JP2520163B2 - Vehicle pitch rigidity control device - Google Patents

Vehicle pitch rigidity control device

Info

Publication number
JP2520163B2
JP2520163B2 JP63331318A JP33131888A JP2520163B2 JP 2520163 B2 JP2520163 B2 JP 2520163B2 JP 63331318 A JP63331318 A JP 63331318A JP 33131888 A JP33131888 A JP 33131888A JP 2520163 B2 JP2520163 B2 JP 2520163B2
Authority
JP
Japan
Prior art keywords
vehicle
pitch rigidity
wheel
acceleration
wheels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63331318A
Other languages
Japanese (ja)
Other versions
JPH02179537A (en
Inventor
深 菅沢
正継 横手
隆志 今関
智弘 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP63331318A priority Critical patent/JP2520163B2/en
Publication of JPH02179537A publication Critical patent/JPH02179537A/en
Application granted granted Critical
Publication of JP2520163B2 publication Critical patent/JP2520163B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Vehicle Body Suspensions (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は車両のピッチ剛性制御装置に関するものであ
る。
TECHNICAL FIELD The present invention relates to a vehicle pitch rigidity control device.

(従来の技術) 車両のピッチ剛性制御装置としては従来、実開昭56−
111009号公報に記載の如く車両の制動時前2輪のショッ
クアブソーバ又は後2輪のショックアブソーバ或いは全
てのショックアブソーバの減衰力を高めて車両のピッチ
剛性を制御するようにしたものがある。
(Prior Art) Conventionally, as a pitch rigidity control device for a vehicle, the actual development of Sho 56-
As disclosed in Japanese Patent No. 111009, there is one in which the pitch rigidity of a vehicle is controlled by increasing the damping force of the front two-wheel shock absorbers, the rear two-wheel shock absorbers, or all shock absorbers when braking the vehicle.

(発明が解決しようとする課題) しかしかかる従来の技術では、車両の左側と右側に係
るピッチ剛性を同時に同じだけ変更するものに過ぎず、
これら左右両側のピッチ剛性が常時同じ剛性に保たれ
る。
(Problems to be Solved by the Invention) However, in such a conventional technique, the pitch rigidity relating to the left side and the right side of the vehicle is changed only by the same amount at the same time,
The pitch rigidity on the left and right sides is always kept the same.

従って、車両の加減速時における車輪間の荷重移動が
左側と右側で同じに保たれることとなり、例えば旋回走
行中における加減速時のステアリング特性の補正を行う
が如き制御を従来のピッチ剛性制御では実現し得なかっ
た。
Therefore, the load movement between the wheels during acceleration / deceleration of the vehicle is kept the same on the left side and the right side. For example, the conventional pitch rigidity control is performed to correct the steering characteristics during acceleration / deceleration during turning. It couldn't happen.

本発明は左右でピッチ剛性を変える制御が可能となる
ようにして上述の問題を解消することを目的とする。
It is an object of the present invention to solve the above-mentioned problem by enabling control to change the pitch rigidity on the left and right.

(課題を解決するための手段) この目的のため本発明ピッチ剛性制御装置は、車輪を
流体シリンダ型サスペンションユニットにより車体に懸
架した車両において、左側及び右側の少なくとも一側の
前後輪に係るサスペンションユニットの少なくとも1組
の収縮室及び伸長室間を相互に常時連通させ、これら相
互に連通させた収縮室及び伸長室の内圧を、車両の旋回
方向、加減速に応じ、車両の左右でピッチ剛性が異なっ
たものとなるよう変更可能に構成したものである。
(Means for Solving the Problem) For this purpose, the pitch rigidity control device of the present invention is a suspension unit for at least one of the front and rear wheels on the left and right sides in a vehicle in which wheels are suspended by a fluid cylinder type suspension unit. At least one set of the contraction chamber and the expansion chamber are always communicated with each other, and the internal pressures of the contraction chamber and the expansion chamber, which are communicated with each other, are adjusted to the pitch rigidity on the left and right sides of the vehicle according to the turning direction of the vehicle and the acceleration / deceleration. It is configured so that it can be changed to be different.

(作用) 各サスペンションユニットは対応する車輪を車体に懸
架し、車輪は夫々車体荷重を分担して支持する。そし
て、旋回中の横加速度や加減速にともなう前後加速度で
車輪の支持荷重は車輪間の荷重移動にともなって変化す
る。
(Operation) Each suspension unit suspends a corresponding wheel on the vehicle body, and each wheel supports the vehicle body load by sharing it. Then, the supporting load of the wheels changes with the load movement between the wheels due to the lateral acceleration during turning and the longitudinal acceleration due to acceleration / deceleration.

ここで、相互に連通された収縮室及び伸長室の内圧を
車両の旋回方向、加減速に応じ変更すると、車両の左側
と右側とでピッチ剛性を異ならせることができる。よっ
て旋回走行中の加減速時ピッチ剛性の大きな側の前後輪
間荷重移動を他側の前後輪間荷重移動より大きくした
り、小さくし、これにより当該加減速で生ずるステアリ
ング特性のずれを補正したり、このずれを大きくして操
縦の面白さを提供するが如き制御を実現することができ
る。
Here, if the internal pressures of the contraction chamber and the extension chamber that are in communication with each other are changed according to the turning direction and acceleration / deceleration of the vehicle, the pitch rigidity can be made different between the left side and the right side of the vehicle. Therefore, the load transfer between the front and rear wheels on the side with large pitch rigidity during acceleration / deceleration during turning is made larger or smaller than the load transfer between the front and rear wheels on the other side, thereby correcting the deviation of the steering characteristics caused by the acceleration / deceleration. Alternatively, it is possible to realize such control by increasing this deviation to provide the pleasure of maneuvering.

(実施例) 以下、本発明の実施例を図面に基き詳細に説明する。(Example) Hereinafter, the Example of this invention is described in detail based on drawing.

第1図は本発明ピッチ剛性制御装置の一実施例を示す
サスペンション装置の展開図で、2は車体、4,6は左右
前輪、8,10は左右後輪を夫々示す。各車輪は個々の油圧
式サスペンションユニット12,14,16,18により、車体2
に懸架する。これがため各サスペンションユニットはシ
リンダ本体12a,14a,16a,18aを車体2に取付け、ピスト
ンロッド12b,14b,16b,18bに対応車輪を回転自在に取付
ける。
FIG. 1 is a development view of a suspension device showing an embodiment of a pitch rigidity control device of the present invention, in which 2 is a vehicle body, 4 and 6 are front left and right wheels, and 8 and 10 are left and right rear wheels. Each wheel has its own hydraulic suspension unit 12,14,16,18
Hang on. Therefore, in each suspension unit, the cylinder bodies 12a, 14a, 16a, 18a are mounted on the vehicle body 2, and the corresponding wheels are rotatably mounted on the piston rods 12b, 14b, 16b, 18b.

そして、左側の前後輪サスペンションユニット12,16
間は、ユニット12の伸長を生じさせる伸長室12cとユニ
ット16の収縮を生じさせる収縮室16dとを配管20により
連通させ、ユニット12の収縮室12dとユニット16の伸長
室16cとを配管22により連通させて相関させる。又右側
の前後輪サスペンションユニット14,18間は、ユニット1
4の伸長室14cとユニット18の収縮室18dとを配管24によ
り連通させ、ユニット14の収縮室14dとユニット18の伸
長室18cとを配管26により連通させて相関させる。な
お、各配管20,22,24,26には夫々ガスばね28,30,32,34を
接続する。
And the front and rear wheel suspension units 12, 16 on the left side
Between the expansion chamber 12c that causes the expansion of the unit 12 and the contraction chamber 16d that causes the contraction of the unit 16 are connected by a pipe 20, and the contraction chamber 12d of the unit 12 and the expansion chamber 16c of the unit 16 are connected by a pipe 22. Correlate by communicating. Also, between the front and rear wheel suspension units 14 and 18 on the right side,
The extension chamber 14c of 4 and the contraction chamber 18d of the unit 18 are connected by the pipe 24, and the contraction chamber 14d of the unit 14 and the extension chamber 18c of the unit 18 are connected by the pipe 26 to correlate them. Gas pipes 28, 30, 32, 34 are connected to the pipes 20, 22, 24, 26, respectively.

本例の構成は前輪駆動車に有用であり、その作用は次
の通りである。
The configuration of this example is useful for a front-wheel drive vehicle, and its operation is as follows.

即ち、車両の旋回走行中旋回方向外側における前後輪
(以下外輪と言う)はバウンドして対応するサスペンシ
ョンユニットを収縮させ、旋回方向内側における前後輪
(以下内輪と言う)がリバウンドして対応するサスペン
ションユニットを伸長させる。収縮された外輪サスペン
ションユニットはピストンロッドの侵入体積分だけ内容
積を減じられるため、対応する2個のガスばねの内圧を
上昇させる結果、外輪サスペンションユニットの内圧上
昇を惹起し、旋回方向外側のピッチ剛性を大きくする。
一方、伸長された内輪サスペンションユニットはピスト
ンロッドの突出体積分だけ内容積を増大されるため、対
応する2個のガスばねの内圧を低下させる結果、内輪サ
スペンションユニットの内圧低下を惹起し、旋回方向内
側のピッチ剛性を小さくする。
That is, during turning of the vehicle, front and rear wheels (hereinafter referred to as outer wheels) on the outside in the turning direction bounce to contract the corresponding suspension units, and front and rear wheels (hereinafter referred to as inner wheels) on the inside in the turning direction rebound and respond to the corresponding suspension. Extend the unit. Since the contracted outer ring suspension unit can reduce the internal volume by the intrusion volume of the piston rod, the internal pressures of the corresponding two gas springs are increased, which causes the internal pressure of the outer ring suspension unit to rise, and the pitch outside the turning direction is increased. Increase rigidity.
On the other hand, the expanded inner ring suspension unit has its inner volume increased by the projecting volume of the piston rod, so that the inner pressures of the corresponding two gas springs are lowered, and as a result, the inner pressure of the inner ring suspension unit is lowered and the turning direction is increased. Reduce the inner pitch rigidity.

よって、旋回走行中、加減速にともなう前後荷重移動
が外輪間で大きく、内輪間で小さくなる。従って、加速
時は定常旋回時に比べて左右前輪間の荷重移動が小さ
く、左右後輪間の荷重移動が大きくなるため、前輪のト
ータルコーナリングパワーより後輪のトータルコーナリ
ングパワーの方がより小さく(特開昭62−275814号公報
参照)なる結果、オーバーステア方向のヨーモーメント
が生じ、減速時は逆に左右前輪間の荷重移動が大きくて
左右前後輪間の荷重移動が小さいため、後輪のトータル
コーナリングパワーより後輪のトータルコーナリングハ
ワーの方がより小さくなる結果、アンダーステア方向の
ヨーモーメントが生じる。
Therefore, during turning, the longitudinal load movement due to acceleration / deceleration is large between the outer wheels and small between the inner wheels. Therefore, during acceleration, the load transfer between the left and right front wheels is smaller and the load transfer between the left and right rear wheels is larger than during steady turn, so the total cornering power of the rear wheels is smaller than the total cornering power of the front wheels. As a result, a yaw moment in the oversteering direction is generated, and when decelerating, the load transfer between the left and right front wheels is large and the load transfer between the left and right front and rear wheels is small. As a result of the total cornering howre of the rear wheels becoming smaller than the cornering power, a yaw moment in the understeer direction occurs.

これらヨーモーメントは、前輪駆動車の加速時におけ
るアンダーステア傾向及び減速時におけるオーバーステ
ア傾向を打消す方向のものであり、前輪駆動車の特有な
ステアリング特性のくせをなくすために有用である。
These yaw moments tend to cancel out the understeer tendency at the time of acceleration of the front-wheel drive vehicle and the oversteer tendency at the time of deceleration, and are useful for eliminating the unique steering characteristic of the front-wheel drive vehicle.

なお、各サスペンションユニットは、右前輪6用のサ
スペンションユニット14について示す第2図の構成にす
ることができる。即ち、ピストンロッド14bから遠いピ
ストンの端面にピストンロッドより大径の容積変化ロッ
ド14eを突設し、これを大気室14f内に突出させる。この
場合サスペンションユニットのストロークにともなうロ
ッド14bの侵入体積よりロッド14eの突出体積の方が大き
いため、前記実施例と逆に収縮時サスペンションユニッ
ト内圧が低下し、伸長時サスペンションユニット内圧が
上昇する特性を持ったものとなり、加減速に対するアン
ダーステア、オーバーステアの傾向が第1図と逆傾向と
なる。
Each suspension unit may have the configuration shown in FIG. 2 showing the suspension unit 14 for the right front wheel 6. That is, a volume changing rod 14e having a larger diameter than that of the piston rod is provided on the end surface of the piston far from the piston rod 14b so as to project into the atmosphere chamber 14f. In this case, since the protruding volume of the rod 14e is larger than the penetration volume of the rod 14b accompanying the stroke of the suspension unit, the suspension unit internal pressure decreases when contracting and the suspension unit internal pressure increases when expanding, contrary to the above embodiment. The tendency of understeer and oversteer with respect to acceleration / deceleration is opposite to that of FIG.

第3図は本発明の他の例を示すサスペンション装置の
展開図で、本例ではアクティブにピッチ剛性を左右個別
制御し得るようにする。これがため本例では、油圧式荷
重移動制御シリンダ36,38を設け、これらシリンダは夫
々室36a〜36d及び38a〜38dを有するダブルピストン型シ
リンダとし、両ピストンを共通なピストンロッド36e,38
eにより一体的にストローク(SW,SRで示す)させ得る
ものとする。
FIG. 3 is a development view of a suspension device showing another example of the present invention. In this example, the left and right pitch rigidity can be actively controlled individually. Therefore, in this example, hydraulic load transfer control cylinders 36 and 38 are provided, and these cylinders are double piston type cylinders having chambers 36a to 36d and 38a to 38d, respectively, and both pistons have a common piston rod 36e, 38.
and as it can be integrally stroke (S W, indicated by S R) by e.

室36a,38aを相互に接続し、室36b,38c間及び室36c,38
b間を夫々接続し、室36d,38dを相互に接続する。そし
て、室36aは配管24に接続し、室36bは配管26に接続し、
室38bは配管22に接続し、室38dは配管20に接続する。
The chambers 36a and 38a are connected to each other, and between the chambers 36b and 38c and between the chambers 36c and 38a.
Each of b is connected to each other, and the chambers 36d and 38d are connected to each other. The chamber 36a is connected to the pipe 24, the chamber 36b is connected to the pipe 26,
The chamber 38b is connected to the pipe 22, and the chamber 38d is connected to the pipe 20.

かかる構成においては、ピストンロッド36eを図中上
昇させる時室36a,36cの容積減少及び室36b,36dの容積増
大により右前輪の支持荷重が増大すると同時に右後輪の
支持荷重が低下する他、左前輪の支持荷重が減少すると
同時に左後輪の支持荷重が増大する。又ピストンロッド
36eを逆に図中下降させる時室36a,36cの容積増大及び室
36b,36dの容積減少により各車輪の支持荷重を逆方向に
変化せることがでる。
In such a configuration, when the piston rod 36e is raised in the drawing, the volume of the chambers 36a, 36c decreases and the volume of the chambers 36b, 36d increases, thereby increasing the supporting load of the right front wheel and simultaneously decreasing the supporting load of the right rear wheel. The supporting load of the left front wheel decreases and at the same time the supporting load of the left rear wheel increases. Also piston rod
On the contrary, when 36e is lowered in the figure, the volume of chambers 36a and 36c is increased and
By reducing the volume of 36b and 36d, the supporting load of each wheel can be changed in the opposite direction.

又、ピストンロッド38eを図中上昇させる場合、室38
a,38cの容積減少及び室38b,38dの容積増大により右側前
後輪のガスばね32,34が圧力上昇され、左側前後輪のガ
スばね28,30が圧力低下されるため、全体のピッチ剛性
に対する右側前後輪のピッチ剛性配分が高まり、全体の
ピッチ剛性に対する左側前後輪のピッチ剛性配分が低下
する。ピストンロッド38eを逆に図中下降させる場合、
室38a,38cの容積増大及び室38b,38dの容積減少により右
側前後輪のピッチ剛性配分が低下し、左側前後輪のピッ
チ剛性配分が高まる。
When the piston rod 38e is raised in the figure, the chamber 38
Since the gas springs 32, 34 of the right and left front wheels are increased in pressure and the gas springs 28, 30 of the left and right front wheels are decreased in pressure due to a decrease in the volume of a, 38c and an increase in the volume of the chambers 38b, 38d, the pitch stiffness of the entire pitch is reduced. The pitch rigidity distribution of the right front wheel is increased, and the pitch rigidity distribution of the left front wheel is reduced with respect to the overall pitch rigidity. Conversely, when lowering the piston rod 38e in the figure,
The increase in the volume of the chambers 38a, 38c and the decrease in the volume of the chambers 38b, 38d reduce the pitch rigidity distribution of the right front wheel and the left front wheel.

次にかかる構成の装置を用いた制御例を第4図乃至第
7図に基き説明する。
Next, a control example using the apparatus having such a configuration will be described with reference to FIGS. 4 to 7.

第4図の例はハンドル切り角θに応じたストロークSR
の制御により左右ピッチ剛性の配分を決定し、旋回走行
中加減速にともなうステアリング特性のずれを補正する
ようにしたものである。これがため先ずハンドル角θ及
び車体の前後加速度GXを読込み、次に前後加速度GXから
定速走行及び加速走行か、減速走行かをチェックする。
The example in Fig. 4 shows the stroke S R according to the steering angle θ.
The left-right pitch rigidity distribution is determined by the control of 1), and the deviation of the steering characteristic due to acceleration / deceleration during turning is corrected. Therefore, the steering wheel angle θ and the longitudinal acceleration G X of the vehicle body are first read, and then the longitudinal acceleration G X is used to check whether the vehicle is traveling at a constant speed, acceleration, or deceleration.

減速中ならハンドル切り角θから第5図の制御関数f3
(θ)に基きストロークSRを演算し、このストロークだ
けピストンロッド38eを第3図の中立位置(SR=0)か
ら図中上方又は下方へ移動させる。ところで前述した如
く、ピストンロッド38eを図中上昇させる場合、右側の
ピッチ剛性配分が高まり、図中下降させる場合、左側の
ピッチ剛性配分が高まることから、右操舵中ロッド38e
を上昇させ左操舵中ロッド38eを下降させる第5図の第
1象限及び第3象限においては、内側ピッチ剛性が外側
ピッチ剛性より大きくなり、加速時アンダーステア(U
S)傾向のヨーモーメントを、又減速時オーバーステア
(OS)傾向のヨーモーメントを夫々生じさせ、左操舵中
ロッド38eを上昇させ、右操舵中ロッド38eを下降させる
第5図の第2象限及び第4象限においては外側ピッチ剛
性が内側ピッチ剛性より大きくなり加速時(OS)傾向の
ヨーモーメントを、又減速時(US)傾向のヨーモーメン
トを夫々生じさせる。従って、当該減速中第5図の制御
関数f3(θ)に基きストロークSRを制御することは、US
傾向のヨーモーメントを生じさせることとなり、減速時
駆動型式(前輪駆動、後輪駆動、4輪駆動)に関係なく
タックイン現象により生ずるオーバーステア傾向を打消
してステアリング特性をニュートラル特性に保つことが
できる。
If the vehicle is decelerating, the control function f 3
The stroke S R is calculated based on (θ), and the piston rod 38e is moved upward or downward in the figure from the neutral position (S R = 0) in FIG. 3 by this stroke. By the way, as described above, when the piston rod 38e is raised in the figure, the pitch rigidity distribution on the right side is increased, and when it is lowered in the figure, the pitch rigidity distribution on the left side is increased.
In the first quadrant and the third quadrant in FIG. 5 in which the rod 38e is raised while the rod is being steered to the left, the inner pitch rigidity becomes larger than the outer pitch rigidity and the understeer during acceleration (U
S) tendency yaw moment and deceleration oversteer (OS) tendency yaw moment are respectively generated to raise the rod 38e during left steering and lower the rod 38e during right steering. In the fourth quadrant, the outside pitch rigidity becomes larger than the inside pitch rigidity, and a yaw moment tends to be accelerated (OS) and a yaw moment tended to be decelerated (US). Therefore, controlling the stroke S R based on the control function f 3 (θ) in FIG.
The yaw moment tends to be generated, and regardless of the deceleration driving type (front wheel drive, rear wheel drive, four-wheel drive), the oversteer tendency caused by the tack-in phenomenon can be canceled and the steering characteristic can be maintained in the neutral characteristic. .

第4図でGX≧0の定速又は加速走行中と判別する場
合、駆動型式に応じ後輪駆動車なら第5図の伝達関数f1
(θ)に基き、又前輪駆動車又は4輪駆動車なら第5図
の伝達関数f2(θ)に基きハンドル切り角θに対応する
ストロークSRを演算し、このストロークSRを実行する。
ところで制御関数f1(θ)は当該加速時US傾向のヨーモ
ーメントを生ずるものであり、後輪駆動車の加速時にお
けるオーバーステア傾向を打消してニュートラルステア
特性を達成することができ、制御関数f2(θ)は当該加
速時OS傾向のヨーモーメントを生ずるものであり、前輪
駆動車又は4輪駆動車の加速時におけるアンダーステア
傾向を打消してニュートラルステア特性を達成すること
ができる。
When it is determined in FIG. 4 that G X ≧ 0 is running at constant speed or during acceleration, if the vehicle is a rear-wheel drive vehicle, the transfer function f 1 in FIG.
Based on (θ), and in the case of a front-wheel drive vehicle or a four-wheel drive vehicle, the stroke S R corresponding to the steering wheel turning angle θ is calculated based on the transfer function f 2 (θ) of FIG. 5, and this stroke S R is executed. .
By the way, the control function f 1 (θ) produces the yaw moment of the US tendency at the time of the acceleration, and it is possible to cancel the oversteer tendency at the time of acceleration of the rear-wheel drive vehicle and achieve the neutral steer characteristic. f 2 (θ) produces a yaw moment that tends to OS during acceleration, and it is possible to cancel the understeer tendency during acceleration of a front-wheel drive vehicle or four-wheel drive vehicle to achieve neutral steering characteristics.

第6図は旋回走行中アクセルペダルの踏込みに応じ旋
回方向のヨーモーメントを生じさせて旋回性能を向上さ
せるようにしたものである。先ず、ハンドル切り角θ及
びアクセル踏込量αを読込み、次にハンドル切り角θの
正負で右切り(右旋回)が左切り(左旋回)かを判別す
る。右旋回では第7図の制御関数f1(α)に基きアクセ
ル踏込量αに応じたストロークSWを演算し、左旋回では
第7図の制御関数f2(α)に基きアクセル踏込量αに応
じたストロークSWを演算し、これら演算結果だけピスト
ンロッド36eを第3図の中立位置(SW=0)からストロ
ークさせる。
FIG. 6 shows a structure in which a yaw moment in the turning direction is generated according to the depression of the accelerator pedal during turning and the turning performance is improved. First, the steering wheel turning angle θ and the accelerator depression amount α are read, and then it is determined whether the right turning (right turning) is left turning (left turning) based on whether the steering wheel turning angle θ is positive or negative. In right turn calculates the stroke S W corresponding to the accelerator depression amount alpha based on the control function f 1 of FIG. 7 (alpha), the accelerator depression amount based on the control function f 2 (α) of FIG. 7 is a left turn calculates the stroke S W corresponding to alpha, to the stroke of the piston rod 36e only those calculation results from the neutral position of FIG. 3 (S W = 0).

ところで前述した如く、ピストンロッド36eを図中上
昇させる場合、右前輪及び左後輪の支持荷重が増大して
左前輪及び右後輪の支持荷重が減少し、ピストンロッド
36eを図中下降させる場合、右前輪及び左後輪の支持荷
重が減少して左前輪及び右前輪の支持荷重が増大するこ
とから、上記した通り加速右旋回中f1(α)の如くに、
又加速左旋回中f2(α)の如くにピストンロッド36eを
ストローク(SW)させるということは、いずれの旋回中
も外側ピッチ剛性を内側ピッチ剛性より大きくすること
に等価であり、オーバーステア(OS)傾向のヨーモーメ
ントを生じさせることができる。よって、アクセルペダ
ルの踏込み加減により旋回中の回頭性を自由に制御する
ことが可能となる。
By the way, as described above, when the piston rod 36e is raised in the figure, the supporting load on the right front wheel and the left rear wheel increases and the supporting load on the left front wheel and the right rear wheel decreases, and the piston rod 36e
When lowering 36e in the figure, the supporting loads on the right front wheel and the left rear wheel decrease and the supporting loads on the left front wheel and the right front wheel increase, so as described above, during acceleration right turn f 1 (α) To
Stroke (S W ) of the piston rod 36e as in f 2 (α) during acceleration left turn is equivalent to making the outer pitch rigidity larger than the inner pitch rigidity during any turning. (OS) can produce a yaw moment. Therefore, it is possible to freely control the turning performance during turning by adjusting the depression of the accelerator pedal.

なお本制御例では、一方の対向線方向に対向する車輪
同士が支持荷重を増大され、他方の対向線方向に対向す
る車輪同士が支持荷重を減少され、各車輪の荷重変化量
が同じため、ピッチ剛性制御にとおなう車体姿勢変化を
生ずることがなく、この姿勢変化で制御がずれるのを回
避し得る。
Note that in the present control example, the wheels that face each other in the opposite line direction are increased in support load, the wheels that are opposite in the other opposite line direction are reduced in support load, and the load change amount of each wheel is the same. There is no change in the vehicle body attitude that accompanies the pitch rigidity control, and it is possible to avoid a shift in control due to this attitude change.

(発明の効果) かくして本発明ピッチ剛性制御装置は上述の如く、左
側及び右側の少なくとも一側の前後輪に係るサスペンシ
ョンユニットの少なくとも1組みの収縮室及び伸長室間
を相互に常時連通させ、これら相互に連通させた収縮室
及び伸長室の内圧を、車両の旋回方向、加減速に応じ、
車両の左右でピッチ剛性が異なったものとなるよう変更
可能に構成したから、この内圧変更により左右のピッチ
剛性を異なるよう制御して、旋回走行中の加減速にとも
なうステアリング特性のずれを補正したり、ステアリン
グ特性を意図的にずらせて操縦の面白さを提供するが如
き制御を実現することができる。
(Effect of the invention) Thus, as described above, the pitch rigidity control device of the present invention allows at least one set of contraction chambers and extension chambers of the suspension unit relating to at least one front and rear wheel on the left side and the right side to communicate with each other at all times. Depending on the turning direction of the vehicle and the acceleration and deceleration,
The pitch rigidity is changed so that the left and right sides of the vehicle are different.By changing the internal pressure, the left and right pitch rigidity is controlled to correct the deviation of the steering characteristics due to acceleration / deceleration during turning. Alternatively, such control can be realized by intentionally shifting the steering characteristics to provide the pleasure of driving.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明ピッチ剛性制御装置の一実施例を示すサ
スペンション装置の展開略線図、 第2図は同例におけるサスペンションユニットの変形例
を示す断面図、 第3図は本発明の他の例を示すサスペンション装置の展
開略線図、 第4図は同例装置を用いたピッチ剛性制御例のフローチ
ャート、 第5図は同制御例で用いる制御関数の線図、 第6図はピッチ剛性制御の他の例を示すフローチャー
ト、 第7図は同制御例で用いる制御関数の線図である。 2…車体、4,6…前輪 8,10…後輪 12,14,16,18…サスペンションユニット 12c,14c,16c,18c…伸長室 12d,14d,16d,18d…収縮室 28,30,32,34…ガスばね 36,38…荷重移動制御シリンダ
FIG. 1 is a developed schematic diagram of a suspension device showing an embodiment of the pitch rigidity control device of the present invention, FIG. 2 is a sectional view showing a modification of the suspension unit in the same example, and FIG. 3 is another view of the present invention. FIG. 4 is a developed schematic diagram of a suspension device showing an example, FIG. 4 is a flow chart of an example of pitch rigidity control using the example device, FIG. 5 is a diagram of a control function used in the control example, and FIG. 6 is pitch rigidity control. FIG. 7 is a flowchart showing another example of the above, and FIG. 7 is a diagram of a control function used in the control example. 2 ... Body, 4,6 ... Front wheel 8,10 ... Rear wheel 12,14,16,18 ... Suspension unit 12c, 14c, 16c, 18c ... Extension chamber 12d, 14d, 16d, 18d ... Shrink chamber 28,30,32 , 34 ... Gas spring 36,38 ... Load transfer control cylinder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山村 智弘 神奈川県横浜市神奈川区宝町2番地 日 産自動車株式会社内 (56)参考文献 特開 昭61−150813(JP,A) 実開 昭63−8104(JP,U) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Tomohiro Yamamura 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd. 8104 (JP, U)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】車輪を流体シリンダ型サスペンションユニ
ットにより車体に懸架した車両において、 左側及び右側の少なくとも一側の前後輪に係るサスペン
ションユニットの少なくとも1組の収縮室及び伸長室間
を相互に常時連通させ、 これら相互に連通させた収縮室及び伸長室の内圧を、車
両の旋回方向、加減速に応じ、車両の左右でピッチ剛性
が異なったものとなるよう変更可能に構成したことを特
徴とする車両のピッチ剛性制御装置。
1. In a vehicle in which wheels are suspended from a vehicle body by a fluid cylinder type suspension unit, at least one set of contraction chambers and extension chambers of at least one front and rear wheel suspension unit on the left side and the right side is always in communication with each other. It is characterized in that the internal pressures of the contraction chamber and the extension chamber, which are in communication with each other, can be changed so that the pitch rigidity becomes different between the left and right sides of the vehicle depending on the turning direction of the vehicle and acceleration / deceleration. Vehicle pitch rigidity control device.
JP63331318A 1988-12-29 1988-12-29 Vehicle pitch rigidity control device Expired - Lifetime JP2520163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63331318A JP2520163B2 (en) 1988-12-29 1988-12-29 Vehicle pitch rigidity control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63331318A JP2520163B2 (en) 1988-12-29 1988-12-29 Vehicle pitch rigidity control device

Publications (2)

Publication Number Publication Date
JPH02179537A JPH02179537A (en) 1990-07-12
JP2520163B2 true JP2520163B2 (en) 1996-07-31

Family

ID=18242346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63331318A Expired - Lifetime JP2520163B2 (en) 1988-12-29 1988-12-29 Vehicle pitch rigidity control device

Country Status (1)

Country Link
JP (1) JP2520163B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5309585B2 (en) * 2008-02-05 2013-10-09 トヨタ自動車株式会社 Vehicle control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06454B2 (en) * 1984-12-26 1994-01-05 株式会社小松製作所 Variable shock absorber device for vehicle
JPS638104U (en) * 1986-07-04 1988-01-20

Also Published As

Publication number Publication date
JPH02179537A (en) 1990-07-12

Similar Documents

Publication Publication Date Title
US5066041A (en) Control system for stabilizing the rolling of a vehicle
JP2611449B2 (en) Active suspension
EP0980772B1 (en) Vehicle suspension system
JPH0741783B2 (en) Suspension controller
JPH011613A (en) Active suspension for vehicles
JPH0563325B2 (en)
JPH0717135B2 (en) Suspension for vehicles
IT202000002746A1 (en) CONTROL METHOD WHILE TRAVELING A ROAD VEHICLE BEND WITH VARIABLE STIFFNESS AND STEERING REAR WHEELS
JPH0771888B2 (en) Attitude control device for vehicle
GB2243349A (en) Hydraulic stabilizer system with means for varying roll rigidity
JPS6029317A (en) Cornering limit restraining apparatus for vehicle
JP2520163B2 (en) Vehicle pitch rigidity control device
JP3087410B2 (en) Vehicle damping device
JPH0717134B2 (en) Suspension control device in vehicle
JPH04100724A (en) Active stabilizer for vehicle
JPS63188512A (en) Vehicle attitude control device
JP2510279B2 (en) Rear wheel steering angle control method
JP2718251B2 (en) Vehicle braking force control device
JPH0784125B2 (en) Stiffness variable stabilizer
JP2946758B2 (en) Active suspension
JPH052552B2 (en)
JP2506423B2 (en) Active suspension device
JPH0631005B2 (en) Rear axle steering system for rear two-axle vehicles
JPH02182529A (en) Suspension control device
JPH0563323B2 (en)