected. However, by increasing the number of installed infrared cameras 8, it is possible to inspect all the portions of the glass bottle G for defects. Needless to say, it is preferable to use the present invention together with the conventional cold end inspection, because defects generated in the cooling step cannot be detected by this method.

【0015】[0015]

【発明の効果】以上に説明したように、本発明において
は成形直後の高温状態にあるガラス壜の外観を赤外線カ
メラにより撮影し、その画像の温度分布を画像処理して
得られた等温線の交叉の有無により良否を判定するよう
にしたので、ガラス壜の欠陥をホットエンドにおいて高
速かつ的確に全数検査することができる。このために本
発明によれば発見された欠陥の種類や頻度に応じて直ち
に成形機の調整や金型の交換等の修正アクションを取る
ことができる。よって本発明は従来の問題点を解決した
ガラス壜のホットエンド検査方法として、業界に寄与す
るところは極めて大きいものである。
As described above, according to the present invention, the appearance of a glass bottle in a high temperature state immediately after molding is photographed by an infrared camera, and the temperature distribution of the image is subjected to image processing to obtain an isotherm. Since the quality is determined by the presence or absence of the crossover, it is possible to inspect all the defects of the glass bottle at the hot end at high speed and accurately. For this reason, according to the present invention, corrective actions such as adjustment of the molding machine and replacement of the mold can be immediately taken according to the type and frequency of the found defects. Therefore, the present invention has a great contribution to the industry as a hot-end inspection method for glass bottles that solves the conventional problems.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を説明する斜視図である。FIG. 1 is a perspective view illustrating an embodiment of the present invention.

【図2】欠陥のないガラス壜の等温線図である。FIG. 2 is an isotherm diagram of a glass bottle without defects.

【図3】欠陥のあるガラス壜の等温線図である。FIG. 3 is an isotherm diagram of a defective glass bottle.

【図4】一般的な画像処理を説明する波形図である。FIG. 4 is a waveform diagram illustrating general image processing.

【図5】自動演算処理方式による画像処理を説明する波
形図である。
FIG. 5 is a waveform diagram illustrating image processing by an automatic calculation processing method.

【符号の説明】[Explanation of symbols]

3 コンベヤ 8 赤外線カメラ 10 等温線 11 異常等温線 G ガラス壜 3 Conveyor 8 Infrared camera 10 Isotherm 11 Abnormal isotherm G Glass bottle

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 成形直後の高温状態にあるガラス壜の外
観を赤外線カメラにより撮影し、その画像の温度分布
画像処理して等温線を演算し、その交叉の有無により良
否を判定することを特徴とするガラス壜のホットエンド
検査方法。
1. An infrared camera is used to take an image of the appearance of a glass bottle in a high temperature state immediately after molding, and the temperature distribution of the image is image-processed to calculate an isotherm. Characteristic glass bottle hot-end inspection method.
【請求項2】 成形直後のガラス壜が赤外線カメラの設
置位置まで移動するに要する時間に応じて赤外線カメラ
の感度を自動調節する請求項1記載のガラス壜のホット
エンド検査方法。
2. The hot-end inspection method for a glass bottle according to claim 1, wherein the sensitivity of the infrared camera is automatically adjusted according to the time required for the glass bottle immediately after molding to move to the installation position of the infrared camera.
【請求項3】 赤外線カメラの画像の輝度レベルの最大
値と最小値に応じて2値化のためのしきい値を自動設定
する自動演算処理により画像処理を行う請求項1記載の
ガラス壜のホットエンド検査方法。
3. The glass bottle according to claim 1, wherein the image processing is performed by an automatic calculation process for automatically setting a threshold value for binarization according to the maximum value and the minimum value of the brightness level of the image of the infrared camera. Hot-end inspection method.
JP3330012A 1991-11-19 1991-11-19 Hot-end inspection method for glass bottles Expired - Fee Related JP2533424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3330012A JP2533424B2 (en) 1991-11-19 1991-11-19 Hot-end inspection method for glass bottles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3330012A JP2533424B2 (en) 1991-11-19 1991-11-19 Hot-end inspection method for glass bottles

Publications (2)

Publication Number Publication Date
JPH05142172A JPH05142172A (en) 1993-06-08
JP2533424B2 true JP2533424B2 (en) 1996-09-11

Family

ID=18227786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3330012A Expired - Fee Related JP2533424B2 (en) 1991-11-19 1991-11-19 Hot-end inspection method for glass bottles

Country Status (1)

Country Link
JP (1) JP2533424B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9408446D0 (en) * 1994-04-28 1994-06-22 Electronic Automation Ltd Apparatus and method for inspecting hot glass containers
US6188079B1 (en) * 1999-01-12 2001-02-13 Owens-Brockway Glass Container Inc. Measurement of hot container wall thickness
US7256389B2 (en) * 2005-11-07 2007-08-14 Emhart Glass Sa Glass bottle inspection machine
JP4218037B2 (en) * 2006-06-06 2009-02-04 株式会社九州ノゲデン Detection device for defective part of specimen
JP5372612B2 (en) * 2009-06-16 2013-12-18 東洋ガラス株式会社 Glass product inspection equipment
US9671357B2 (en) 2009-12-10 2017-06-06 Emhardt Glass S.A. System and method for monitoring hot glass containers to enhance their quality and control the forming process
EP2336740B1 (en) * 2009-12-10 2014-02-12 Emhart Glass S.A. Method and system for monitoring a glass container forming process

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2653532B2 (en) * 1989-12-26 1997-09-17 株式会社東芝 Surface defect inspection equipment

Also Published As

Publication number Publication date
JPH05142172A (en) 1993-06-08

Similar Documents

Publication Publication Date Title
US5583337A (en) Apparatus and method for inspecting hot glass containers
EP1525469B1 (en) Analytical system and method for measuring and controlling a production process
EP2336740B1 (en) Method and system for monitoring a glass container forming process
EP0643297B1 (en) Analytical system for analyzing, monitoring, diagnosing and/or controlling a process for manufacturing packaging glass products in which the analysis takes place directly after the glass-shaping process
US20100028567A1 (en) Glass sheet defect detection device, glass sheet manufacturing method, glass sheet, glass sheet quality judging device, and glass sheet inspection method
JP2533424B2 (en) Hot-end inspection method for glass bottles
WO1997004887A1 (en) Hot bottle inspection apparatus and method
US6025910A (en) Object inspection method utilizing a corrected image to find unknown characteristic
JP2003298949A (en) Method for detecting flicker defect, video correction method, and solid-state image pickup apparatus
US7098440B2 (en) Method and apparatus for inspecting hot hollow articles that are translucent or transparent
JP5372612B2 (en) Glass product inspection equipment
KR920003641Y1 (en) Image processing apparatus for detection of odd product
JPH05157523A (en) Inspecting method of shape of glass bottle at hot end
JP2503801B2 (en) Appearance inspection device for long objects
US5279636A (en) Glass article inspection and rejection apparatus
JPH01112143A (en) Abnormality deciding device for long-sized body
JPH09314071A (en) Visual inspection supporting system
JPH07218445A (en) Device for discriminating high-temperature glass in metallic mold
KR910007497B1 (en) Automatic checking device of shadow mask
JPH02298842A (en) Detecting method of defect
JPH07286836A (en) Method for inspecting molded goods and method for controlling molding
KR19980069996A (en) Optical nonuniformity inspection device and optical nonuniformity inspection method
CN117890376A (en) Online detection method and system for surface damage of hot rolled bar red steel
JP4876143B2 (en) Glass product gob inspection equipment
JPH06128806A (en) Method for detecting defective yarn

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960326

LAPS Cancellation because of no payment of annual fees