JP2525236B2 - Manufacturing method of non-oriented electrical steel sheet with excellent surface properties and magnetic properties - Google Patents

Manufacturing method of non-oriented electrical steel sheet with excellent surface properties and magnetic properties

Info

Publication number
JP2525236B2
JP2525236B2 JP1032585A JP3258589A JP2525236B2 JP 2525236 B2 JP2525236 B2 JP 2525236B2 JP 1032585 A JP1032585 A JP 1032585A JP 3258589 A JP3258589 A JP 3258589A JP 2525236 B2 JP2525236 B2 JP 2525236B2
Authority
JP
Japan
Prior art keywords
hot
rolling
annealing
less
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1032585A
Other languages
Japanese (ja)
Other versions
JPH02213418A (en
Inventor
昭彦 西本
佳弘 細谷
俊明 占部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP1032585A priority Critical patent/JP2525236B2/en
Publication of JPH02213418A publication Critical patent/JPH02213418A/en
Application granted granted Critical
Publication of JP2525236B2 publication Critical patent/JP2525236B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は表面性状と磁気特性に優れた無方向性電磁鋼
板の製造方法に関する。
The present invention relates to a method for producing a non-oriented electrical steel sheet having excellent surface properties and magnetic properties.

〔従来の技術〕[Conventional technology]

電磁鋼板の磁気特性を改善する上で、熱延鋼板のミク
ロ組織を制御することの重要性は従来より広く認識され
ている。その技術的狙いは、冷間圧延前に熱延板のフェ
ライト粒を十分なサイズまで再結晶、粒成長させること
にあり、それを具現化するため下記の技術が開示されて
いる。
The importance of controlling the microstructure of a hot rolled steel sheet in improving the magnetic properties of the electromagnetic steel sheet has been widely recognized. The technical aim is to recrystallize and grow the ferrite grains of the hot-rolled sheet to a sufficient size before cold rolling, and the following techniques are disclosed in order to embody them.

(1) 熱間圧延後高温で巻取りを行い、鋼帯の保有す
る熱で自己焼鈍を行う技術(例えば、特公昭57-43132
号) (2) 熱延鋼帯に再結晶焼鈍を施した後、冷間圧延に
供する技術(例えば、特公昭56-54370号、特開昭59-100
218号) (3) 上記した自己焼鈍あるいは再結晶焼鈍時にフェ
ライトの粒成長を容易にするために、スラブ加熱温度を
低下させて、AlN,MnSの再溶解の抑制ならびにサイズ制
御を行う技術(例えば、特公昭50-35885号、特開昭52-1
09465号) (4) 上記した焼鈍工程での粒成長を歪誘起によって
更に促進させるため、熱延板に軽度の圧延を付加して焼
鈍する技術(例えば、特公昭45-22211号、特開昭63-186
823号) 上記した各種技術の中で、熱延板に軽度の圧延を付加
する技術は、他の技術に比べて余計に圧延工程を経る反
面、熱延板焼鈍時のフェライト粒成長を促進させる方法
としてはより有効である。
(1) Technology for performing hot rolling after rolling at high temperature and self-annealing with the heat of the steel strip (for example, Japanese Patent Publication No. 57-43132).
(2) A technique of subjecting a hot-rolled steel strip to recrystallization annealing and then subjecting it to cold rolling (for example, JP-B-56-54370, JP-A-59-100).
No. 218) (3) A technique for suppressing the remelting of AlN and MnS and controlling the size by lowering the slab heating temperature in order to facilitate the grain growth of ferrite during the above-mentioned self-annealing or recrystallization annealing (for example, JP-B-50-35885, JP-A-52-1
09465) (4) In order to further promote the grain growth in the above-mentioned annealing process by strain induction, a technique of adding mild rolling to the hot rolled sheet and annealing (for example, JP-B-45-22211; 63-186
No. 823) Among the various technologies mentioned above, the technology of adding light rolling to the hot-rolled sheet requires an extra rolling step compared to other technologies, but promotes ferrite grain growth during annealing of the hot-rolled sheet. It is more effective as a method.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかし、この技術では軽圧延の圧下率が適切に管理さ
れないとコイル位置によってミクロ組織が不均一化する
だけでなく異常粒成長を生じ、これによって冷圧後の鋼
板表面に起伏(リジング)が生ずる場合がある。特に、
製鋼段階で脱炭焼鈍を行った鋼では、母相の粒成長性が
向上しているため、こうした問題が起り易い。
However, in this technology, if the reduction ratio of light rolling is not properly controlled, not only the microstructure becomes non-uniform due to the coil position but also abnormal grain growth occurs, which causes undulation on the surface of the steel sheet after cold pressing. There are cases. In particular,
In the steel that has been decarburized and annealed in the steelmaking stage, since the grain growth property of the matrix phase is improved, such a problem is likely to occur.

一方、連続鋳造した高Si鋼では熱間圧延段階でストリ
ーク状のフェライト組織が発達し易く、そのまま冷間圧
延を行うと、十分な磁気特性が得られないばかりか、上
記したようなリジングの発生をもたらす。こうした問題
はSi量の増加に伴って深刻となる。
On the other hand, in a continuously cast high Si steel, a streak-like ferrite structure easily develops in the hot rolling stage, and if cold rolling is performed as it is, not only sufficient magnetic properties are not obtained, but also ridging occurs as described above. Bring These problems become more serious as the amount of Si increases.

〔課題を解決すべき手段〕[Means for solving problems]

本発明はこのような従来の問題に鑑み、連続鋳造した
スラブを素材とする高Si鋼においてリジングの発生を防
止するとともに、最終焼鈍後の磁気特性(磁束密度,鉄
損特性)の向上を図ることを狙いとし、熱延条件と軽圧
延およびこれに続く熱延板焼鈍の条件を集合組成制御の
観点から最適化したもので、その大きな特徴は、特定成
分の連続鋳造スラブを特定の巻取条件で熱間圧延した
後、この熱延鋼帯を鋼中のSi+Al量によって規定される
歪量にて軽圧延し、次いでSi+Al量で規定される温度で
熱延板焼鈍するようにしたことにある。
In view of such conventional problems, the present invention aims to prevent the occurrence of ridging in high Si steel made of a continuously cast slab and improve the magnetic characteristics (magnetic flux density, iron loss characteristics) after final annealing. With the aim of achieving this, the hot rolling conditions and the conditions of light rolling and subsequent hot rolled sheet annealing were optimized from the viewpoint of collective composition control. After hot rolling under the conditions, this hot-rolled steel strip was lightly rolled at a strain amount specified by the amount of Si + Al in the steel and then annealed at the temperature specified by the amount of Si + Al. is there.

すなわち本発明は、C:0.005wt%以下、Si:1.0超〜3.5
wt%、Al:0.1〜2.0wt%、Mn:0.1〜1.0wt%、P:0.05wt%
以下、S:0.005wt%以下で、且つ(Si+Al)≦4.0wt%を
満足し、残部Fe及び不可避不純物からなる連続鋳造スラ
ブを、熱間圧延後650℃以下で巻取る工程と、該熱延鋼
帯に、圧下率ε(%)が、 exp{3.13−1.05(Si+Al)}≦ε≦exp{2.1−0.1(Si
+Al)} 但し、Si……Si含有量(wt%) Al……Al含有量(wt%) の範囲の軽圧延を行い、次いで、 50(Si+Al)+620≦T≦50(Si+Al)+740 但し、Si……Si含有量(wt%) Al……Al含有量(wt%) を満足する温度T(℃)で30分〜12時間の熱延板焼鈍を
行う工程と、該鋼帯を冷延後800〜1050℃の温度で連続
焼鈍する工程とからなる表面性状と磁気特性に優れた無
方向性電磁鋼板の製造方法である。
That is, the present invention, C: 0.005 wt% or less, Si: more than 1.0 ~ 3.5
wt%, Al: 0.1-2.0wt%, Mn: 0.1-1.0wt%, P: 0.05wt%
Hereinafter, a step of winding a continuous cast slab containing S: 0.005 wt% or less and (Si + Al) ≤ 4.0 wt% and the balance Fe and unavoidable impurities after hot rolling at 650 ° C or less, and the hot rolling. The reduction ratio ε (%) of the steel strip is exp {3.13-1.05 (Si + Al)} ≦ ε ≦ exp {2.1−0.1 (Si
+ Al)} However, light rolling in the range of Si ... Si content (wt%) Al ... Al content (wt%) is performed, and then 50 (Si + Al) + 620 ≦ T ≦ 50 (Si + Al) +740 Si: Si content (wt%) Al: A step of performing hot-rolled sheet annealing for 30 minutes to 12 hours at a temperature T (° C) satisfying the Al content (wt%), and cold rolling the steel strip. This is a method for producing a non-oriented electrical steel sheet having excellent surface properties and magnetic properties, which comprises a subsequent step of continuous annealing at a temperature of 800 to 1050 ° C.

〔作用〕[Action]

以下、本発明の詳細をその限定理由とともに説明す
る。
Hereinafter, the details of the present invention will be described together with the reasons for limitation.

まず、鋼成分の限定理由について説明する。 First, the reasons for limiting the steel components will be described.

Cは、0.005wt%を超えると磁気特性が劣化し、また
磁気時効上も問題を生じるため、0.005wt%以下とす
る。
If C exceeds 0.005 wt%, the magnetic properties deteriorate and problems occur in magnetic aging, so C is made 0.005 wt% or less.

Siは、低鉄損化の観点から1.0wt%超をその下限とす
る。すなわちSiが1.0%以下であると固有抵抗の減少に
より鉄損低下が十分でない。一方、Siが3.5wt%を超え
ると冷間圧延性が悪くなり、このような製造技術上の制
約からSiは3.5wt%をその上限とする。
Si has a lower limit of more than 1.0 wt% from the viewpoint of reducing iron loss. That is, when Si is 1.0% or less, the iron loss is not sufficiently reduced due to the decrease in specific resistance. On the other hand, if Si exceeds 3.5 wt%, the cold rolling property deteriorates, and due to such restrictions in manufacturing technology, Si has an upper limit of 3.5 wt%.

Alは、0.1wt%未満では製鋼段階で残存したNがAlと
ともに微細に析出するため、最終焼鈍時に良好な粒成長
性が得られず、磁気特性が劣化する。Alが0.1wt%以上
であれば、たとえ残存Nが存在したとしても、AlN粒子
が粗大となるため特性の劣化を防ぐことができる。しか
し、Alが2.0wt%を超えると冷延性が悪くなる。このた
めAlは0.1wt%〜2.0wt%の範囲とする。
When Al is less than 0.1 wt%, N remaining in the steelmaking stage is finely precipitated together with Al, so that good grain growth cannot be obtained during the final annealing and the magnetic properties deteriorate. If Al is 0.1 wt% or more, even if there is residual N, the AlN particles become coarse, so that deterioration of the characteristics can be prevented. However, when Al exceeds 2.0 wt%, cold rolling property deteriorates. Therefore, the Al content is in the range of 0.1 wt% to 2.0 wt%.

また冷延性の観点から(Si+Al)量は4.0wt%以下に
抑えられる。
In addition, the amount of (Si + Al) can be suppressed to 4.0 wt% or less from the viewpoint of cold rolling.

Mn,Sは、MnSの析出状態制御の観点から規定される。
すなわちMnは鋼中SをMnSとして析出、粗大化させて磁
気特性に対して無害化するもので、このため0.1wt%を
その下限とする。また、Mnの上限は磁気特性に悪影響を
及ぼさない限界として1.0wt%とする。SはMnSの析出総
量を規制するため0.005wt%以下とする。
Mn and S are defined from the viewpoint of controlling the precipitation state of MnS.
That is, Mn precipitates S in the steel as MnS and coarsens it to make it harmless to the magnetic properties. Therefore, the lower limit is 0.1 wt%. The upper limit of Mn is 1.0 wt% as a limit that does not adversely affect magnetic properties. S regulates the total amount of MnS deposited, and is therefore 0.005 wt% or less.

Pは、鉄損低減に対して有効であるが、高Si鋼におけ
る脆化の問題から、その上限を0.05wt%とする。
P is effective in reducing iron loss, but its upper limit is set to 0.05 wt% because of the problem of embrittlement in high Si steel.

以上のような組成の連続鋳造スラブは熱間圧延された
後、巻取後の徐冷却で不均一な再結晶が起こらないよ
う、650℃以下の温度で巻取られる。巻取温度が650℃超
では巻取後の徐冷却でコイルの内外周における不均一な
再結晶や冷却歪が生じ、これが熱延板焼鈍において異常
粒成長を生じる一因となる。なお、熱間圧延の仕上温度
は通常の温度である750〜900℃程度でよい。
The continuously cast slab having the above composition is hot-rolled, and then wound at a temperature of 650 ° C. or less so that non-uniform recrystallization does not occur due to slow cooling after winding. If the coiling temperature exceeds 650 ° C, gradual cooling after coiling causes nonuniform recrystallization and cooling strain in the inner and outer peripheries of the coil, which is one of the causes of abnormal grain growth in hot-rolled sheet annealing. The finishing temperature for hot rolling may be a normal temperature of about 750 to 900 ° C.

熱延鋼帯は軽圧延された後、熱延板焼鈍される。熱延
鋼帯に軽圧延を施して焼鈍した場合、熱延板組織は歪粒
成長により粗大化すると同時に、磁気特性が向上する。
しかし、歪粒成長によって著しく粗大化した粒は、冷間
圧延時に粗大粒模様とともにオレンジピール状のうねり
粗さを誘発する。第1図は第1表中の鋼−3を用いて、
610℃で巻取った熱延鋼板に、酸洗後0〜9%の範囲で
軽圧延を施して800℃×3hの焼鈍に供した後、冷間圧延
(2.0mmt→0.5mmt)および連続焼鈍(900℃×90sec)を
行った鋼板の鉄損値(W1550)と冷圧表面における平
均うねり高さの変化を示したものである。図から明らか
ように、熱延板軽圧下率が1%のとき最もうねり高さが
高くなり、同時に鉄損の著しい低下が認められる。占積
率に悪影響を及ぼすこうしたうねりは、3%以上の軽圧
下でほぼ未軽圧下材に近いレベルとなるが、7%を超え
る軽圧下を施した場合、鉄損が上昇する傾向にある。こ
れは熱延板焼鈍後のフェライト粒が過度の歪導入によっ
て小さくなることによる。本発明ではこうした傾向を踏
まえて、うねり高さが未軽圧下材のレベルに比べて5μ
m未満の増大に抑えられる軽圧下率と、鉄損の増加が認
められる軽圧下率の間を最適軽圧下率の範囲として規定
した。その具体的条件は後述する。
The hot rolled steel strip is lightly rolled and then annealed. When the hot-rolled steel strip is lightly rolled and annealed, the structure of the hot-rolled sheet is coarsened by strained grain growth and, at the same time, the magnetic properties are improved.
However, the grains that are remarkably coarsened by the strained grain growth induce an orange peel-like waviness roughness together with a coarse grain pattern during cold rolling. FIG. 1 shows that using Steel-3 in Table 1,
Hot-rolled steel sheet rolled at 610 ° C is pickled, lightly rolled in the range of 0 to 9%, and annealed at 800 ° C x 3h, followed by cold rolling (2.0mmt → 0.5mmt) and continuous annealing. shows the change in the average waviness height at (900 ℃ × 90sec) the iron loss value of the steel sheet was carried out with the (W 15/50) cold圧表surface. As is clear from the figure, when the rolling reduction of the hot-rolled sheet is 1%, the waviness height becomes the highest, and at the same time, the iron loss is remarkably reduced. Such undulations, which adversely affect the space factor, reach a level close to that of an unlightly rolled material under a light reduction of 3% or more, but iron loss tends to increase when a light reduction of more than 7% is applied. This is because the ferrite grains after annealing the hot rolled sheet become smaller due to excessive strain introduction. In the present invention, based on such a tendency, the waviness height is 5 μm as compared with the level of the unlightened rolling stock.
The range of the optimum light reduction rate is defined as the range between the light reduction rate in which the increase of less than m is suppressed and the light reduction rate in which the increase of the iron loss is recognized. The specific conditions will be described later.

次に熱延板焼鈍温度の最適条件について、第1表に示
す5種類の鋼について検討した結果を第2図に示す。い
ずれの素材も、3%軽圧延後、各温度において75%H2
+N2(AX)雰囲気中で3h焼鈍し、そのときの熱延板組
織の再結晶の状態および雰囲気ガスからの窒化の程度を
評価したものである。まず、板厚方向で1/3以上の未再
結晶領域が認められる臨界は、T(℃)=50(Si+Al)
+620である(但し、Si,Alは各成分含有量〔wt%〕、以
下同様)。また、表層下に窒化に伴うAlNの析出層が20
μm以上認められる臨界はT(℃)=50(Si+Al)+74
0である。箱焼鈍時の窒化抑制に関しては、予め脱スケ
ールを行うのが有効であるが、上記臨界温度以上では窒
化層の存在が最終的な磁気特性に対して無視できなくな
る。したがって本発明における熱延板焼鈍温度は、50
(Si+Al)+620≦T(℃)≦50(Si+Al)+740の範囲
に規制する。
Next, FIG. 2 shows the results of examining the optimum conditions of the hot-rolled sheet annealing temperature for the five types of steel shown in Table 1. All materials are 75% H 2 at each temperature after 3% light rolling
This is an evaluation of the state of recrystallization of the structure of the hot rolled sheet and the degree of nitriding from the atmospheric gas at that time after annealing for 3 hours in a + N 2 (AX) atmosphere. First, the criticality at which 1/3 or more unrecrystallized region is observed in the plate thickness direction is T (° C) = 50 (Si + Al)
+620 (however, the content of each component of Si and Al [wt%], the same applies hereinafter). In addition, the AlN precipitate layer associated with nitriding was formed below the surface layer.
The criticality recognized over μm is T (℃) = 50 (Si + Al) +74
It is 0. Descaling is effective for suppressing nitriding during box annealing, but the existence of the nitride layer cannot be ignored for the final magnetic characteristics at the critical temperature or higher. Therefore, the hot-rolled sheet annealing temperature in the present invention is 50
The range is (Si + Al) + 620 ≦ T (° C.) ≦ 50 (Si + Al) +740.

さて、以上の結果を踏まえて、熱延板軽圧下率の最適
範囲をSi+Al量で整理した結果を第3図に示す。焼鈍温
度は、(Si+Al)≦1.5wt%では750℃、2wt%≦(Si+A
l)≦3wt%では800℃、(Si+Al)>3wt%では850℃
で、いずれも3時間均熱したものである。未軽圧下材に
対する冷圧板のうねり高さ増加量(Δh)が5μm未満
となるのは、圧下率ε(%)≧exp{3.13−1.05(Si+A
l)}であり、鉄損上昇が抑えられる領域は、ε(%)
≦exp{2.1−0.1(Si+Al)}である。したがって本発
明では、熱延板の軽圧下率をexp{3.13−1.05(Si+A
l)}≦ε(%)≦exp{2.1−0.1(Si+Al)}とする。
Now, based on the above results, Fig. 3 shows the results of arranging the optimum range of the light rolling reduction of the hot rolled sheet by the amount of Si + Al. The annealing temperature is 750 ° C for (Si + Al) ≤ 1.5 wt%, 2 wt% ≤ (Si + A
l) 800 ℃ for ≤3wt%, 850 ℃ for (Si + Al)> 3wt%
All of them were soaked for 3 hours. The increase amount (Δh) of the undulation height of the cold-pressed plate with respect to the non-light rolled material is less than 5 μm because the rolling reduction ratio ε (%) ≧ exp {3.13-1.05 (Si + A
l)}, and the area where the iron loss rise is suppressed is ε (%)
≦ exp {2.1−0.1 (Si + Al)}. Therefore, in the present invention, the light rolling reduction of the hot rolled sheet is exp {3.13-1.05 (Si + A
l)} ≦ ε (%) ≦ exp {2.1−0.1 (Si + Al)}.

〔実施例〕〔Example〕

第1表に示す鋼について、真空脱ガス処理後、連続鋳
造により220mmtのスラブとした。該スラブを1150℃に加
熱・均熱後、粗圧延、仕上圧延(仕上げ温度820℃)を
行って2.0mmtの熱延板とし、610℃で巻取った。該鋼帯
を酸洗後、圧下率15%以下の範囲で軽圧延し、650〜900
℃の種々の温度で焼鈍した。さらにこの鋼帯を0.5mmtま
で冷圧後、750〜1100℃の範囲で焼鈍した。このように
して得られた鋼帯の表面性状、磁気特性等を具体的な製
造条件とともに第2表に示す。
The steels shown in Table 1 were vacuum-degassed and then continuously cast into 220 mmt slabs. The slab was heated to 1150 ° C. and soaked, then rough-rolled and finish-rolled (finishing temperature 820 ° C.) to obtain a 2.0 mmt hot-rolled sheet, which was wound at 610 ° C. After pickling the steel strip, light rolling in the range of 15% or less of rolling reduction, 650 to 900
Annealed at various temperatures of ° C. Further, this steel strip was cold-pressed to 0.5 mmt and then annealed in the range of 750-1100 ° C. Table 2 shows the surface properties, magnetic properties, and the like of the steel strip thus obtained, together with specific manufacturing conditions.

第1表に示す鋼No.2と鋼No.4について、真空脱ガス処
理後、連続鋳造により220mmtのスラブとし、このスラブ
を1150℃に加熱・均熱後、粗圧延、仕上圧延(仕上げ温
度820℃)を行って2.0mmtの熱延板とし、第3表に示す
条件で熱延巻取、軽圧延及び熱延板焼鈍を実施した。さ
らに、この鋼帯を0.5mmtまで冷圧後、第3表に示す温度
で焼鈍した。このようにして得られた鋼帯の表面性状、
磁気特性を第3表に併せて示す。
Steel No. 2 and Steel No. 4 shown in Table 1 were vacuum degassed and then continuously cast into 220 mmt slabs. After heating and soaking the slabs to 1150 ° C, rough rolling and finish rolling (finishing temperature) 820 ° C) to obtain a 2.0 mmt hot-rolled sheet, and hot-rolling, light rolling and hot-rolled sheet annealing were performed under the conditions shown in Table 3. Further, this steel strip was cold-pressed to 0.5 mmt and then annealed at the temperatures shown in Table 3. The surface properties of the steel strip thus obtained,
The magnetic properties are also shown in Table 3.

【図面の簡単な説明】[Brief description of drawings]

第1図は熱延板軽圧延の軽圧下率が鉄損値および冷圧板
の表面うねり高さに及ぼす影響を示したものである。第
2図は熱延板焼鈍温度の最適範囲をSi+Al量との関係で
示したものである。第3図は熱延板軽軽圧下率の最適範
囲をSi+Al量との関係で示したものである。
FIG. 1 shows the effect of the light rolling reduction of light rolling of hot-rolled sheet on the iron loss value and the surface waviness of the cold-rolled sheet. FIG. 2 shows the optimum range of the hot-rolled sheet annealing temperature in relation to the amount of Si + Al. Fig. 3 shows the optimum range of the light and light reduction of the hot-rolled sheet in relation to the amount of Si + Al.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C:0.005wt%以下、Si:1.0超〜3.5wt%、A
l:0.1〜2.0wt%、Mn:0.1〜1.0wt%、P:0.05wt%以下、
S:0.005wt%以下で、且つ(Si+Al)≦4.0wt%を満足
し、残部Fe及び不可避不純物からなる連続鋳造スラブ
を、熱間圧延後650℃以下で巻取る工程と、該熱延鋼帯
に、圧下率ε(%)が、 exp{3.13−1.05(Si+Al)}≦ε≦exp{2.1−0.1(Si
+Al)} 但し、Si…Si含有量(wt%) Al…Al含有量(wt%) の範囲の軽圧延を行い、次いで、 50(Si+Al)+620≦T≦50(Si+Al)+740 但し、Si…Si含有量(wt%) Al…Al含有量(wt%) を満足する温度T(℃)で30分〜12時間の熱延板焼鈍を
行う工程と、該鋼帯を冷延後800〜1050℃の温度で連続
焼鈍する工程とからなる表面性状と磁気特性に優れた無
方向性電磁鋼板の製造方法。
1. C: 0.005 wt% or less, Si: more than 1.0 to 3.5 wt%, A
l: 0.1-2.0wt%, Mn: 0.1-1.0wt%, P: 0.05wt% or less,
S: 0.005 wt% or less and satisfying (Si + Al) ≤ 4.0 wt%, continuous casting slab consisting of balance Fe and unavoidable impurities is wound at 650 ° C or less after hot rolling, and the hot rolled steel strip In addition, the reduction ratio ε (%) is exp {3.13-1.05 (Si + Al)} ≤ ε ≤ exp {2.1-0.1 (Si
+ Al)} However, light rolling is performed in the range of Si ... Si content (wt%) Al ... Al content (wt%), and then 50 (Si + Al) + 620 ≦ T ≦ 50 (Si + Al) +740 where Si ... Si content (wt%) Al ... A step of performing hot-rolled sheet annealing for 30 minutes to 12 hours at a temperature T (° C.) that satisfies the Al content (wt%), and 801 to 1050 after cold rolling the steel strip. A method for producing a non-oriented electrical steel sheet having excellent surface properties and magnetic properties, which comprises a step of continuously annealing at a temperature of ℃.
JP1032585A 1989-02-14 1989-02-14 Manufacturing method of non-oriented electrical steel sheet with excellent surface properties and magnetic properties Expired - Lifetime JP2525236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1032585A JP2525236B2 (en) 1989-02-14 1989-02-14 Manufacturing method of non-oriented electrical steel sheet with excellent surface properties and magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1032585A JP2525236B2 (en) 1989-02-14 1989-02-14 Manufacturing method of non-oriented electrical steel sheet with excellent surface properties and magnetic properties

Publications (2)

Publication Number Publication Date
JPH02213418A JPH02213418A (en) 1990-08-24
JP2525236B2 true JP2525236B2 (en) 1996-08-14

Family

ID=12362943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1032585A Expired - Lifetime JP2525236B2 (en) 1989-02-14 1989-02-14 Manufacturing method of non-oriented electrical steel sheet with excellent surface properties and magnetic properties

Country Status (1)

Country Link
JP (1) JP2525236B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1102670C (en) * 1999-06-16 2003-03-05 住友金属工业株式会社 Non-directional electromagnetic steel sheet, and method for mfg. same
CN114737129B (en) * 2022-03-02 2023-02-28 新余钢铁股份有限公司 High-performance non-oriented silicon steel for wound motor iron core and production method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832927B2 (en) * 1988-06-04 1996-03-29 株式会社神戸製鋼所 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density

Also Published As

Publication number Publication date
JPH02213418A (en) 1990-08-24

Similar Documents

Publication Publication Date Title
US5643370A (en) Grain oriented electrical steel having high volume resistivity and method for producing same
US4439251A (en) Non-oriented electric iron sheet and method for producing the same
KR950013287B1 (en) Method of making non-viented magnetic steel strip
JPH07116510B2 (en) Non-oriented electrical steel sheet manufacturing method
KR950013286B1 (en) Method of making non-oriented magnetic steel strips
EP0503680B1 (en) Oriented silicon steel sheets and production process therefor
JP3387980B2 (en) Method for producing non-oriented silicon steel sheet with extremely excellent magnetic properties
JP2525236B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent surface properties and magnetic properties
EP0798392A1 (en) Production method for grain oriented silicon steel sheet having excellent magnetic characteristics
JPH0819465B2 (en) Non-oriented electrical steel sheet manufacturing method
JPH062907B2 (en) Non-oriented electrical steel sheet manufacturing method
JP4389553B2 (en) Method for producing grain-oriented electrical steel sheet
JP3399726B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
EP0551141B1 (en) Oriented magnetic steel sheets and manufacturing process therefor
JP2002241906A (en) Grain-oriented silicon steel sheet having excellent coating film characteristic and magnetic property
JP2514447B2 (en) Manufacturing method of non-oriented electrical steel sheet having excellent magnetic properties and surface properties
JP3430830B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPH0814015B2 (en) Non-oriented electrical steel sheet having excellent magnetic properties and surface properties and method for producing the same
JP2003089821A (en) Method for producing ultrahigh magnetic flux density grain oriented silicon steel sheet
JP4277529B2 (en) Method for producing grain-oriented electrical steel sheet having no undercoat
JP3485409B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2757695B2 (en) Manufacturing method of semi-process non-oriented electrical steel sheet with excellent magnetic properties
JP2883224B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3846019B2 (en) Method for producing non-oriented electrical steel sheet
JP3331535B2 (en) Method for manufacturing thick non-oriented electrical steel sheet with excellent magnetic properties