JP2520926B2 - Method for controlling oxygen concentration in silicon single crystal - Google Patents

Method for controlling oxygen concentration in silicon single crystal

Info

Publication number
JP2520926B2
JP2520926B2 JP62317747A JP31774787A JP2520926B2 JP 2520926 B2 JP2520926 B2 JP 2520926B2 JP 62317747 A JP62317747 A JP 62317747A JP 31774787 A JP31774787 A JP 31774787A JP 2520926 B2 JP2520926 B2 JP 2520926B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
silicon
oxygen concentration
quartz crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62317747A
Other languages
Japanese (ja)
Other versions
JPH01160893A (en
Inventor
登 大澤
一浩 池澤
俊一郎 石神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Silicon Corp
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Silicon Corp
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Silicon Corp, Mitsubishi Materials Corp filed Critical Mitsubishi Materials Silicon Corp
Priority to JP62317747A priority Critical patent/JP2520926B2/en
Publication of JPH01160893A publication Critical patent/JPH01160893A/en
Application granted granted Critical
Publication of JP2520926B2 publication Critical patent/JP2520926B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、チョクラルスキー法を用いて、石英ルツボ
内に収納されたシリコン融液からシリコン単結晶を引上
げるに際して、シリコン単結晶中の軸方向の酸素濃度を
制御するシリコン単結晶中の酸素濃度制御方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention uses a Czochralski method to pull a silicon single crystal from a silicon melt stored in a quartz crucible, The present invention relates to a method for controlling the oxygen concentration in a silicon single crystal that controls the oxygen concentration in the axial direction.

〔従来の技術〕[Conventional technology]

従来、この種のシリコン単結晶を引上げる装置として
は、炉本体の内部のほぼ中央部に石英ルツボが設けら
れ、この石英ルツボに、黒鉛サセプタを介して、昇降自
在かつ回転自在な下軸が取付けられ、かつ上記石英ルツ
ボの周囲に、石英ルツボ内のシリコン融液の温度を制御
するヒータが設置されると共に、このヒータと上記炉本
体との間に保温筒が配置される一方、炉本体上部から、
種結晶を下端部に把持するワイヤが昇降自在にかつ回転
自在に吊り下げられたものが知られている。そして、こ
の装置においてシリコン単結晶を製造する場合には、炉
本体内の空気を、炉本体上部から炉底にかけてアルゴン
ガスを供給することによって、充分に排除すると共に、
上記ヒータによって石英ルツボ内のシリコン融液の温度
を単結晶引上げに適した温度に制御した後に、上方より
ワイヤの下端に把持された状態の種結晶を下降させてシ
リコン融液に浸漬させ、さらに、石英ルツボを一方向に
回転させる一方、種結晶を逆方向に回転させながら引上
げることにより、シリコン単結晶を得るようにしてい
る。また、この場合、シリコン単結晶の引上げにつれて
石英ルツボ内のシリコン融液面が低下するため、適宜石
英ルツボを上昇させて液面レベルを一定に保つようにし
ている。
Conventionally, as a device for pulling a silicon single crystal of this type, a quartz crucible is provided in a substantially central portion inside a furnace body, and a lower shaft that can be raised and lowered and is rotatable through a graphite susceptor is provided in the quartz crucible. A heater for controlling the temperature of the silicon melt in the quartz crucible is installed around the quartz crucible, and a heat insulating cylinder is arranged between the heater and the furnace body, while the furnace body is provided. From the top
It is known that a wire that holds a seed crystal at its lower end is hung so that it can be raised and lowered and rotated. Then, in the case of producing a silicon single crystal in this apparatus, the air in the furnace body is sufficiently eliminated by supplying argon gas from the furnace body upper part to the furnace bottom,
After controlling the temperature of the silicon melt in the quartz crucible by the heater to a temperature suitable for pulling a single crystal, the seed crystal held at the lower end of the wire is lowered from above and immersed in the silicon melt, The silicon single crystal is obtained by rotating the quartz crucible in one direction and pulling it while rotating the seed crystal in the opposite direction. Further, in this case, since the silicon melt surface in the quartz crucible lowers as the silicon single crystal is pulled up, the quartz crucible is appropriately raised to keep the liquid level constant.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところで、上記石英ルツボは、シリコン融液と反応し
て揮発性の一酸化シリコンを生成し、この一酸化シリコ
ンがシリコン融液内に一部混入するので、シリコン融液
内に酸素が溶出することになる。そして、上記従来の引
上装置にあっては、シリコン融液の酸素濃度が、単結晶
引上げ開始時に高く、以後、単結晶の引上げにつれて、
石英ルツボと融液の接触面積が減少して行き、融液中の
酸素濃度の減少につながるので、得られたシリコン単結
晶は、トップ側で酸素濃度が高く、ボトムに向かうにつ
れて酸素濃度が低下するものとなる。
By the way, the quartz crucible reacts with the silicon melt to generate volatile silicon monoxide, and since this silicon monoxide is partly mixed in the silicon melt, oxygen is eluted in the silicon melt. become. And, in the above conventional pulling apparatus, the oxygen concentration of the silicon melt is high at the start of pulling the single crystal, and thereafter, as the pulling of the single crystal,
Since the contact area between the quartz crucible and the melt decreases, leading to a decrease in the oxygen concentration in the melt, the silicon single crystal obtained has a high oxygen concentration on the top side and a lower oxygen concentration toward the bottom. It will be done.

しかしながら、シリコン単結晶中の酸素濃度は、半導
体集積回路の特性を良好に保持するために、その上限及
び下限が決められており、上述したような引上装置によ
って製造されたシリコン単結晶においては、使用可能部
分が少なく、従って、実質的なシリコン単結晶の製造効
率が低いという問題があった。
However, the upper limit and the lower limit of the oxygen concentration in the silicon single crystal are determined in order to keep the characteristics of the semiconductor integrated circuit in good condition, and in the silicon single crystal produced by the pulling apparatus as described above, However, there is a problem that the usable portion is small and therefore the production efficiency of the silicon single crystal is substantially low.

本発明は、上記事情に鑑みてなされたもので、その目
的とするところは、シリコン単結晶中の酸素濃度をその
軸方向に沿って均一に制御することができ、所定範囲内
の酸素濃度のシリコン単結晶を円滑に製造することがで
きて、実質的な製造効率を向上させることができるシリ
コン単結晶中の酸素濃度制御方法を提供することにあ
る。
The present invention has been made in view of the above circumstances, and an object thereof is to be able to uniformly control the oxygen concentration in a silicon single crystal along its axial direction, and to reduce the oxygen concentration within a predetermined range. It is an object of the present invention to provide a method for controlling an oxygen concentration in a silicon single crystal, which can smoothly manufacture the silicon single crystal and can substantially improve the manufacturing efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本発明は、炉本体に供給
する不活性ガスを上記シリコン融液面に案内するガイド
部材を有し、該ガイド部材をシリコン融液から引上げら
れるシリコン単結晶の周辺に設置すると共に、このシリ
コン単結晶の引上げ長さに対応して、前記不活性ガスの
流量を順次増加させるものである。
In order to achieve the above object, the present invention has a guide member for guiding an inert gas supplied to a furnace body to the silicon melt surface, and the guide member is provided around a silicon single crystal pulled up from the silicon melt. In addition, the flow rate of the inert gas is sequentially increased according to the pulling length of the silicon single crystal.

〔作用〕[Action]

本発明のシリコン単結晶中の酸素濃度制御方法にあっ
ては、シリコン単結晶を引上げるにつれて、炉本体内に
供給する不活性ガス(アルゴンガス)の流量を順次増加
させることによって、シリコン単結晶中の酸素濃度をそ
の軸方向に沿って一定に保持するように制御する。
In the method for controlling the oxygen concentration in a silicon single crystal according to the present invention, as the silicon single crystal is pulled up, the flow rate of the inert gas (argon gas) supplied into the furnace main body is sequentially increased to obtain the silicon single crystal. The oxygen concentration in the inside is controlled so as to be kept constant along the axial direction.

〔実施例〕〔Example〕

以下、第1図ないし第4図に基づいて本発明の一実施
例を説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

第1図と第2図は、本発明のシリコン単結晶中の酸素
濃度制御方法を実施するためのシリコン単結晶引上装置
の一例を示すもので、第1図は概略構成図、第2図はリ
フレクタの平面図である。これらの図において符号1は
炉本体であり、この炉本体1は下チャンバー1a、中チャ
ンバー1b及び上チャンバー(図示せず)からなり、それ
ぞれ内部が水冷ジャケット構造とされている。そして、
上記炉本体1の内部のほぼ中央部には石英ルツボ2が設
けられており、この石英ルツボ2は、黒鉛サセプタ(図
示せず)を介して昇降自在かつ回転自在な下軸3に取付
けられている。また、上記石英ルツボ2の周囲には、こ
の石英ルツボ2内のシリコン融液4の温度を制御するヒ
ータ5が設置されると共に、このヒータ5と炉本体1と
の間には保温筒6が配置されている。そして、この保温
筒6の上面には、リング状の支持部材7が設けられてお
り、この支持部材7にはリフレクタ8が支持されてい
る。
1 and 2 show an example of a silicon single crystal pulling apparatus for carrying out the method for controlling the oxygen concentration in a silicon single crystal according to the present invention. FIG. 1 is a schematic configuration diagram and FIG. [Fig. 4] is a plan view of a reflector. In these drawings, reference numeral 1 is a furnace body, and the furnace body 1 is composed of a lower chamber 1a, a middle chamber 1b and an upper chamber (not shown), each of which has a water cooling jacket structure. And
A quartz crucible 2 is provided substantially in the center of the inside of the furnace body 1, and the quartz crucible 2 is attached to a lower shaft 3 which can be raised and lowered and is rotatable via a graphite susceptor (not shown). There is. A heater 5 for controlling the temperature of the silicon melt 4 in the quartz crucible 2 is installed around the quartz crucible 2, and a heat insulating tube 6 is provided between the heater 5 and the furnace body 1. It is arranged. A ring-shaped support member 7 is provided on the upper surface of the heat retaining cylinder 6, and a reflector 8 is supported by the support member 7.

上記リフレクタ8は、炉本体1に供給するアルゴンガ
スをシリコン融液4の液面に案内するガイド部材であっ
て、上記石英ルツボ2の内径より小に設定された円筒部
9aとこの円筒部9aの上方に続いてわずかに外方に傾斜し
た拡開筒部9bと上記円筒部9aの下方に続いて内方に先細
りした傾斜筒部9cとを一体形成したリフレクタ本体9
と、このリフレクタ本体9の拡開筒部9bの上端外縁に設
けられ、かつ上記支持部材7の上面に支持された3個の
L字状フック10と、上記リフレクタ本体9の拡開筒部9b
の上端内縁に設けられ、かつ単結晶11を冷却する冷却筒
12の外周面とほぼ気密的に配置された円環状カバー13と
から構成されている。また、上記円環状カバー13には、
炉本体1に設けられた覗き窓14から単結晶11とシリコン
融液4との境界部が目視できるように石英ガラス窓15が
設けられている。
The reflector 8 is a guide member that guides the argon gas supplied to the furnace body 1 to the liquid surface of the silicon melt 4, and is a cylindrical portion that is set smaller than the inner diameter of the quartz crucible 2.
9a, a reflector main body 9 integrally formed with an expanding cylindrical portion 9b that is slightly inclined outwardly above the cylindrical portion 9a, and an inclined cylindrical portion 9c that is tapered inwardly continuously below the cylindrical portion 9a.
And three L-shaped hooks 10 provided on the outer edge of the upper end of the expanding tube portion 9b of the reflector body 9 and supported on the upper surface of the supporting member 7, and the expanding tube portion 9b of the reflector body 9.
A cooling cylinder that is provided on the inner edge of the upper end of and that cools the single crystal 11.
It is composed of an outer peripheral surface 12 and an annular cover 13 which is arranged in a substantially airtight manner. Further, the annular cover 13 has
A quartz glass window 15 is provided so that the boundary portion between the single crystal 11 and the silicon melt 4 can be seen through a viewing window 14 provided in the furnace body 1.

また、上記単結晶11を引上げるために、炉本体1の上
部に、種結晶を下端部に把持するワイヤ16が昇降自在に
かつ回転自在に吊設されている。さらに、上記炉本体1
の上部からアルゴンガスが炉本体1の内部に供給され、
かつ炉底から排出されると共に、このアルゴンガスの流
量が任意に(例えば1〜100/min)調整し得るように
構成されている。
Further, in order to pull up the single crystal 11, a wire 16 for holding the seed crystal at the lower end portion is suspended from the upper part of the furnace body 1 so as to be vertically movable and rotatable. Further, the furnace body 1
Argon gas is supplied into the furnace body 1 from above,
In addition, the flow rate of the argon gas can be arbitrarily adjusted (for example, 1 to 100 / min) while being discharged from the furnace bottom.

次に、上記のように構成されたシリコン単結晶引上装
置を用いて本発明のシリコン単結晶中の酸素濃度制御方
法を実施する場合について説明する。
Next, a case will be described in which the method for controlling the oxygen concentration in a silicon single crystal of the present invention is carried out by using the silicon single crystal pulling apparatus configured as described above.

上記シリコン単結晶引上装置にあっては、従来同様、
まず炉本体1内の空気を、炉本体1上部から炉底にかけ
てアルゴンガスを供給することによって、充分に排除す
ると共に、上記ヒータ5によって石英ルツボ2内のシリ
コン原料を溶融し、このシリコン融液4の温度を単結晶
引上げに適した温度に制御した後に、炉本体1の上方よ
りワイヤ16の下端に把持された状態の種結晶を下降させ
てシリコン融液4に浸漬させる。
In the above silicon single crystal pulling apparatus,
First, the air in the furnace main body 1 is sufficiently removed by supplying argon gas from the upper part of the furnace main body 1 to the furnace bottom, and at the same time, the silicon raw material in the quartz crucible 2 is melted by the heater 5 to obtain the silicon melt. After controlling the temperature of No. 4 to a temperature suitable for pulling a single crystal, the seed crystal held in the lower end of the wire 16 is lowered from above the furnace body 1 and immersed in the silicon melt 4.

次いで、従来公知の方法により、石英ルツボ2を一方
向に回転させる一方、上記種結晶を逆方向に回転させな
がら引上げることにより、単結晶11を引上げ成長させ
る。
Then, the quartz crucible 2 is rotated in one direction by a conventionally known method, while the seed crystal is pulled while being rotated in the opposite direction, whereby the single crystal 11 is pulled and grown.

この場合、上記単結晶11を引上げるのにつれて、炉本
体1内に供給するアルゴンガスの流量を順次増加させ
る。すなわち、例えば、第3図に示すように、固化率が
大きくなるにつれて(単結晶長が長くなるにつれて)、
アルゴンガスの流量を30/minから60/minまで増加さ
せる。これにより、得られた単結晶11の軸方向の格子間
酸素濃度量〔Oi〕は、第4図に示すように、比較のため
に例示した従来例に比べて、その減少割合が抑制され、
ほぼ均一な〔Oi〕の単結晶11が製造できることがわかっ
た。なお、この実施例における実施条件は、 石英ルツボ回転数 6rpm 単結晶回転数 15rpm 単結晶直径 156mm 炉内圧 〜10Torr リフレクタとシリコン融液面との間のギャップ 15mm 単結晶引上速度 〜1.0mm/min であった。
In this case, as the single crystal 11 is pulled up, the flow rate of the argon gas supplied into the furnace body 1 is sequentially increased. That is, for example, as shown in FIG. 3, as the solidification rate increases (as the single crystal length increases),
Increase the flow rate of argon gas from 30 / min to 60 / min. As a result, the interstitial oxygen concentration [Oi] in the axial direction of the obtained single crystal 11 is suppressed in the decreasing rate as compared with the conventional example illustrated for comparison, as shown in FIG.
It was found that a substantially uniform [Oi] single crystal 11 can be produced. The working conditions in this example were as follows: quartz crucible rotation speed 6 rpm single crystal rotation speed 15 rpm single crystal diameter 156 mm furnace pressure ~ 10 Torr gap between reflector and silicon melt surface 15 mm single crystal pulling speed ~ 1.0 mm / min Met.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明は、炉本体に供給する不
活性ガスを上記シリコン融液面に案内するガイド部材を
有し、該ガイド部材をシリコン融液から引上げられるシ
リコン単結晶の周辺に設置すると共に、このシリコン単
結晶の引上げ長さに対応して、前記不活性ガスの流量を
順次増加させるものであるから、シリコン単結晶中の酸
素濃度がその引上げにつれて減少するのを抑止できて、
所定範囲内の酸素濃度を有する均一なシリコン単結晶を
円滑に製造することができ、実質的な製造効率の向上を
図ることができるという優れた効果を有する。
As described above, the present invention has a guide member for guiding the inert gas supplied to the furnace body to the silicon melt surface, and the guide member is installed around the silicon single crystal pulled up from the silicon melt. At the same time, since the flow rate of the inert gas is sequentially increased in accordance with the pulling length of the silicon single crystal, it is possible to prevent the oxygen concentration in the silicon single crystal from decreasing with the pulling,
This has an excellent effect that a uniform silicon single crystal having an oxygen concentration within a predetermined range can be smoothly produced, and the production efficiency can be substantially improved.

【図面の簡単な説明】[Brief description of drawings]

第1図ないし第4図は本発明の一実施例を示すもので、
第1図はシリコン単結晶引上装置の一例を示す概略構成
図、第2図はリフレクタ部の平面図、第3図は炉本体内
に供給するアルゴンガス流量の特性図、第4図は得られ
たシリコン単結晶中の〔Oi〕の特性図である。 1……炉本体、2……石英ルツボ、4……シリコン融
液、11……単結晶。
1 to 4 show an embodiment of the present invention.
FIG. 1 is a schematic configuration diagram showing an example of a silicon single crystal pulling apparatus, FIG. 2 is a plan view of a reflector portion, FIG. 3 is a characteristic diagram of an argon gas flow rate supplied into a furnace body, and FIG. It is a characteristic view of [Oi] in the obtained silicon single crystal. 1 ... furnace body, 2 ... quartz crucible, 4 ... silicon melt, 11 ... single crystal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石神 俊一郎 東京都千代田区大手町1丁目5番2号 日本シリコン株式会社内 (56)参考文献 特開 昭64−61383(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shunichiro Ishigami 1-5-2 Otemachi, Chiyoda-ku, Tokyo Japan Silicon Co., Ltd. (56) References JP-A-64-61383 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】チョクラルスキー法を用いて石英ルツボ内
に収納されたシリコン融液からシリコン単結晶を引上げ
るに際して、シリコン単結晶中の軸方向の酸素濃度を制
御するシリコン単結晶中の酸素濃度制御方法において、
炉本体に供給する不活性ガスを上記シリコン融液面に案
内するガイド部材を有し、該ガイド部材をシリコン融液
から引上げられるシリコン単結晶の周辺に設置すると共
に、このシリコン単結晶の引上げ長さに対応して、前記
不活性ガスの流量を順次増加させることを特徴とするシ
リコン単結晶中の酸素濃度制御方法。
1. When pulling a silicon single crystal from a silicon melt stored in a quartz crucible using the Czochralski method, oxygen in the silicon single crystal is controlled to control the axial oxygen concentration in the silicon single crystal. In the concentration control method,
It has a guide member for guiding the inert gas supplied to the furnace body to the surface of the silicon melt, and the guide member is installed around the silicon single crystal pulled from the silicon melt, and the pulling length of this silicon single crystal Corresponding to the above, the method for controlling the oxygen concentration in the silicon single crystal is characterized in that the flow rate of the inert gas is sequentially increased.
JP62317747A 1987-12-16 1987-12-16 Method for controlling oxygen concentration in silicon single crystal Expired - Lifetime JP2520926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62317747A JP2520926B2 (en) 1987-12-16 1987-12-16 Method for controlling oxygen concentration in silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62317747A JP2520926B2 (en) 1987-12-16 1987-12-16 Method for controlling oxygen concentration in silicon single crystal

Publications (2)

Publication Number Publication Date
JPH01160893A JPH01160893A (en) 1989-06-23
JP2520926B2 true JP2520926B2 (en) 1996-07-31

Family

ID=18091583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62317747A Expired - Lifetime JP2520926B2 (en) 1987-12-16 1987-12-16 Method for controlling oxygen concentration in silicon single crystal

Country Status (1)

Country Link
JP (1) JP2520926B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3670504B2 (en) * 1999-01-14 2005-07-13 東芝セラミックス株式会社 Silicon single crystal manufacturing method
JP4729467B2 (en) * 2006-10-18 2011-07-20 パナソニック株式会社 Heat dissipation device
JP5289457B2 (en) 2008-10-14 2013-09-11 三菱電機株式会社 Fan fixing device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3027262A1 (en) * 1980-07-18 1982-02-11 Skf Kugellagerfabriken Gmbh, 8720 Schweinfurt DRAWING PROCESSED, THIN-WALLED BEARING BUSHING
EP0055619B1 (en) * 1980-12-29 1985-05-29 Monsanto Company Method for regulating concentration and distribution of oxygen in czochralski grown silicon
JPS6461383A (en) * 1987-08-31 1989-03-08 Nippon Steel Corp Method for pulling up single crystal rod and apparatus therefor

Also Published As

Publication number Publication date
JPH01160893A (en) 1989-06-23

Similar Documents

Publication Publication Date Title
JPH06345584A (en) Method and apparatus for pulling monocrystal
JP2580197B2 (en) Single crystal pulling device
JP2520925B2 (en) Method for controlling oxygen concentration in silicon single crystal
JP2520926B2 (en) Method for controlling oxygen concentration in silicon single crystal
JPH10167892A (en) Method for pulling silicon single crystal
JPH08295593A (en) Silicon single crystal ingot and its manufacture
JP5392040B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP4013324B2 (en) Single crystal growth method
JP3207573B2 (en) Method and apparatus for producing single crystal
JPH07267776A (en) Growth method of single crystal
JPH10167881A (en) Method for pulling semiconductor single crystal
JP2002321997A (en) Apparatuses for making silicon single crystal and method for making silicon single crystal using the same
GB2084046A (en) Method and apparatus for crystal growth
JP3635694B2 (en) Single crystal manufacturing method
JP2001010890A (en) Single crystal pulling device
JP2005145724A (en) Method for manufacturing silicon single crystal and silicon single crystal
JPH09278581A (en) Apparatus for producing single crystal and production of single crystal
JPS63319288A (en) Flanged quartz crucible
JPH02116695A (en) Production of single crystal
JP4341379B2 (en) Single crystal manufacturing method
JP3674997B2 (en) Method for producing silicon single crystal
JPH05221780A (en) Device for pulling up single crystal
JPH05221781A (en) Device for pulling up single crystal
JPS5950627B2 (en) Single crystal silicon pulling equipment
JP2001010889A (en) Single crystal pulling device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 12