JP2531641B2 - Contact combustion catalyst - Google Patents

Contact combustion catalyst

Info

Publication number
JP2531641B2
JP2531641B2 JP61215643A JP21564386A JP2531641B2 JP 2531641 B2 JP2531641 B2 JP 2531641B2 JP 61215643 A JP61215643 A JP 61215643A JP 21564386 A JP21564386 A JP 21564386A JP 2531641 B2 JP2531641 B2 JP 2531641B2
Authority
JP
Japan
Prior art keywords
catalyst
combustion
metal carrier
carrier
catalytic combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61215643A
Other languages
Japanese (ja)
Other versions
JPS6372347A (en
Inventor
久 福澤
義巳 石原
靖 小沢
斉 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denryoku Chuo Kenkyusho
Tanaka Kikinzoku Kogyo KK
Original Assignee
Denryoku Chuo Kenkyusho
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denryoku Chuo Kenkyusho, Tanaka Kikinzoku Kogyo KK filed Critical Denryoku Chuo Kenkyusho
Priority to JP61215643A priority Critical patent/JP2531641B2/en
Publication of JPS6372347A publication Critical patent/JPS6372347A/en
Application granted granted Critical
Publication of JP2531641B2 publication Critical patent/JP2531641B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は600〜1500℃の温度で使用される各種燃料の
高温接触燃焼用触媒に関する。
Description: TECHNICAL FIELD The present invention relates to a catalyst for high temperature catalytic combustion of various fuels used at a temperature of 600 to 1500 ° C.

(従来技術とその問題点) 重油、原油、天然ガスなどの気体状燃料を使用する発
電プラント、即ち気体状燃料をバーナーにより有炎燃焼
させて熱源を得て蒸気を作って発電するプラントにおい
ては排ガス中に大気汚染の要因となる窒素酸化物を含む
のをまぬがれることができない。そこで、窒素酸化物の
低減化を図るために、例えば300〜400℃の温度で触媒の
存在下において排気ガス中の窒素酸化物をアンモニアな
どの還元ガスによって窒素に還元することが行われてい
る。しかしこの方法は装置が大形、かつ高価であって取
扱いが面倒であるなどの難点がある。そこで、近年、発
電用に供する作業熱流体としてのクリーンな燃焼ガスを
得る方法として、触媒を用いた接触燃焼法が提案されて
いる。この方法は第1図に示すように、混合器1におい
て混合された空気2と燃料3の混合気体4を、触媒5を
備えた接触燃焼装置6に通じて接触燃焼を行わせ、その
燃焼ガス7の熱エネルギーを発電用に供するものであ
る。
(Prior art and its problems) In a power plant that uses a gaseous fuel such as heavy oil, crude oil, and natural gas, that is, a plant that combusts a gaseous fuel with a burner to obtain a heat source to generate steam to generate electricity, It is inevitable that the exhaust gas contains nitrogen oxides that cause air pollution. Therefore, in order to reduce nitrogen oxides, for example, nitrogen oxides in the exhaust gas are reduced to nitrogen by a reducing gas such as ammonia in the presence of a catalyst at a temperature of 300 to 400 ° C. . However, this method has drawbacks in that the device is large and expensive, and the handling is troublesome. Therefore, in recent years, a catalytic combustion method using a catalyst has been proposed as a method for obtaining a clean combustion gas as a working heat fluid used for power generation. According to this method, as shown in FIG. 1, a mixed gas 4 of air 2 and fuel 3 mixed in a mixer 1 is passed through a catalytic combustion device 6 equipped with a catalyst 5 to perform catalytic combustion, and the combustion gas The thermal energy of No. 7 is used for power generation.

この方法では燃焼温度が低く、かつ均一で従来のバー
ナーによる有炎燃焼のように火炎外周の著しい高温部が
ないので燃焼ガス7中に窒素酸化物が含まれるのを著し
く制御できる。従って上記したような大形かつ高価な排
煙脱硝装置を必要としない利点を有する。
In this method, the combustion temperature is low and uniform, and there is no extremely high temperature portion on the outer periphery of the flame as in the case of flaming combustion by a conventional burner, so that the inclusion of nitrogen oxides in the combustion gas 7 can be significantly controlled. Therefore, there is an advantage that the large-sized and expensive flue gas denitration device is not required.

ところでこの場合、排ガス中の未燃焼分、例えば炭化
水素や一酸化炭素などの有害成分を含まないようにする
ためには、燃焼温度は1000℃〜1500℃の高温にすること
が好ましい。
By the way, in this case, the combustion temperature is preferably set to a high temperature of 1000 ° C. to 1500 ° C. in order to prevent unburned components in the exhaust gas, for example, harmful components such as hydrocarbons and carbon monoxide.

従来このような高温の接触燃焼用触媒としては、ムラ
イトなどの耐熱セラミックス製の構造体にガンマアルミ
ナ等を被覆した担体に、活性成分としてPt族金属、特に
PdもしくはPdOもしくはこれらの混合物を担持してなる
触媒が使用されてきた。これはPdが接触燃焼用触媒に要
求される低温活性および燃焼安定性にすぐれることから
である。しかし燃焼温度は1000℃〜1500℃に高めた時に
起こる問題としてセラミックス製構造体が熱衝撃を受け
て破壊し易いという致命的な欠点があった。このセラミ
ックス製構造体の破壊によって燃焼ガス流路、ガスター
ビンブレートなどを痛め、その後処理に非常な手間を要
することになる。
Conventionally, as a catalyst for such high temperature catalytic combustion, a carrier obtained by coating a structure made of heat-resistant ceramics such as mullite with gamma alumina or the like, a Pt group metal as an active component, particularly
Catalysts carrying Pd or PdO or mixtures thereof have been used. This is because Pd excels in low-temperature activity and combustion stability required for catalytic combustion catalysts. However, as a problem that occurs when the combustion temperature is raised to 1000 ℃ ~ 1500 ℃, there is a fatal defect that the ceramic structure is easily damaged by thermal shock. The destruction of the ceramic structure damages the combustion gas flow path, the gas turbine plate, and the like, and requires a great deal of time and labor for subsequent processing.

このセラミックス製構造体を熱衝撃に強い耐熱性金属
担体で置き換え、この金属担体上にPt族金属を担持し、
触媒として使用することは周知であるが、1000〜1500℃
の高温下で炭化水素などを接触燃焼させた場合、このPt
族金属は金属担体と容易に拡散・合金化してしまい、燃
焼用触媒としての活性や寿命の点で問題になる。
This ceramic structure is replaced with a heat-resistant metal carrier resistant to thermal shock, and a Pt group metal is carried on this metal carrier.
It is well known to be used as a catalyst, but 1000 to 1500 ° C
When hydrocarbons are catalytically burned at high temperature, the Pt
The group metal easily diffuses / alloys with the metal carrier, which is problematic in terms of activity and life as a combustion catalyst.

この様な理由により燃焼用触媒として金属担体を使用
することは現在実用化されていないのが実情である。
For these reasons, the use of a metal carrier as a combustion catalyst has not been put into practical use at present.

(発明の目的) 本発明は前記の欠点を改良すべくなされたものであ
り、特に600〜1500℃の温度で長期間使用可能であり、
かつ低温活性および燃焼安定性に優れ、長期にわたりこ
の特性を維持しうるPdもしくはPdOもしくはこれらの混
合物を活性成分とし、耐熱性金属を担体とする触媒を提
供することを目的になされたものである。
(Object of the invention) The present invention has been made to improve the above-mentioned drawbacks, and in particular, can be used for a long period of time at a temperature of 600 to 1500 ° C,
It is intended to provide a catalyst having a heat-resistant metal as a carrier, which has Pd or PdO or a mixture thereof which has excellent low temperature activity and combustion stability and can maintain this property for a long period of time as an active ingredient. .

(発明の構成) 本発明は耐熱性金属担体(以下単に金属担体という)
にPdもしくはPdOを担持するに当たり、あらかじめPdAlO
型もしくはPdSiO型の複合酸化物層を中間層として設
け、さらに活性成分としてPdもしくはPdOを担持するこ
とを特徴とするものである。
(Structure of Invention) The present invention is a heat-resistant metal carrier (hereinafter simply referred to as a metal carrier).
Before loading Pd or PdO on PdAlO
Type or PdSiO type composite oxide layer is provided as an intermediate layer, and further Pd or PdO is supported as an active component.

以下図をもって本発明を詳述する。 The present invention will be described in detail below with reference to the drawings.

第2図は従来製法によって金属担体上8にPd9を担持
した断面を示す模式図である。このようにPdの比表面積
を大きくし、触媒活性点を増す方法でもって通常Pdは担
持される。
FIG. 2 is a schematic view showing a cross section in which Pd9 is carried on the metal carrier 8 by the conventional manufacturing method. In this way, Pd is usually supported by a method of increasing the specific surface area of Pd and increasing the catalytic activity sites.

第3図はメタンの接触燃焼において温度1100℃で100
時間使用した第2図の金属担体触媒の断面を模式的に示
すものである。この様にPdは金属担体の表層部と拡散・
合金化して合金層10をつくりさらに比表面積が激減して
Pdの触媒活性の低下は著しい。
Figure 3 shows 100 at a temperature of 1100 ° C in catalytic combustion of methane.
Fig. 3 schematically shows a cross section of the metal-supported catalyst of Fig. 2 used for a time. Thus, Pd diffuses in the surface layer of the metal carrier.
Alloying to form alloy layer 10 and further reducing the specific surface area
The decrease in the catalytic activity of Pd is remarkable.

第4図は本発明による金属担体触媒の断面を示す模式
図である。中間層としてPdAlO型もしくはPdSiO型複合酸
化物層11が存在し、さらに表層に活性成分12としてPdも
しくはPdOもしくはこれらの混合物が担持してある。
FIG. 4 is a schematic view showing a cross section of the metal-supported catalyst according to the present invention. A PdAlO type or PdSiO type composite oxide layer 11 is present as an intermediate layer, and Pd or PdO or a mixture thereof is loaded as an active ingredient 12 on the surface layer.

第5図は第4図の本発明の触媒をメタンの接触燃焼に
おいて温度1100℃で100時間使用した後の断面模式図で
ある。模式図に示す如く合金層10の厚みは小さくPdAlO
型もしくはPdSiO型複合酸化物層11の変化は非常に少な
い。また比表面積の変化もほとんどなかった。さらに10
0時間使用前後の触媒活性を測定したところほとんど変
化することなく高い接触活性を維持している。
FIG. 5 is a schematic cross-sectional view after using the catalyst of the present invention in FIG. 4 in catalytic combustion of methane at a temperature of 1100 ° C. for 100 hours. As shown in the schematic diagram, the thickness of the alloy layer 10 is small and PdAlO
Change of the P type or PdSiO type complex oxide layer 11 is very small. Moreover, the specific surface area hardly changed. 10 more
When the catalytic activity was measured before and after use for 0 hours, the high catalytic activity was maintained with almost no change.

この中間層のPdAlO型もしくはPdSiO型複合酸化物層11
は下地の金属担体8とはほとんど拡散せず、かつ金属担
体8とは非常に強固に結合するため600〜1500℃の高温
酸化雰囲気下にさらした場合でも金属担体8とは合金化
せず、かつ剥離をおこすこともない。さらに活性成分で
あるPdもしくはPdOはPdAlOもしくはPdSiOの中間層へは
拡散しないので表層に残されているからである。
This intermediate PdAlO type or PdSiO type composite oxide layer 11
Hardly diffuses with the underlying metal carrier 8 and binds very strongly to the metal carrier 8, so it does not alloy with the metal carrier 8 even when exposed to a high temperature oxidizing atmosphere of 600 to 1500 ° C. Moreover, peeling does not occur. Furthermore, Pd or PdO, which is an active ingredient, is not diffused into the intermediate layer of PdAlO or PdSiO and is therefore left in the surface layer.

本発明におけるPdAlOもしくはPdSiO中のAlもしくはSi
およびOの全Pd量に対する量はAlもしくはSiが10〜50wt
%およびOが5.7〜29.6wt%が好ましい。AlもしくはSi
およびOの量がそれぞれ10wt%、5.7wt%未満では金属
担体8中への活性成分の拡散が大きく比表面積の減少が
激しい。AlもしくはSiおよびOの量がそれぞれ50wt%、
29.6wt%を超えるとPdと金属担体8との接合強度が劣化
し剥離を起こし易くなる。
Al or Si in PdAlO or PdSiO in the present invention
The amount of O and O based on the total Pd amount is 10 to 50 wt% of Al or Si.
% And O is preferably 5.7 to 29.6 wt%. Al or Si
When the amounts of O and O are less than 10 wt% and less than 5.7 wt%, respectively, the active component is diffused into the metal carrier 8 and the specific surface area is greatly reduced. The amount of Al or Si and O is 50 wt%,
If it exceeds 29.6 wt%, the bonding strength between Pd and the metal carrier 8 is deteriorated and peeling easily occurs.

金属担体8として、鉄系、Ni系耐熱金属担体などを用
いてもよいが、600〜1500℃の高温下での長期間使用を
考慮すると、Ptを用いる方が良い。また、高温下の耐熱
性および耐クリープ特性をさらに向上できるPt合金もし
くは酸化物分散強化Pt合金を用いる方がさらによい。
As the metal carrier 8, an iron-based or Ni-based heat-resistant metal carrier may be used, but considering the long-term use at a high temperature of 600 to 1500 ° C., Pt is preferably used. Further, it is more preferable to use a Pt alloy or an oxide dispersion strengthened Pt alloy that can further improve heat resistance and creep resistance at high temperatures.

本発明に使用する金属担体8は例えば第6図a、b、
cに示すような流路もち、第7図a、bに示すような形
状に加工した後、まずPdAlO層もしくはPdSiO層を担持
し、次いでPdもしくはPdOもしくはPd/PdOの活性成分を
担持して接触燃焼用触媒として使用する。
The metal carrier 8 used in the present invention is, for example, as shown in FIGS.
After having been processed into a shape as shown in FIGS. 7a and 7b with a flow path as shown in FIG. 7c, first, a PdAlO layer or PdSiO layer was loaded, and then an active component of Pd or PdO or Pd / PdO was loaded. Used as a catalyst for catalytic combustion.

以下、本発明の効果を具体的にならしめる意味で従来
触媒と本発明の実施触媒を作り以下に述べる触媒性能試
験を行った。
In the following, a conventional catalyst and an embodied catalyst of the present invention were prepared and the catalyst performance test described below was carried out in the sense that the effects of the present invention are specifically realized.

(従来例1) α−Al2O3製の第7図aの形状の構造体の上に通常法
によりγ−Al2O3を担持し、PdCl2の水溶液に浸漬後、水
素気流中500℃1時間還元処理を施し、Pd/γAl2O3/αAl
2O3触媒を得た。
(Conventional Example 1) γ-Al 2 O 3 was carried by a conventional method on a structure made of α-Al 2 O 3 and having a shape shown in FIG. 7a, immersed in an aqueous solution of PdCl 2 , and then 500 in a hydrogen stream. Pd / γAl 2 O 3 / αAl after reduction treatment for 1 hour
A 2 O 3 catalyst was obtained.

(従来例2) Pt製担体を第7図aの形状に加工した後、通常法によ
りPdCl2の水溶液に浸漬後、水素気流中500℃1時間還元
処理を施し、Pd/Pt触媒を得た。
(Conventional Example 2) A Pt / Pt catalyst was obtained by processing a Pt carrier into the shape shown in FIG. 7a, dipping it in an aqueous solution of PdCl 2 by a conventional method, and then subjecting it to reduction treatment at 500 ° C. for 1 hour in a hydrogen stream. .

(実施例) Pt−Rh10wt%合金を第7図aの形状に加工したものを
金属担体8とし、Pd:Al=80:20(金属換算)になるよう
にPdCl2とAl2Cl3をブタノールに溶解して得られたブタ
ノール混合溶液に上記金属担体を浸漬、乾燥後、800℃
の大気中で1時間焼成して、表層にPdAlO3の金属間化合
物が存在する金属担体を得た。さらに得られたこの金属
担体をPdCl2の水溶液に浸漬、乾燥後、500℃の大気中で
1時間焼成後にその表層を水素バーナー炎にて部分還元
することにより、Pd・PdO、PdAl2O4/Pt−Rhなる触媒を
得た。
(Example) A Pt-Rh 10 wt% alloy processed into the shape of FIG. 7a was used as a metal carrier 8, and PdCl 2 and Al 2 Cl 3 were mixed with butanol so that Pd: Al = 80: 20 (metal conversion). The above metal carrier was immersed in a butanol mixed solution obtained by dissolving in
After baking for 1 hour in the atmosphere, a metal carrier having an intermetallic compound of PdAlO 3 on the surface layer was obtained. Further, the obtained metal carrier was immersed in an aqueous solution of PdCl 2 , dried, and calcined in the atmosphere at 500 ° C. for 1 hour, and then the surface layer thereof was partially reduced with a hydrogen burner flame to obtain Pd · PdO and PdAl 2 O 4 A catalyst of / Pt-Rh was obtained.

なお、Pd・PdO混合物および金属間化合物の生成はX
線回折によって確認した。
The formation of Pd / PdO mixture and intermetallic compound is X
Confirmed by line diffraction.

この様にして得られた従来例1、2および実施例の触
媒を用いてメタン90%を含む天然ガスの接触燃焼を常圧
下、空気量30m2N/h、触媒入口部ガス流速10m/S、燃焼温
度1200℃の条件下で触媒性能試験を行い、燃焼開始温
度、1時間および1000時間後の燃焼効率、さらに1000時
間後の担体の状態、比表面積減少率を測定したところ、
下表のような結果が得られた。
Using the catalysts of Conventional Examples 1 and 2 and Examples obtained in this way, catalytic combustion of natural gas containing 90% of methane was carried out under normal pressure, air amount was 30 m 2 N / h, gas flow rate at catalyst inlet was 10 m / S. The catalyst performance test was performed under the condition of a combustion temperature of 1200 ° C., the combustion starting temperature, the combustion efficiency after 1 hour and 1000 hours, the state of the carrier after 1000 hours, and the specific surface area reduction rate were measured.
The results shown in the table below were obtained.

上表より明らかなように実施例の燃焼開始温度は従来
例1と同程度の高活性であり、かつ従来例1の様に破壊
することなく、従来例2よりも燃焼効率、比表面積減少
率に優れる。
As is clear from the above table, the combustion starting temperature of the embodiment is as high as the activity of the conventional example 1, and the combustion efficiency and the specific surface area reduction rate are lower than those of the conventional example 1 without destruction as in the conventional example 1. Excellent in.

本実施触媒ではPdAlO型複合酸化物層のみ示したがPdS
iO型複合酸化物の場合でも同様の効果が得られている。
Although only the PdAlO-type composite oxide layer was shown in this catalyst, PdS
Similar effects are obtained even in the case of iO type complex oxide.

また、本発明は炭化水素のみならず種々の燃料にも適
用可能であり、工業的利用価値の高いものである。
Further, the present invention can be applied to various fuels as well as hydrocarbons, and has high industrial utility value.

(発明の効果) 以上述べたように本発明による実施例の触媒はPd、Pd
Oの低温活性と安定燃焼性という長所を損なわずして、
初期活性低下がなく、しかも金属担体にも異常がみられ
なかったように、高温下で長期間使用可能なものであ
る。
(Effect of the invention) As described above, the catalysts of the examples according to the present invention are Pd, Pd
Without compromising the advantages of O at low temperature activity and stable combustion,
It can be used for a long period of time at high temperature, as shown in the initial activity without deterioration and the metal carrier showing no abnormality.

【図面の簡単な説明】[Brief description of drawings]

第1図は接触燃焼装置の概略図、第2図は従来の触媒の
使用前の状態を示す断面模式図、第3図は第2図の触媒
を100時間使用した後の状態を示す断面模式図、第4図
は本発明の触媒の使用前の状態を示す断面模式図、第5
図は第4図の触媒を100時間使用した後の状態を示す断
面模式図、第6図a、b、cは金属担体の流路の形状を
示す平面図、第7図は金属担体の全体を示す斜視ずであ
る。
FIG. 1 is a schematic view of a catalytic combustion device, FIG. 2 is a schematic sectional view showing a state before using a conventional catalyst, and FIG. 3 is a schematic sectional view showing a state after using the catalyst of FIG. 2 for 100 hours. FIG. 4 is a schematic sectional view showing a state before use of the catalyst of the present invention, FIG.
FIG. 6 is a schematic cross-sectional view showing a state after the catalyst of FIG. 4 has been used for 100 hours, FIGS. 6a, b and c are plan views showing the shape of the flow path of the metal carrier, and FIG. 7 is the whole metal carrier. FIG.

───────────────────────────────────────────────────── フロントページの続き 審査官 野田 直人 ─────────────────────────────────────────────────── --Continued front page Examiner Naoto Noda

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】PdもしくはPdOもしくはこれらの混合物を
活性成分とし、PtもしくはPt合金もしくは酸化物分散強
化Pt合金などの耐熱性金属を担体とする接触燃焼用触媒
にあって、活性成分層と担体との中間層としてPdAlO型
もしくはPdSiO型の複合酸化物層を設けることを特徴と
する接触燃焼用触媒。
1. A catalyst for catalytic combustion comprising Pd or PdO or a mixture thereof as an active ingredient and a heat-resistant metal such as Pt or Pt alloy or oxide dispersion strengthened Pt alloy as a carrier, comprising an active ingredient layer and a carrier. A catalytic combustion catalyst, wherein a PdAlO type or PdSiO type composite oxide layer is provided as an intermediate layer between and.
【請求項2】複合酸化物中のAlもしくはSiおよびOの含
有量がPdに対してそれぞれ10〜50wt%、5.7〜29.6wt%
であることを特徴とする特許請求の範囲第1項記載の接
触燃焼用触媒。
2. The content of Al or Si and O in the composite oxide is 10 to 50 wt% and 5.7 to 29.6 wt% with respect to Pd, respectively.
The catalytic combustion catalyst according to claim 1, wherein
JP61215643A 1986-09-12 1986-09-12 Contact combustion catalyst Expired - Lifetime JP2531641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61215643A JP2531641B2 (en) 1986-09-12 1986-09-12 Contact combustion catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61215643A JP2531641B2 (en) 1986-09-12 1986-09-12 Contact combustion catalyst

Publications (2)

Publication Number Publication Date
JPS6372347A JPS6372347A (en) 1988-04-02
JP2531641B2 true JP2531641B2 (en) 1996-09-04

Family

ID=16675802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61215643A Expired - Lifetime JP2531641B2 (en) 1986-09-12 1986-09-12 Contact combustion catalyst

Country Status (1)

Country Link
JP (1) JP2531641B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5622893A (en) * 1994-08-01 1997-04-22 Texas Instruments Incorporated Method of forming conductive noble-metal-insulator-alloy barrier layer for high-dielectric-constant material electrodes
CN100460064C (en) * 2007-01-25 2009-02-11 上海交通大学 Preparation method of biologic morphologies three dimensional network structure Pd system nano-photocatalyst material
CN101875011A (en) * 2009-04-30 2010-11-03 中国科学院福建物质结构研究所 TiO2 carrier-supported precious metal palladium as well as preparation method and application thereof

Also Published As

Publication number Publication date
JPS6372347A (en) 1988-04-02

Similar Documents

Publication Publication Date Title
EP0960649B1 (en) Exhaust gas clean-up catalyst
KR940000867B1 (en) Exhaust gas cleaning catalyst and its preparation
Dalla Betta Catalytic combustion gas turbine systems: the preferred technology for low emissions electric power production and co-generation
JPH03207445A (en) Multi-functional catalyst for conversion of contaminant containing ce and u as well as metal exhausted from internal combustion engine, and preparation of said catalyst
US20060034741A1 (en) Catalyst composition for use in a lean NOx trap and method of using
JP2531641B2 (en) Contact combustion catalyst
JPS62216642A (en) Catalytic material for gas turbine combustor
JP4704964B2 (en) NOx purification system and NOx purification method
JPS60202235A (en) Combustor of gas turbine
JPS61252409A (en) Method of igniting methane fuel
US8071504B2 (en) Exhaust system having a gold-platinum group metal catalyst
JPS63267804A (en) Oxidizing catalyst for high temperature service
JP4503314B2 (en) Exhaust gas purification catalyst
JPS6388041A (en) Oxidizing catalyst
JPS63197545A (en) Catalyst for oxidation
JP2531639B2 (en) Contact combustion catalyst
JP2531640B2 (en) Contact combustion catalyst
JP2557371B2 (en) Gas turbine combustor catalyst and method for producing the same
JP3503905B2 (en) Catalyst for combustion of methane-based fuel
JPH07112542B2 (en) Method for producing oxidation catalyst
JP2831117B2 (en) Combustion catalyst
JP2585212B2 (en) Gas turbine combustor
JP3827173B2 (en) Method for producing catalyst for combustion of methane fuel
JPS62149346A (en) Catalyst for combustion
JPS60147241A (en) Gas turbine combustor