JP2530276B2 - 接触燃焼式一酸化炭素センサ - Google Patents

接触燃焼式一酸化炭素センサ

Info

Publication number
JP2530276B2
JP2530276B2 JP4271213A JP27121392A JP2530276B2 JP 2530276 B2 JP2530276 B2 JP 2530276B2 JP 4271213 A JP4271213 A JP 4271213A JP 27121392 A JP27121392 A JP 27121392A JP 2530276 B2 JP2530276 B2 JP 2530276B2
Authority
JP
Japan
Prior art keywords
sensitivity
coil
sensor
carbon monoxide
dummy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4271213A
Other languages
English (en)
Other versions
JPH06229966A (ja
Inventor
義雄 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DMG Mori Co Ltd
Original Assignee
Mori Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mori Seiki Co Ltd filed Critical Mori Seiki Co Ltd
Priority to JP4271213A priority Critical patent/JP2530276B2/ja
Priority to GB9317284A priority patent/GB2270762B/en
Priority to US08/115,845 priority patent/US5304976A/en
Priority to ITRM930599A priority patent/IT1261852B/it
Priority to DE4330603A priority patent/DE4330603A1/de
Priority to KR1019930018316A priority patent/KR0161694B1/ko
Publication of JPH06229966A publication Critical patent/JPH06229966A/ja
Application granted granted Critical
Publication of JP2530276B2 publication Critical patent/JP2530276B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/004CO or CO2
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/16Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by burning or catalytic oxidation of surrounding material to be tested, e.g. of gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、ブリッジ電圧6〜12
VにおいてCOを高感度で検出するとともに、CO以外
の他ガスに対する感度が殆んどない接触燃焼式COセン
サに関する。
【0002】
【従来の技術】COガスは、無色,無味,無臭で空気よ
りやや軽い気体であって、200ppmでも2〜3時間
呼吸すると頭痛を起し、1600ppmでは2時間呼吸
すると死に到り、3,200ppmでは10〜15分の
呼吸で死亡すると云われるほど毒性が高い。而してCO
ガス警報器に対する各国の規格又は希望特性は、COが
200ppmで警報を発し、H2 は500ppmでも警
報を発しなく、またC2 5 OHは1,000ppmで
も警報を発しないことが要求される。さらにその他のガ
スの感度がなく、湿気又は温度の変化或いは電源電圧の
変化に伴う誤動作等がなく、再現性良好で経時変化がな
いことが要求される。
【0003】
【発明が解決しようとする課題】本発明は、叙上の要望
に沿うべく、CO500ppmで20mV以上の感度が
得られ、しかも、その場合H2 が500ppmでその感
度が0〜3mVに押えられ、また、C2 5 OHは10
00ppmでも0〜3mVに押えられるセンサを提供し
ようとするものである。COセンサのうち、接触燃焼式
は、再現性及びガスの選択性が最も優れ、メーター用と
して、信頼して使用できるものであるが、従来の市販品
はガス感度が非常に小さいのが欠点であった。一般に、
接触燃焼式ガスセンサにおけるガス感度ΔVは次式によ
って表わされる。 但し、ΔVはガス感度(出力・ミリボルト)、ΔRはガ
スの燃焼によるコイルの抵抗変化値、Rはセンサのコイ
ル抵抗値、Vi はブリッジ電圧、aは定数、αはコイル
線材の温度係数、mはガス濃度、Qはガスの分子燃焼
熱、Cはセンサの熱容量を夫々示す。本発明に係る接触
燃焼式COセンサは、図1に示す如く構成される。コイ
ルで仕上げられる活性部Sとダミー部Dは分散され夫々
ステムに取付けられる。これに、r1 ,r2 ,r3 のブ
リッジ抵抗を配し、さらに、直流6〜12Vのブリッジ
電源Vi を組合わせ、また、活性部Sとダミー部Dとの
結線の中間点とブリッジ抵抗r3 との間に感度計VO
配置して形成される。このセンサではCOがない場合に
は、感度計VO の感度カウンタを零にして使用する。本
発明はセンサのガス感度が、可及的大なるものを提供す
ることをその目的とする。
【0004】上式からして、ガス感度ΔVを大きくする
には、ブリッジ電源の電圧Vi を高くするか、又は、線
材の温度係数αを大にするか、或いは、センサの熱容量
を小にすることが必要となる。本発明にあっては、ブリ
ッジ電圧を6Vからさらに9V、より高い12Vまで上
げて使用できるようにした。このためには、比抵抗ρ20
が35〜46μΩcm、ピッカス硬度HV が200〜3
00、温度係数T・C・R0°〜100℃が7,000
〜8,500ppm/℃の特性を有し、しかも触媒表面
積が増大し、コイルの製作容易性が高い太さ15〜40
μmの範囲にあるFe・Pd系合金線材を選択しその目
的を達し得たものである。この線材は、センサ温度を1
55°±3℃に設定することができ、普通Pt,Pd,
Rh等の触媒の使用時に生じる特有の発振現象(177
°〜247℃に激しく生じる)を防止し得る特徴を有す
る。また、この線材は、従来のPt線材に比較して、比
抵抗が大に設定でき、また、温度係数も大となり、さら
に硬度も高くなるので、コイルの製作容易性が格段に向
上する利点を有する。かくして、ブリッジ電圧Vi が上
昇してセンサ感度が大となり、コイルの製作が容易とな
り、しかも、ピッチ間隔の綺麗に揃ったコイルを製作す
ることが可能になった。しかし、Fe・Pd系合金線材
の欠点は、耐熱性及び耐薬品性の点で比較的に劣る欠点
があり、触媒をその表面に形成させる場合、コイルに通
電加熱して行なうことが殆んど不可能であるので、他の
工夫がなされねばならなかった。
【0005】本発明に係るセンサの活性部に要求される
触媒は、 (i)高純度で微粒子で表面濃度が高く、活性度が大で
あること (ii)低温度で活性が大で、線材を犯すことなく加工で
きること (iii)低温度でもH2 ,C2 5 OHの除去能力がある
こと (iv)均一に分散された微粒子酸化物であること 等の条件を満たすものが必要である。検討を重ねた結
果、酸化物触媒でCOに対し最も感度があるのは、Pt
ブラックついでPdOであった。このうち、Pt−ブラ
ックはH2 PtCl6 ・6H2 Oを水溶液の状態で使用
し低温で分解して生成したものが、最も分散性が良く図
2に示す如くセンサ温度150℃以下でも十分CO感度
を有する。一方、PdOは、PdCl2 より出発した場
合、500℃以上の高温でないと完全なPdOとはなら
ず、またPdCl2 水溶液の酸性度が高いので、前記線
材を犯す。さらに、PdOは図3に示す如く170°〜
200℃のセンサ温度でなければ十分なCO感度を生じ
ない。これらを勘案して、Pt−ブラックを本発明の主
触媒とした。しかし、Pt−ブラックにおいても、
2 ,C2 5 OH等に対する感度がかなり大で図2に
示す如くCO感度の2倍近い値を有するので、これを消
去する必要があった。
【0006】Pt−ブラックのH2 ,C2 5 OH感度
を除去する触媒として有用なのは、H2 感度については
Cu2 O,C2 5 OH感度についてはCu2 O−Zn
Oである。COに感度があってH2 感度のないものにC
2 Oがある。しかし、このものは、 CuO←→Cu2 O←→Cu となって、Cu2 Oはそのままでは不安定で、酸化又は
還元され易い。従って、Cu2 Oの形で固定し安定化さ
せることが必要である。また、COに感度があってC2
5 OH感度のないものに、Cu2 O−ZnOがある。
しかもCu2 OはZnOに溶け込み固溶体を形成し安定
する。但し、Cu2 O−ZnO固溶体は170℃以上で
ないと活性化しないので、これを150℃付近でも十分
活性化するようにMnO2 又はSm2 3 等を10%程
度添加した。これらを勘案して、本発明において活性部
に使用される触媒は、その組成が、Cu2 O 30〜3
5重量%,ZnO 50〜55重量%,MnO2 10〜
15重量%の合計100重量部に対しPtブラック25
〜35重量部添加の混合物である。この触媒は、Cu
(NO3 2 ・3H2 O,Zn(NO3 2 ・6H2
及びMn(NO3 2 ・6H2 Oの水溶液を所定量宛混
合し、NH4 OH性にして焼成分解し、各成分酸化物が
超微粒子となったものを水溶性樹脂を使用して、コイル
に電着塗装した。この場合コイル上に円筒形状で成型さ
れる。ついで、Ptブラックを水溶液の形で該円筒上面
に塗布し熱分解し上記組成の触媒が得られたものであ
る。なお、Ptブラックは比重,等電点等が他の酸化物
と著しく異なるので、同時に電着すると、その濃度及び
付着ムラを生じるので、あとから添加熱分解を行なうも
のである。上記組成の触媒を使用すると、最終的に図4
にその1例を示す如く、CO500ppmで20〜25
mV,H2 500ppmで0〜3mV,C2 5 OH1
000ppmで0〜3mVの感度を有するセンサが得ら
れる。
【0007】一方、ダミー部Dのコイルに塗布される触
媒はCO感度のないものが選ばれる。しかも、ダミー部
は温度、湿度変化の補償用ともなるべきものであるか
ら、活性部とCO感度以外の条件が同一で特に分圧がV
S =VD (VS は活性部の分圧、VD はダミー部の分
圧)であって、さらに周囲温度変化や電源電圧の変化が
あってもゼロドリフトを生じないことが必要条件とな
る。図5〜7は、活性部とダミー部の電圧−抵抗特性を
示すグラフで、図5に示す如く活性部とダミー部の特性
が殆んど平行状態にあるときは、電圧に基づくゼロドリ
フトは生じないが、図6の場合には、電圧が上ると感度
がプラスに、また、図7の場合には、電圧が下ると感度
がプラスになり、COガスが存在しなくても、感度が現
われて適当でない。このため、ダミー部の放熱係数を活
性部のそれに近くするためダミー部のコイルにCuOと
Cr2 3 の混合物を塗着し、また、触媒粒子の大きさ
によるポーラス度や線材に対する密着度によってもセン
サー温度が異なるので、これらの条件を活性部に近くす
るため、Al2 3 又はTiO2 を添加して調節した。
本発明では、ダミー部の触媒を、CuO1重量部、Cr
2 3 2重量部及びAl2 3 1重量部の割合の混合物
を電着用樹脂液30〜40ccに加え、粉砕したものを
電着塗装して形成した。このものは、Vi が3V〜12
V間の抵抗特性が活性部のそれとほぼ同一に平行とな
り、VS =VD が常に成立し、また、周囲温度の変化及
び電源電圧の変動に対するゼロドリフトが殆んどなく、
結局ガス感度の変化を防止して所望の効果を収めようと
するものである。
【0008】
【課題を解決するための手段】本発明は、 a.太さが15〜40μmで、 b.その比抵抗ρ20が35〜45μΩcm、 c.ピッカス硬度HV が200〜300、 d.温度係数T・C・R0°〜100℃が7,000〜
8,500ppm/℃の特性を有する e.Fe・Pd系合金の線材をもって活性部及びダミー
部のコイルが形成され、 f.また、活性部に形成される触媒が少なくともCu2
O,ZnO,MnO2及びPtブラックからなり、 g.さらに、ダミー部に形成される触媒が少なくともC
uO及びCr2 3 とからなる h.接触燃焼式一酸化炭素センサ。 をその要旨として成立するものである。
【0009】
【実施例】本発明に係るセンサの活性部及びダミー部に
使用されるコイルは、比抵抗ρ20が35〜46μΩc
m,ピッカス硬度HV が200〜300,温度係数T・
C・R0°〜100℃が7,000〜8,500ppm
/℃の特性を有するFe・Pd系合金の線材が使用さ
れ、その線引加工の容易性及び安定性を顧慮して微量の
CO及びMn等を含むもので、その30μm線が主とし
て使用された。太さは15〜40μmの範囲のものが選
択できる。この線材は、温度係数T・C・R0°〜10
0℃が7,000ppm/℃以上もあるので、従来の白
金線の3,800ppm/℃程度のものに比較してCO
感度が数倍にも達しうるセンサが得られる。また、比抵
抗ρ20が35〜46μΩcmを確保しうるので、上掲の
白金線の約10.6μΩcmに較べ、かなり高く、従っ
てコイルの巻数を減少しても殆んど同一の抵抗値が保持
されて巻線の作業性が格段に向上する。本発明に係る合
金線材は安定性を増すために、ArとCOとの混合ガス
雰囲気中で高温かつ短時間のアニールが実施された。コ
イルは、その巻径が0.8〜1.0φで、22〜24タ
ーンとし、ステムに水平に取付け、コイル高を2.5〜
2.8mmに調製した。
【0010】センサの平均温度は、コイルの20℃にお
ける抵抗値とRt/R20の表と3V印加時における抵抗
値R3V/R20から予め知ることができるので、コイルを
巻終った段階で夫々の20℃の抵抗値又は直流3V印加
時の20℃の抵抗値からセンサ温度を求めセンサ温度の
ほぼ等しいものを選んで一対とし、この一対を活性部及
びダミー部に使用すると、周囲温度変化,電源電圧変動
があってもVO は殆んど一定であって、ゼロドリフトも
生じない。本発明では、センサ温度を155°±3℃に
設定する。これは、本発明において、活性部に適用され
るPt触媒におけるCOによる177°〜247℃の特
有な発振現象を忌避するためである。155°±3℃に
設定して置くと、例えばCOが1000ppmにおける
COの燃焼による温度上昇の14°や周囲温度の上昇,
電源電圧の上昇等を加味しても177℃以上の上昇は生
じないこととなり、従って発振現象にあうことがない。
【0011】次に本発明に係る接触燃焼式一酸化炭素の
具体例について説明する。このセンサは図1に示す如く
構成される。アルゴンとCOの混合ガスの混合ガス雰囲
気中で、高温かつ短時間アニールされた比抵抗(ρ20
40μΩcm,ピッカス硬度(HV )250,温度係数
T・C・R0°〜100℃)7,850ppm/℃のF
e・Pd系の太さ30μmの線材を使用して、巻芯1.
0φで22ターン巻してなるコイルをTO−5型ステム
に水平に保持させて縦長2.5〜2.8mmになるよう
溶接し、アルコールその他の有機溶剤で洗浄・乾燥した
ものを活性部及びダミー部のコイルとした。
【0012】次に、予め用意したCu2 O−ZnO固溶
体にMnO2 及びAl2 3 を均一に分散処理した微粒
子粉末と電着樹脂液とを混合攪拌してなる電着液を電着
用カップに移し、コイル上面に交直流併用の電着塗装を
行って、該上面に円筒状のCu2 O・ZnO・MnO2
・Al2 3 の厚膜を形成した。十分乾燥したのち、H
2 PtCl6 ・6H2 O 1gを10ccの純水に溶解
してなる液を活性部コイルの厚膜に0.1cc宛全体に
分散するよう塗布又は滴下し乾燥したのち厚膜部分のみ
加熱できるように形成された芯を有するアルコールラン
プで赤熱し、H2 PtCl6 及び電着用樹脂を分解又は
焼散せしめ、Pt微粒子を厚膜上面に付着残留せしめ
た。分解終了後、水洗又は水蒸気洗浄してClイオンを
完全に除去し、乾燥し、活性部を調製した。一方、ダミ
ー部用コイルに、CuO1,Cr2 3 2,TiO
2 1.5及びAl2 3 1各重量部の混合物を電着用樹
脂液30〜40ccに加えて粉砕したものを、電着塗装
し、ダミー部を調製した。活性部及びダミー部は、夫々
の20℃の抵抗値と、DC3Vを印加したときの電流値
を求め、計算により3V印加時の抵抗値を求めた。予
め、R3V/R20から実測されているセンサ温度が求めら
れるが、このセンサ温度特性の概ね等しいものを選んで
一対とした。この特性が同一であれば、周囲温度変化や
電源、電圧の変動があっても、VO は殆んど一定となり
ゼロドリフトが生じない安定したセンサが得られる。夫
々のコイルにキャップを付し、測定検査後、使用条件と
同一条件で通電エージングを最低5日間実施し、再び検
査測定し、良品のみキャップのかしめを行ない、センサ
を完成した。検査後の良品は、センサ温度155℃±3
℃、CO500ppmでブリッジ電圧6Vで20〜25
mVの感度が得られ、H2 は500ppmでも0〜3m
Vの感度しかなく、また、C2 5 OHは1,000p
pmでも0〜3mVの感度しかなかった。
【0013】
【発明の効果】本発明は以上の構成に基づくもので、コ
イルにFe,Pd系合金線材を使用して、そのうち、比
抵抗,ピッカス硬度,温度係数の範囲を限定して特定径
のものを選択し、さらに、活性部の触媒として、Cu2
O,ZnO固溶体にMnO2 ,Al2 3 等を均一に混
合してなる微粒子にPtブラックが均一に分散されたも
のを使用することによりH2 ,C2 5 OHその他のガ
ス感度を除去し、しかも、150℃附近でもCO感度が
得られることとなり、また、活性部とダミー部における
抵抗特性がほぼ同一になるように、ダミー部の触媒にC
uO及びCr2 3 を選択し、かつ、ポーラス度及び密
着度を調節することによりVS =VD が常に成立するよ
うにしたために、周囲温度変化,電源電圧変動に対して
ゼロドリフトがなくなり、COガス感度の変化を防止
し、測定誤差を可及的回避し得たものである。なお、本
発明はCO濃度500ppmを高感度で確実に検知する
センサを目標として、到達したものであるが、世界各国
のCOの環境基準値は50ppmを要求している。しか
し、現在、簡便に連続的に計測できしかも、安価に使用
しうるセンサは、殆んど皆無であって、法規制はあって
も、電解方式の大掛りで取扱の極めて煩さな装置によら
ざるを得ず、殆んど実用に供し得ない。なお、本発明に
おいて、線材をさらに30〜20μm程度の太さにする
ならば、コイル抵抗は理論上2.25倍にもなり、従っ
てR2060Ωから120Ωとしても殆んど同程度の巻数
のコイルで12V用が楽々と製造され、その結果COガ
ス感度が500ppmで50mV即ち50ppmで5m
Vとなり、実用に供しうる可能性が極めて大となるの
で、検討を進めている。
【図面の簡単な説明】
【図1】本発明に係る接触燃焼式COセンサの組立構成
図である。
【図2】Ptブラックを触媒に使用した場合の各ガスに
対する感度を示すグラフである。
【図3】PdOを触媒に使用した場合の各ガスに対する
感度を示すグラフである。
【図4】本発明に係るセンサにおける各ガス感度を示す
グラフである。
【図5】本発明品における活性部及びダミー部の電圧−
抵抗特性を示すグラフである。
【図6】活性部及びダミー部の電圧−抵抗特性の一例を
示すグラフである。
【図7】活性部及びダミー部の電圧−抵抗特性の他例を
示すグラフである。
【符号の説明】
S 活性部 D ダミー部 r1 ブリッジ抵抗 r2 ブリッジ抵抗 r3 ブリッジ抵抗 VO 感度計 Vi ブリッジ電源
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−140656(JP,A) 特開 昭48−6797(JP,A) 特開 昭64−10774(JP,A) 特開 昭55−126851(JP,A) 特開 昭63−128249(JP,A) 特開 平2−167457(JP,A) 特開 昭52−92796(JP,A) 特開 昭53−9596(JP,A) 特開 昭63−33654(JP,A) 実公 昭56−19730(JP,Y2) 実公 昭54−18236(JP,Y2)

Claims (4)

    (57)【特許請求の範囲】
  1. 【請求項1】 太さが15〜40μmで、その比抵抗ρ
    20が35〜46μΩcm、ピッカス硬度HV が200〜
    300、温度係数T・C・R0°〜100℃が7,00
    0〜8,500ppm/℃の特性を有するFe・Pd系
    合金の線材をもって、活性部及びダミー部のコイルが形
    成され、また、活性部に形成される触媒が少なくともC
    2 O,ZnO,MnO2 及びPtブラックからなり、
    さらに、ダミー部に形成される触媒が少なくともCuO
    及びCr2 3 からなる接触燃焼式一酸化炭素センサ。
  2. 【請求項2】 ブリッジ電圧が6〜12Vで、500p
    pmのCOの感度が25〜50mVである請求項1に記
    載の接触燃焼式一酸化炭素センサ。
  3. 【請求項3】 活性部及びダミー部の触媒が各コイルの
    表面に円筒状に形成される請求項1に記載の接触燃焼式
    一酸化炭素センサ。
  4. 【請求項4】 センサ温度が155°±3℃に設定され
    る請求項1に記載の接触燃焼式一酸化炭素センサ。
JP4271213A 1992-09-14 1992-09-14 接触燃焼式一酸化炭素センサ Expired - Lifetime JP2530276B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP4271213A JP2530276B2 (ja) 1992-09-14 1992-09-14 接触燃焼式一酸化炭素センサ
GB9317284A GB2270762B (en) 1992-09-14 1993-08-19 Contact combustion type carbon monoxide sensor
US08/115,845 US5304976A (en) 1992-09-14 1993-09-02 Contact combustion type carbon monoxide sensor
ITRM930599A IT1261852B (it) 1992-09-14 1993-09-07 Sensore del monossido di carbonio del tipo a combustione per contatto.
DE4330603A DE4330603A1 (de) 1992-09-14 1993-09-09 Kontakt-Verbrennungssensor für Kohlenmonoxyd
KR1019930018316A KR0161694B1 (ko) 1992-09-14 1993-09-11 접촉연소식 일산화탄소 센서

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4271213A JP2530276B2 (ja) 1992-09-14 1992-09-14 接触燃焼式一酸化炭素センサ

Publications (2)

Publication Number Publication Date
JPH06229966A JPH06229966A (ja) 1994-08-19
JP2530276B2 true JP2530276B2 (ja) 1996-09-04

Family

ID=17496928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4271213A Expired - Lifetime JP2530276B2 (ja) 1992-09-14 1992-09-14 接触燃焼式一酸化炭素センサ

Country Status (6)

Country Link
US (1) US5304976A (ja)
JP (1) JP2530276B2 (ja)
KR (1) KR0161694B1 (ja)
DE (1) DE4330603A1 (ja)
GB (1) GB2270762B (ja)
IT (1) IT1261852B (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5764150A (en) * 1996-04-10 1998-06-09 Fleury; Byron Gas alarm
JP3703627B2 (ja) * 1998-06-18 2005-10-05 日本特殊陶業株式会社 ガスセンサ
US6550310B1 (en) * 2000-11-28 2003-04-22 Honeywell International Inc. Catalytic adsorption and oxidation based carbon monoxide sensor and detection method
JP4627037B2 (ja) * 2003-06-12 2011-02-09 理研計器株式会社 接触燃焼式ガスセンサ
DE102005024394B4 (de) * 2005-05-27 2015-08-27 Dräger Safety AG & Co. KGaA Verfahren zur Konzentrationsmessung von Gasen
US20090101501A1 (en) * 2007-10-17 2009-04-23 Tao Xiao-Ming Room temperature gas sensors
MD4423C1 (ro) * 2015-01-13 2016-12-31 Василе ПОСТИКА Senzor de gaze pe baza oxizilor semiconductori (variante)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4296399A (en) * 1977-12-21 1981-10-20 A-T-O Inc. Microminiature palladium oxide gas detector and method of making same
US4396899A (en) * 1980-04-16 1983-08-02 Kabushiki Kaisha Kirk Platinum thin film resistance element and production method therefor
DE358925T1 (de) * 1988-09-14 1991-04-11 Seiko Co., Ltd., Kashiwa, Chiba Sensor zum nachweis von co durch katalytische verbrennung.
JP2524883B2 (ja) * 1990-09-29 1996-08-14 義雄 大野 接触燃焼式coガスセンサとその製造法

Also Published As

Publication number Publication date
GB9317284D0 (en) 1993-10-06
JPH06229966A (ja) 1994-08-19
GB2270762B (en) 1996-06-05
IT1261852B (it) 1996-06-03
ITRM930599A1 (it) 1995-03-07
DE4330603A1 (de) 1994-04-07
GB2270762A (en) 1994-03-23
ITRM930599A0 (it) 1993-09-07
KR940007521A (ko) 1994-04-27
KR0161694B1 (ko) 1999-03-30
US5304976A (en) 1994-04-19

Similar Documents

Publication Publication Date Title
JP2530276B2 (ja) 接触燃焼式一酸化炭素センサ
US20090020422A1 (en) Sensor Assemblies For Analyzing NO and NO2 Concentrations In An Emission Gas And Methods For Fabricating The Same
US20020010090A1 (en) Oxidizing catalysts, carbon monoxide sensor, and hydrogen sensor
JP2011237447A (ja) ガス検知材料の感度、速度または安定性を回復する方法
Tanaka et al. Perovskite-Pd three-way catalysts for automotive applications
JP3053865B2 (ja) 一酸化炭素を検出するためのセンサー
JPS62269747A (ja) 排ガス浄化用触媒
WO2008014153A1 (en) Sensors for detecting nox in a gas and methods for fabricating the same
CA2353759A1 (en) Oxidizing catalysts, carbon monoxide sensor, and hydrogen sensor
JPH1183781A (ja) ガスセンサ用触媒の製造方法
JP7396587B2 (ja) センサ素子及びガスセンサ
JPH0225456B2 (ja)
KR910002656B1 (ko) 접촉연소식 co 개스센서
JPH05322844A (ja) 炭化水素濃度測定方法及び炭化水素濃度測定装置
JP3115955B2 (ja) 酸化窒素ガスセンサ
JPH0313854A (ja) NOxガス検知素子
JP2524883B2 (ja) 接触燃焼式coガスセンサとその製造法
JP3486797B2 (ja) ガスセンサ用触媒の活性化処理方法
JP4359311B2 (ja) 半導体ガスセンサ
JPS6052755A (ja) ガス検知素子の製法
JPS5950352A (ja) 窒素酸化物検出素子
JP3633825B2 (ja) 窒素酸化物センサ
JP3919306B2 (ja) 炭化水素ガス検知素子
JP2004317266A (ja) 接触燃焼式coガスセンサ
JPH0862169A (ja) 一酸化炭素ガス検出装置