JP2519183B2 - Through-hole three-dimensional position measuring device - Google Patents

Through-hole three-dimensional position measuring device

Info

Publication number
JP2519183B2
JP2519183B2 JP62115651A JP11565187A JP2519183B2 JP 2519183 B2 JP2519183 B2 JP 2519183B2 JP 62115651 A JP62115651 A JP 62115651A JP 11565187 A JP11565187 A JP 11565187A JP 2519183 B2 JP2519183 B2 JP 2519183B2
Authority
JP
Japan
Prior art keywords
hole
light receiving
receiving means
measured
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62115651A
Other languages
Japanese (ja)
Other versions
JPS63279105A (en
Inventor
泰俊 近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Motor Co Ltd
Original Assignee
Central Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Motor Co Ltd filed Critical Central Motor Co Ltd
Priority to JP62115651A priority Critical patent/JP2519183B2/en
Publication of JPS63279105A publication Critical patent/JPS63279105A/en
Application granted granted Critical
Publication of JP2519183B2 publication Critical patent/JP2519183B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、空間上に位置する測定箇所、例えば被測
定物である鋼板に穿設する測定箇所である貫通孔の測定
位置からの三次元位置を測定する測定装置に係る。更に
詳細には、組立ライン中に測定位置を予め設定するとと
もに、予め測定位置と測定装置との三次元的位置関係を
求め、組立ライン等を移動中の鋼板、自動車ボデー等被
測定物に穿設した孔等測定箇所の測定装置に対する三次
元的位置を被測定物から離れた場所から測定することで
被測定物における測定箇所の適否の判断をする三次元位
置装置に係る。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a measurement point located in a space, for example, a tertiary position from a measurement point of a through hole which is a measurement point to be punched in a steel plate which is an object to be measured. This relates to a measuring device that measures the original position. More specifically, the measurement position is set in advance in the assembly line, the three-dimensional positional relationship between the measurement position and the measuring device is obtained in advance, and the assembly line or the like is drilled on a moving steel plate, an automobile body, or another object to be measured. The present invention relates to a three-dimensional position device that determines the suitability of a measurement point on an object to be measured by measuring the three-dimensional position of a measurement point such as an established hole with respect to the measuring device from a location remote from the object to be measured.

(ロ)従来の技術 従来、鋼板等の被測定物に設けた被測定箇所の適否を
判断するための三次元位置を測定する三次元位置装置と
しては、第7図に図示する測定装置が知られている。
(B) Conventional Technology Conventionally, a measuring device shown in FIG. 7 is known as a three-dimensional position device for measuring a three-dimensional position for determining suitability of a measured portion provided on a measured object such as a steel plate. Has been.

この従来例では、鋼板(101)に穿設された貫通孔(1
02)の、三次元位置をX軸方向を計測するX軸ピン(10
3)a、Y軸方向を計測するY軸ピン(103)b、Z軸方
向を計測するZ軸ピン(103)cと、貫通孔(102)に挿
入する可動ピン(104)とからなる。
In this conventional example, a through hole (1
02), X-axis pin (10
3) a, a Y-axis pin (103) b for measuring the Y-axis direction, a Z-axis pin (103) c for measuring the Z-axis direction, and a movable pin (104) inserted into the through hole (102).

即ち、予め可動ピン(104)を、所望の基準貫通孔位
置に設置し、X軸ピン(103)a、Y軸ピン(103)b、
Z軸ピン(103)cのピン先端を、可動ピン(104)表面
に接触させる。この状態を各軸ピンにおける0位置とす
る。ついで可動ピン(104)を貫通孔(102)に挿入す
る。すると、貫通孔(102)の設置位置によって可動ピ
ン(104)は移動されるが、各軸ピンからなる接触セン
サー(105)a、(105)b、(105)cでプラス方向ま
たはマイナス方向の移動方向、および移動量とて感知さ
れ、感知された情報を信号として伝達する。移動方向、
移動量の信号を受けた各判断部(106)a、(106)b、
(106)cでは、各軸方向に関する所望の関係基準貫通
孔位置の情報信号を伝達する基準信号発生部(107)
a、(107)b、(107)cからの基準信号をも受ける。
That is, the movable pin (104) is previously set at a desired reference through hole position, and the X-axis pin (103) a, the Y-axis pin (103) b,
The tip of the Z-axis pin (103) c is brought into contact with the surface of the movable pin (104). This state is defined as the 0 position on each axis pin. Then, the movable pin (104) is inserted into the through hole (102). Then, although the movable pin (104) is moved depending on the installation position of the through hole (102), the contact sensor (105) a, (105) b, (105) c composed of the respective axial pins moves in the positive or negative direction. The information sensed as a moving direction and a moving amount is transmitted as a signal. Direction of movement,
Each of the determination units (106) a, (106) b, which have received the movement amount signal,
In (106) c, a reference signal generating section (107) for transmitting an information signal of a desired relational reference through hole position in each axial direction.
It also receives the reference signals from a, (107) b, and (107) c.

判断部(106)a、(106)b、(106)cでは各々両
信号を比較し移動量が基準貫通孔の誤差の範囲内か否か
を判断し、表示部(108)にその適否を表示する。この
とき、測定装置と被測定装置の測定位置との三次元的関
係は予め求められているため、表示される適否は、被測
定物に形成する貫通孔(102)の位置の適否を表示する
こととなる。
Judgment units (106) a, (106) b, (106) c respectively compare the two signals to judge whether or not the movement amount is within the error range of the reference through hole, and the display unit (108) indicates whether or not it is appropriate. indicate. At this time, since the three-dimensional relationship between the measurement device and the measurement position of the device under measurement is obtained in advance, the displayed propriety indicates the suitability of the position of the through hole (102) formed in the measured object. It will be.

(ハ)発明が解決しようとする問題点 しかし従来の測定装置では、4本のピンにより接触式
であったため孔形状、ピン摩耗等の現象により精度の低
下を生ずる問題点を有した。更に、接触式のため、ライ
ン上を移動する被測定物の計測にあたっては、被測定物
の移動を停止させ接触するため停止時間が長くなる問題
点を有した。
(C) Problems to be Solved by the Invention However, the conventional measuring device has a problem in that the accuracy is lowered due to phenomena such as hole shape and pin wear because it is a contact type with four pins. Further, since it is a contact type, when measuring an object to be measured moving on a line, there is a problem that the stop time becomes long because the object to be measured is stopped from moving to make contact.

(ニ)問題点を解決するための手段 この発明は、被測定物表面に投光する照明手段と、貫
通孔を形成された被測定物を測定位置に設置したとき照
明手段に対し被測定物を挟んだ反対側に位置するととも
に被測定物表面で照明手段からの照明を反射する反射光
に比し相対的に暗い背景と、貫通孔面に向けて設置され
被加工物表面が反射する反射光を感知し感知する明暗に
応じて信号を発生する受光手段と、受光手段に取り付け
られ被測定物表面に焦点をあわせられた被写界深度が浅
い焦点調整手段と、受光手段とは貫通孔に対し角度をも
たせて設置され被加工物表面で反射する反射光を感知す
るとともに感知する明暗に応じて信号を発生する補助受
光手段と、補助受光手段に取り付けられ被測定物表面に
焦点をあわせられた被写界深度が浅い焦点調整手段と、
反射光を発生せず貫通孔を通した背景の暗部として受光
手段で感知される貫通孔像とあらかじめ測定された所望
の被測定物の受光手段で感知される所望の基準貫通孔像
を比較する判別手段と、反射光を発生せず貫通孔を通し
た背景の暗部として補助受光手段で感知される貫通孔像
とあらかじめ測定された所望の被測定物の補助受光手段
で感知される所望の基準貫通孔像を比較する補助判別手
段とからなることを特徴とする貫通孔の三次元位置測定
装置、を提供することで、ピン使用の測定装置の要する
被測定物停止時間を短くし、また、測定精度向上を図
る。
(D) Means for Solving Problems The present invention relates to an illumination means for projecting light onto the surface of an object to be measured, and an object to be measured with respect to the illumination means when the object to be measured having a through hole is installed at a measurement position. Reflection that is located on the opposite side across the background and is relatively dark compared to the reflected light that reflects the illumination from the illumination means on the surface of the object to be measured and the surface of the object to be processed that is installed toward the through hole surface The light receiving means for detecting light and generating a signal according to the light and darkness sensed, the focus adjusting means attached to the light receiving means for focusing on the surface of the object to be measured and having a shallow depth of field, and the light receiving means are through holes. It is installed at an angle with respect to the auxiliary light receiving means that senses the reflected light reflected by the surface of the workpiece and generates a signal according to the detected light and dark, and it is attached to the auxiliary light receiving means and focuses on the surface of the measured object With a shallow depth of field Point adjustment means,
The through hole image sensed by the light receiving means as a background dark portion passing through the through hole without generating reflected light is compared with the desired reference through hole image sensed by the light receiving means of the desired object to be measured which has been measured in advance. An image of the through hole which is sensed by the auxiliary light receiving means as a dark part of the background which does not generate reflected light and which passes through the through hole and a desired reference which is previously measured by the auxiliary light receiving means of the desired object to be measured. By providing a three-dimensional position measuring device for a through-hole, which comprises an auxiliary determining means for comparing through-hole images, shortens the measured object stop time required for the pin-using measuring device, and also Improve measurement accuracy.

(ホ)作用 被測定物表面に、照明手段から投光する。すると、被
測定物表面における貫通孔形成部分以外では反射光を生
じ、貫通孔部分は背景の暗部として表され、受光手段お
よび補助受光手段では各々貫通孔と貫通孔周囲は明暗差
として感知される。
(E) Action The illumination means projects light onto the surface of the object to be measured. Then, reflected light is generated in a portion other than the portion where the through hole is formed on the surface of the object to be measured, the through hole portion is represented as a dark portion of the background, and the light receiving means and the auxiliary light receiving means each sense a difference in brightness between the through hole and the periphery of the through hole. .

受光手段および補助受光手段で各々感知された明暗差
は信号として判別手段および補助判別手段に各々伝送さ
れるが、受光手段および補助受光手段で各々感知された
暗部は各受光部で感知された貫通孔像を表わすことにな
り、判別手段および補助判別手段では、貫通孔像を表わ
す信号を受けることとなる。判別手段および補助判別手
段では、あらかじめ測定した所望の被測定物の基準貫通
孔からの情報を受光手段および補助受光手段で各々感知
した基準貫通孔像情報を記憶する基準信号発生手段から
の基準信号も受領する。実際に計測されている貫通孔像
を表わす信号と、基準貫通孔情報を表わす基準信号とを
判断手段および補助判断手段で各々比較する。
The brightness difference detected by the light receiving means and the auxiliary light receiving means is transmitted as a signal to the discriminating means and the auxiliary discriminating means, respectively, and the dark portions sensed by the light receiving means and the auxiliary light receiving means are penetrated by the light receiving portions. Since it represents a hole image, the discrimination means and the auxiliary discrimination means receive a signal representing the through-hole image. In the discriminating means and the auxiliary discriminating means, the reference signal from the reference signal generating means for storing the previously measured information from the reference through hole of the desired object to be measured by the light receiving means and the auxiliary light receiving means respectively is stored. Also receive. The judgment means and the auxiliary judgment means respectively compare the signal representing the actually measured through-hole image with the reference signal representing the reference through-hole information.

受光手段と補助受光手段とは、貫通孔に対して角度を
もって設置されている。そのため、各受光手段で感知さ
れる貫通孔の暗部即ち貫通孔像は、各受光手段と貫通孔
間のなす角度分だけ貫通孔像の重心位置あるいは面積等
の入力される情報が異なったものとして感知される。
The light receiving means and the auxiliary light receiving means are installed at an angle to the through hole. Therefore, it is assumed that the dark portion of the through hole, that is, the through hole image, sensed by each light receiving means has different input information such as the position of the center of gravity or the area of the through hole image by the angle formed between each light receiving means and the through hole. Is perceived.

受光手段と補助受光手段との距離が一定していれば、
受光手段、補助受光手段、貫通孔、の位置関係に変化が
無ければ受光手段、補助受光手段で受像される貫通孔像
は、一定である。しかし受光手段、補助受光手段と貫通
孔の位置が変化すると、受光手段と貫通孔と補助受光手
段のなす角度は変化する。この角度が変化すれば、各受
光手段で感知される貫通孔像の重心位置の違い、あるい
は面積にも変化を生ずる。そこで、受光手段および補助
受光手段で暗部として感知される各貫通孔像を受け、所
望の基準貫通孔を形成した場合の両受光手段で感知され
る貫通孔像の面積、あるいは重心位置とを比較する。
If the distance between the light receiving means and the auxiliary light receiving means is constant,
If there is no change in the positional relationship among the light receiving means, the auxiliary light receiving means, and the through hole, the through hole image received by the light receiving means and the auxiliary light receiving means is constant. However, when the positions of the light receiving means, the auxiliary light receiving means and the through hole change, the angle formed by the light receiving means, the through hole and the auxiliary light receiving means changes. If this angle changes, the center of gravity position of the through-hole image detected by each light receiving means also changes, or the area also changes. Therefore, the area of the through-hole image sensed by both light-receiving means when the desired reference through-hole is formed by receiving each through-hole image sensed by the light-receiving means and the auxiliary light-receiving means and the position of the center of gravity are compared. To do.

従って、測定する貫通孔の受光手段、測定装置との三
次元位置と、所望の基準貫通孔の三次元位置とを比較す
ることになる。
Therefore, the three-dimensional position of the through hole to be measured with respect to the light receiving means and the measuring device is compared with the desired three-dimensional position of the reference through hole.

被写界深度の浅い焦点調整手段を受光手段および補助
受光手段に設置されることで、受光手段は被写界深度が
浅くなる焦点の合っていない部分では受光量は極端に低
下する。そのため被測定物の貫通孔周囲と貫通孔を通し
た背景との明度差は強調されて受光手段および補助受光
手段で感知され、貫通孔の輪郭はくっきりした形で即
ち、貫通孔の画像の輪郭が明瞭な形で受光される。
Since the focus adjusting means having a shallow depth of field is installed in the light receiving means and the auxiliary light receiving means, the light receiving quantity of the light receiving means is extremely reduced in an unfocused portion where the depth of field becomes shallow. Therefore, the difference in brightness between the periphery of the through hole of the object to be measured and the background through the through hole is emphasized and detected by the light receiving means and the auxiliary light receiving means, and the contour of the through hole is in a clear shape, that is, the contour of the image of the through hole. Is received in a clear form.

(ヘ)実施例 この発明の実施例を表わす第1図、同使用状態を表わ
す第2図に従って説明する。(11)は被測定物である、
被測定物表面(11)は、この実施例では自動車組立ライ
ン(12)上の未塗装の鋼板を加工してなる自動車モノコ
ックボデーからなる。
(F) Embodiment An explanation will be given according to FIG. 1 showing an embodiment of the present invention and FIG. 2 showing the same usage state. (11) is the DUT,
The surface (11) of the object to be measured is an automobile monocoque body formed by processing an unpainted steel plate on the automobile assembly line (12) in this embodiment.

被測定物(11)には、貫通孔測定の前工程で他部品取
付けのため穿設し貫通孔(13)を設ける。
The object to be measured (11) is provided with a through hole (13) for attaching another component in the preceding step of measuring the through hole.

(14)は自動車組立ライン(12)を内部に設ける工場
施設、(15)は工場施設に設ける採光窓である。(16)
は遮光板であり、被測定物(11)の背景(17)へ直接照
射する自然光を遮光する。背景(17)は、この実施例で
は自動車ボデーの反対側側面内側からなる。
(14) is a factory facility inside which an automobile assembly line (12) is installed, and (15) is a lighting window installed in the factory facility. (16)
Is a light-shielding plate, which shields the natural light directly applied to the background (17) of the object (11) to be measured. The background (17) consists of the inside of the opposite side of the car body in this example.

(18)は照明手段である。照明手段としてはこの実施
例では、集光度の高いスポット照明を使用し75W、被測
定面で1000lxとなるハロゲン燈、タングステン燈等を使
用する。照明手段(18)は光量が安定していることが望
ましい。
(18) is a lighting means. In this embodiment, as the illuminating means, spot illumination having a high degree of condensing is used, and 75 W, and a halogen lamp, a tungsten lamp, or the like, which has a measurement surface of 1000 lx, is used. It is desirable that the illumination means (18) has a stable light quantity.

(19)は受光手段である。受光手段(19)は被測定物
(11)に対して測定用光源と同一側に設置し、入力して
きた光情報を電気信号に変換する。受光手段(19)は、
この実施例ではCCDカメラからなる。受光手段(19)の
被測定物(11)側には、所望の焦点距離と視野範囲を得
られる30mmf4程度の望遠レンズ(19)aを固定する。望
遠レンズ(19)aを付設することで、受光手段(19)は
被写界深度が浅くなり焦点の合っていない部分では受光
量は極端に低下する。この実施例では、被測定物(11)
表面と、背景(17)とは1000mm程度の距離を設けてなる
が被写界深度の0.75mm以上離れていればよい。受光手段
(19)は、貫通孔(13)に向けて設置する。
(19) is a light receiving means. The light receiving means (19) is installed on the same side as the measurement light source with respect to the DUT (11), and converts the inputted optical information into an electric signal. The light receiving means (19) is
In this embodiment, it consists of a CCD camera. A telephoto lens (19) a of about 30 mmf4 capable of obtaining a desired focal length and visual field range is fixed to the object (11) side of the light receiving means (19). By attaching the telephoto lens (19) a, the light receiving means (19) has a shallow depth of field, and the light receiving amount is extremely reduced in a portion out of focus. In this example, the device under test (11)
The surface and the background (17) are provided with a distance of about 1000 mm, but they may be separated by a depth of field of 0.75 mm or more. The light receiving means (19) is installed toward the through hole (13).

(20)は、補助受光手段であり、受光手段(19)と同
様にCCDカメラからなる。(20)aは同様の望遠レンズ
である。受光手段(19)と貫通孔(13)を結んだ直線
と、補助受光手段(20)を貫通孔(13)を結んだ直線が
第3図に示すように角度θをとるように、補助受光手段
(20)を設置する。この実施例では、測定位置に所望の
三次元形状、面積を有する基準貫通孔を有する被測定物
(11)を設置したときその基準貫通孔に対してθ=45°
となるように設置する。
Reference numeral (20) denotes an auxiliary light receiving means, which is a CCD camera like the light receiving means (19). (20) a is a similar telephoto lens. The straight line connecting the light receiving means (19) and the through hole (13) and the straight line connecting the auxiliary light receiving means (20) to the through hole (13) form an angle θ as shown in FIG. Install means (20). In this embodiment, when an object to be measured (11) having a reference through hole having a desired three-dimensional shape and area is installed at the measurement position, θ = 45 ° with respect to the reference through hole.
To be installed.

(23)a、(23)bは画像処理部であり、受光手段
(19)、補助受光手段(20)から入力する信号を受けて
画像処理し、CRT画面からなる表示部(24)上に貫通孔
像(A)を表示する。(21)は、別手段であり、受光手
段(19)、画像処理手段(23)aからの信号を受ける。
(22)は、基準信号発生手段であり、所望の基準貫通孔
をあらかじめ測定したとき受光手段(19)位置で感知し
た場合得られる基準貫通孔像の形状、面積、位置、重心
位置等の基準貫通孔情報を記憶し、判別手段(21)に伝
達する。
Image processing units (23) a and (23) b receive signals input from the light receiving unit (19) and the auxiliary light receiving unit (20), perform image processing, and display the images on a display unit (24) including a CRT screen. The through hole image (A) is displayed. (21) is a separate means for receiving signals from the light receiving means (19) and the image processing means (23) a.
Reference numeral (22) is a reference signal generating means, which is a reference for the shape, area, position, center of gravity position, etc. of the reference through-hole image obtained when the desired reference through-hole is measured at the light-receiving means (19) position in advance. The through hole information is stored and transmitted to the discrimination means (21).

ところで形状、面積に関する情報を記憶する場合は、
各画素毎の情報を記憶する必要があるため、記憶素子の
容量を大きくする必要が有るが、重心位置等、点の情報
を記憶する場合は、記憶素子の容量は小さくともよい。
そこでこの実施例では、入力したきた形状、面積に関す
る情報を、重心位置という点の情報に演算して記憶す
る。
By the way, if you want to store information about shape and area,
Since it is necessary to store information for each pixel, it is necessary to increase the capacity of the storage element. However, when storing information on points such as the position of the center of gravity, the capacity of the storage element may be small.
Therefore, in this embodiment, the inputted information on the shape and the area is calculated and stored as information on the point of the center of gravity.

(25)は、補助判別手段であり、補助受光手段(1
9)、画像処理手段(23)bからの信号を受ける。(2
6)は、補助基準信号発生手段であり、所望の基準貫通
孔をあらかじめ測定したとき補助受光手段(20)位置で
感知した場合得られる基準貫通孔像の形状、面積、位
置、重心位置等の基準貫通孔情報を記憶し、補助判別手
段(25)に伝達する。
(25) is an auxiliary discriminating means, which is an auxiliary light receiving means (1
9), receives a signal from the image processing means (23) b. (2
6) is an auxiliary reference signal generating means, such as the shape, area, position and center of gravity of the reference through hole image obtained when the desired reference through hole is measured in advance and detected at the auxiliary light receiving means (20) position. The reference through hole information is stored and transmitted to the auxiliary discriminating means (25).

次にこの発明の実施例の作用について説明する。ま
ず、被測定物(11)の貫通孔(13)形成箇所およびその
周囲に照明手段(18)から投光する。光量は被測定面で
も1000lx程度と従来の反射形二次元測定装置として一般
に用いられる被測定面で3000lx、500wの高集光度のハロ
ゲン燈使用に比し低いため、被加工物が鋼板等高輝度の
物質からなる場合であっても、又反射光は表面の傷、へ
こみ、変形、面傾斜が存在しても、それ等に起因する輝
度の過敏な変化は少なくなる。
Next, the operation of the embodiment of the present invention will be described. First, light is projected from the illumination means (18) to the place where the through hole (13) is formed in the object to be measured (11) and its surroundings. The amount of light is about 1000lx even on the surface to be measured, which is lower than 3000lx on the surface to be measured, which is generally used as a conventional reflection type two-dimensional measuring device, and 500w, so that the work piece has high brightness such as steel plate. Even if it is made of the above substance, and the reflected light has scratches, dents, deformations, and surface inclinations on the surface, the sensitive changes in the luminance due to these are small.

測定用光源(18)の光量は従来例に比し下げられ、他
方被測定物(11)の背景側は特別暗室とすることなく自
然光のうち背景(17)に入光する直接光のみを遮光板
(16)によって遮光したにすぎない。そのため、受光手
段(19)位置からは照明手段(18)を反射する貫通孔周
囲と、背景がそのまま現れるため、暗部として表れる貫
通孔(13)部分との明暗差は従来例に比して小さくな
る。
The light intensity of the measurement light source (18) is lower than that of the conventional example, while the background side of the DUT (11) does not have to be a special dark room and blocks only the direct light entering the background (17) out of natural light. It is only shielded from light by the plate (16). Therefore, from the position of the light receiving means (19), the periphery of the through hole that reflects the illuminating means (18) and the background appear as they are, so the difference in brightness between the through hole (13) appearing as a dark part is smaller than that of the conventional example. Become.

しかし、受光手段(19)には、被写界深度が浅く、焦
点の合っていない部分では受光量が極端に低下する望遠
レンズからなる焦点調整手段である(19)aを有してお
り、かつ、背景(17)と被測定物(11)表面間は被測定
物(11)表面に焦点が合った場合、背景(17)部分から
受光量が極端に低下する程度の距離を置いてあり、望遠
レンズのピントは、被測定物(11)の貫通孔(13)表面
に合っている。そのため、被測定物(11)の貫通孔(1
3)周囲と貫通孔(13)を通した背景(17)との明度差
は標準レンズを使用した場合に比して、強調して受光手
段(19)で感知する。
However, the light receiving means (19) has a focus adjusting means (19) a including a telephoto lens that has a shallow depth of field and the amount of received light is extremely reduced in a portion out of focus. Moreover, when the background (17) and the surface of the DUT (11) are in focus, there is a distance from the background (17) where the amount of received light is extremely reduced when the DUT surface is in focus. , The focus of the telephoto lens is aligned with the surface of the through hole (13) of the device under test (11). Therefore, the through hole (1
3) The lightness difference between the surroundings and the background (17) passing through the through hole (13) is emphasized and detected by the light receiving means (19) as compared with the case where a standard lens is used.

そのため貫通孔(13)の輪郭はくっきりした形で即
ち、貫通孔(13)の画像の輪郭が明瞭な形で受光され
る。また被写界深度が浅いため背景(17)と被測定物
(11)との間で受光手段(19)に直射光が入る場合を除
き自然光が若干入ったとしても、とらえる画像に影響は
少ない。
Therefore, the outline of the through hole (13) is received in a clear form, that is, the outline of the image of the through hole (13) is received. Also, since the depth of field is shallow, there is little influence on the captured image even if a small amount of natural light enters, except when direct light enters the light receiving means (19) between the background (17) and the DUT (11). .

受光手段(19)のCCDカメラで受領された光情報は電
気信号に変換され、画像処理部(23)aに送られる。画
像処理部(23)aで受けた信号は画像処理して画像信号
として表示部(24)に伝送され、貫通孔像(A)として
表示する。画像処理部(23)aからの信号は、同時に判
別手段(21)でも受領する。
The optical information received by the CCD camera of the light receiving means (19) is converted into an electric signal and sent to the image processing section (23) a. The signal received by the image processing section (23) a is subjected to image processing and transmitted as an image signal to the display section (24), where it is displayed as a through hole image (A). The signal from the image processing section (23) a is also received by the discrimination means (21) at the same time.

受領された貫通孔像情報を、基準信号発生手段(22)
から伝送される、あらかじめティーチングされて測定さ
れた所望の基準貫通孔情報信号と形状、重心位置、面積
を比較し、許容範囲内か否かを判断し、貫通孔の適否を
表示部に適否表示(C)として表示する。
Based on the received through-hole image information, reference signal generating means (22)
Compared with the desired reference through hole information signal that was transmitted from the device and measured in advance, the shape, center of gravity position, and area are compared, it is judged whether it is within the allowable range, and whether the through hole is proper or not is displayed on the display section. Display as (C).

この実施例では、基準貫通孔像と測定された貫通孔像
の重心位置の差異を比較して適否の判断をする。この実
施例のように貫通孔像の重心位置の比較によって、形成
された貫通孔の適否を判断する場合は、第4図に示すよ
うに、所望の基準貫通孔像(A)′の重心O′と、測定
された貫通孔像(A)の重心Oとの位置のずれが、誤差
範囲内か否かを演算し判断しておこなう。
In this embodiment, the difference between the center-of-gravity positions of the reference through-hole image and the measured through-hole image is compared to determine the suitability. When the suitability of the formed through-hole is judged by comparing the positions of the centers of gravity of the through-hole images as in this embodiment, the center of gravity O of the desired reference through-hole image (A) 'is determined as shown in FIG. ′ And the measured position of the through hole image (A) with respect to the center of gravity O are within an error range by calculating and determining.

同様に、補助受光手段(20)でも受光する。補助受光
手段(20)には、同様に被写界深度が浅く、焦点の合っ
ていない部分では受光量が極端に低下する望遠レンズか
らなる焦点調整手段である(29)aを有しており、か
つ、背景(17)と被測定物(11)表面間は被測定物(1
1)表面に焦点が合った場合、背景(17)部分から受光
量が極端に低下する程度の距離を置いてあり、望遠レン
ズのピントは、被測定物(11)の貫通孔(13)表面に合
っている。そのため、被測定物(11)の貫通孔(13)周
囲と貫通孔(13)を通した背景(17)との明度差は標準
レンズを使用した場合に比して、強調して受光手段(2
0)で感知する。
Similarly, the auxiliary light receiving means (20) also receives light. The auxiliary light receiving means (20) also has a focus adjusting means (29) a consisting of a telephoto lens which has a shallow depth of field and whose amount of received light is extremely reduced in a portion out of focus. And, between the background (17) and the surface of the measured object (11), the measured object (1
1) When the surface is in focus, the distance from the background (17) is such that the amount of received light is extremely reduced, and the focus of the telephoto lens is the surface of the through hole (13) of the DUT (11). It suits. Therefore, the lightness difference between the periphery of the through hole (13) of the object to be measured (11) and the background (17) passing through the through hole (13) is emphasized as compared with the case where a standard lens is used. 2
Detect with 0).

そのため貫通孔(13)の輪郭はくっきりした形で即
ち、貫通孔(13)の画像の輪郭が明瞭な形で受光され
る。また被写界深度が浅いため背景(17)と被測定物
(11)との間で補助受光手段(20)に直射光が入る場合
を除き自然光が若干入ったとしても、とらえる画像に影
響は少ない。補助受光手段(20)のCCDカメラで受領さ
れた光情報は電気信号に変換され、画像処理部(23)b
に送られる。画像処理部(23)bで受けた信号は画像処
理して画像信号として表示部(24)に伝送され、貫通孔
像(B)として表示する。画像処理部(23)aからの信
号は、同時に判別手段(21)でも受領する。
Therefore, the outline of the through hole (13) is received in a clear form, that is, the outline of the image of the through hole (13) is received. Also, since the depth of field is shallow, even if a little natural light enters the auxiliary light receiving means (20) between the background (17) and the object (11) to be measured, the captured image will not be affected. Few. The optical information received by the CCD camera of the auxiliary light receiving means (20) is converted into an electric signal, and the image processing section (23) b
Sent to The signal received by the image processing section (23) b is subjected to image processing and transmitted as an image signal to the display section (24) to be displayed as a through hole image (B). The signal from the image processing section (23) a is also received by the discrimination means (21) at the same time.

受領された貫通孔像情報を、基準信号発生手段(26)
から伝送されるあらかじめティーチングされて測定され
た所望の基準貫通孔情報信号と形状、重心位置、面積を
比較し、許容範囲内か否かを判断し、貫通孔の適否を表
紙部に適否表示(D)として表示する。
Based on the received through hole image information, the reference signal generating means (26)
Compared with the desired reference through hole information signal transmitted from the device and the desired reference through hole information, the shape, the center of gravity position, and the area are compared, and it is determined whether or not it is within the allowable range, and the appropriateness of the through hole is displayed on the cover sheet. Display as D).

この実施例では、基準貫通孔像と測定された貫通孔像
の重心位置の差異を比較して適否の判断をする。この実
施例のように貫通孔像の重心位置の比較によって、形成
された貫通孔の適否を判断する場合は、所望の基準貫通
孔像(B)′の重心O′と、測定された貫通孔像(B)
の重心Oとの位置のずれが、誤差範囲内か否かを演算し
判断しておこなう。
In this embodiment, the difference between the center-of-gravity positions of the reference through-hole image and the measured through-hole image is compared to determine the suitability. When the suitability of the formed through hole is judged by comparing the positions of the centers of gravity of the through holes as in this embodiment, the center of gravity O'of the desired reference through hole image (B) 'and the measured through hole are determined. Statue (B)
The position deviation from the center of gravity O is calculated and judged whether or not it is within the error range.

補助受光手段(20)は第3図に示すように受光手段
(19)に対して角度をもたせて設置してあるため、受光
手段(19)で感知される貫通孔像と補助受光手段(20)
で感知される貫通孔像とは異なったものとなる。
Since the auxiliary light receiving means (20) is installed at an angle to the light receiving means (19) as shown in FIG. 3, the through hole image sensed by the light receiving means (19) and the auxiliary light receiving means (20) are detected. )
It will be different from the through-hole image detected by.

貫通孔(13)と受光手段(19)とを面直としたとき
は、角度θだけ傾いて設置する補助受光手段(20)で感
知するよりも、大きな貫通孔像(A)が得られる。貫通
孔(13)と受光手段(13)との距離が変化し、例えば第
3図に二点鎖線で示すように距離が長くなると、受光手
段(19)、貫通孔(13)′、補助受光手段(20)のなす
角θ′は小さくなる。従って補助受光手段(20)で感知
される貫通孔像と、受光手段(19)で感知される貫通孔
像との重心位置差は少なくなる。受光手段(19)を貫通
孔(13)に対して面直に設置しなくとも良い。
When the through hole (13) and the light receiving means (19) are flush with each other, a larger through hole image (A) can be obtained as compared with the case where the auxiliary light receiving means (20) installed at an angle of θ detects. When the distance between the through hole (13) and the light receiving means (13) changes and the distance becomes long as shown by the chain double-dashed line in FIG. 3, for example, the light receiving means (19), the through hole (13) ', and the auxiliary light receiving means The angle θ ′ formed by the means (20) becomes small. Therefore, the difference in the barycentric position between the through hole image sensed by the auxiliary light receiving means (20) and the through hole image sensed by the light receiving means (19) is reduced. The light receiving means (19) does not have to be directly installed on the through hole (13).

貫通孔の適否は以下のようにして行う。受光手段(1
9)と補助受光手段(20)との距離が一定していれば、
受光手段(19)、補助受光手段(20)、貫通孔(13)、
の位置関係に変化が無ければ受光手段(19)、補助受光
手段(20)で受像される貫通孔像は、一定である。しか
し受光手段(19)、補助受光手段(20)と貫通孔(13)
の位置が変化すると、受光手段(19)と貫通孔(13)と
補助受光手段(20)のなす角度は変化する。この角度が
変化すれば、各受光手段で感知される貫通孔像の重心位
置の違い、あるいは面積にも変化を生ずる。そこで、受
光手段(19)および補助受光手段(20)で暗部として感
知される各貫通孔像を受け、所望の基準貫通孔を形成し
た場合の両受光手段で感知される貫通孔像の面積、ある
いは重心位置とを各々の受光装置からの情報を受領した
判別手段(21)、補助判別手段(25)で比較する。受光
手段(19)、及び補助受光手段(20)で各々受領された
貫通孔像が共に基準貫通孔像の誤差範囲内のとき貫通孔
は正規なものと判断する。
The suitability of the through hole is determined as follows. Light receiving means (1
If the distance between 9) and the auxiliary light receiving means (20) is constant,
Light receiving means (19), auxiliary light receiving means (20), through hole (13),
If there is no change in the positional relationship, the through hole images received by the light receiving means (19) and the auxiliary light receiving means (20) are constant. However, the light receiving means (19), the auxiliary light receiving means (20) and the through hole (13)
When the position of is changed, the angle formed by the light receiving means (19), the through hole (13) and the auxiliary light receiving means (20) is changed. If this angle changes, the center of gravity position of the through-hole image detected by each light receiving means also changes, or the area also changes. Therefore, the area of the through-hole image sensed by both the light-receiving means when the desired light-receiving means (19) and the auxiliary light-receiving means (20) receive each through-hole image sensed as a dark portion and a desired reference through-hole is formed, Alternatively, the barycentric position is compared by the discriminating means (21) and the auxiliary discriminating means (25) which have received the information from the respective light receiving devices. When the through hole images received by the light receiving means (19) and the auxiliary light receiving means (20) are both within the error range of the reference through hole image, it is determined that the through hole is normal.

実施例1 実施例の演算手段を第7図に従って説明する。Embodiment 1 The arithmetic means of the embodiment will be described with reference to FIG.

貫通孔の面変位量と表示手段(モニタ)上の画素変化
を比較する。
The surface displacement amount of the through hole and the pixel change on the display means (monitor) are compared.

即ち、第7図において、 X:CCDカメラ上の垂直方向の撮像寸法 W:貫通孔面の面変位とすると が成立する。そして、 X=(変位画素数)×(有効画サイズ)/(有効画素
数) =YNccd×(6.615)/(490)(mm) となる。従って面変位量とCCD上の変位画素量の関係
は、 となる。又このときのモニター上の変位画素量(YNmo
n)との関係は となる。従って分解能δは、YNmon=1のときのWと等
しくなる。
That is, in FIG. 7, assuming X: vertical image pickup dimension on the CCD camera W: surface displacement of the through-hole surface Is established. Then, X = (displacement pixel number) × (effective image size) / (effective pixel number) = YNccd × (6.615) / (490) (mm) Therefore, the relationship between the amount of surface displacement and the amount of pixel displacement on the CCD is Becomes The displacement pixel amount (YNmo
relationship with n) Becomes Therefore, the resolution δ becomes equal to W when YNmon = 1.

例)300(mm)望遠レンズをL=700(mm)の位置に設置
し、孔(楕円)の重心位置変位を撮った場合の分解能は 従って、基準位置に対し、下方へ1画素変化すると遠
方へ0.08(mm)孔の面が変化した事を表す。
Example) The resolution when a 300 (mm) telephoto lens is installed at the position of L = 700 (mm) and the displacement of the center of gravity of the hole (ellipse) is taken Therefore, it means that the surface of the 0.08 (mm) hole is changed to the far side when one pixel is changed downward from the reference position.

広角レンズ(25mm,f1.8)、標準レンズ(50mm,f1.4)
についてもモニタ上で1画素変化したときの貫通孔面の
変化量を求めると以下のようになる。
Wide-angle lens (25mm, f1.8), standard lens (50mm, f1.4)
As for the above, the amount of change of the through-hole surface when one pixel is changed on the monitor is as follows.

1画素あたりの面変化量の少なさからは30mm,f4の望遠
レンズが望ましい。
A 30 mm, f4 telephoto lens is desirable because of the small amount of surface change per pixel.

参考例1 25mmf1.8広角レンズ、50mmf1.4標準レンズ、300mmf4望
遠レンズを各々CCDカメラ先端に固定し、モニタ(表示
部)上寸法、倍率、分解能(δ)、被写界深度(D)を
比較した。
Reference example 1 25mm f1.8 wide-angle lens, 50mm f1.4 standard lens, and 300mm f4 telephoto lens are fixed to the CCD camera tip respectively, and the monitor (display) top dimension, magnification, resolution (δ), depth of field (D) are set. Compared.

倍率、分解能を幾何学的撮像寸法算出方法により求
める。
The magnification and resolution are obtained by the geometrical imaging size calculation method.

第5図において X:実寸法 x:CCDカメラで感知する撮像寸法 L:被写体距離 F:焦点距離 このとき x=FX/L の関係が成立する。 In Fig. 5, X: actual dimension x: imaging dimension sensed by CCD camera L: subject distance F: focal length At this time, the relation of x = FX / L is established.

機器による補正をおこなった上でモニタ(表示部)上
に表示される物体の大きさ(x′)とその倍率は、以下
にようにして求められる。
The size (x ') of the object displayed on the monitor (display unit) after being corrected by the device and its magnification are obtained as follows.

x′=(撮像寸法:x)×(補正値)/(有効画寸法)
(mm) 倍率=x′/X 分解能(δ)は以下のように求められる。
x '= (imaging size: x) x (correction value) / (effective image size)
(Mm) Magnification = x ′ / X The resolution (δ) is calculated as follows.

δ=1/{(倍率)×(モニタ画素枚)/(モニタ寸
法)}(mm/画素) 被写界深度の算出 第6図において d1:後方被写界深度 d2:前方被写界深度 d3:焦点深度 L:被写体距離 δ:許容錯乱円 である。
δ = 1 / {(magnification) × (monitor pixel number) / (monitor size)} (mm / pixel) Depth of field calculation In FIG. 6, d 1 : rear depth of field d 2 : front depth of field Depth d 3 : Depth of focus L: Object distance δ: Allowable circle of confusion.

F:焦点距離 f:絞り値 とすると、D:被写界深度は以下の式で求められる。F: focal length f: aperture value, D: depth of field is calculated by the following formula.

D=d1−d2 =F2L/{F2−(L−F)δf}−F2L/{F2+(L−
F)δf}(mm) 被写体間距離L=700mm 被写体実寸法X=6.5φ とすると、 300mmf4の望遠レンズ(δ=0.03)では、被写界深度:
Dは以下の用に求められる。
D = d 1 −d 2 = F 2 L / {F 2 − (L−F) δf} −F 2 L / {F 2 + (L−
F) δf} (mm) Distance between objects L = 700mm If the actual size of the object is X = 6.5φ, then with a telephoto lens of 300mm f4 (δ = 0.03), the depth of field:
D is required for:

D=3002×700/{3002−(700−300)×0.03×4} −3002×700/{3002+700−300)×0.03×4} 0.75mm 広角レンズ標準レンズについても同様に計算してま
とめて以下に示す。
D = 300 2 x 700 / {300 2- (700-300) x 0.03 x 4} -300 2 x 700 / {300 2 + 700-300) x 0.03 x 4} 0.75mm Wide-angle lens Standard lens It is summarized and shown below.

要求精度、被写界深度上、300mm f4の望遠レンズが望
ましい。
A 300mm f4 telephoto lens is desirable in terms of required accuracy and depth of field.

(ト)発明の効果 従って、この発明では被測定物と離れた位置で、被測
定物に形成する貫通孔の三次元上の適否を判断できるの
で、被測定物がライン上を移動する場合移動を停止する
時間が短くとも測定することが可能となる。
(G) Effect of the Invention Therefore, according to the present invention, it is possible to judge the three-dimensional suitability of the through hole formed in the measured object at a position distant from the measured object. Therefore, when the measured object moves on the line, it moves. It is possible to measure even if the time to stop is short.

【図面の簡単な説明】[Brief description of drawings]

第1図、第3図はこの発明の実施例の構成図であり、第
2図、第4図、第5図、第6図、第7図は使用状態図、
第8図は従来例の構成図である。 (11)……補助測定物、(13)……貫通孔、(17)……
背景、(18)……照明手段、(19)……受光手段、(2
0)……補助受光手段、(21)……判別手段、(25)…
…補助判別手段、
1 and 3 are configuration diagrams of an embodiment of the present invention, and FIG. 2, FIG. 4, FIG. 5, FIG. 6 and FIG.
FIG. 8 is a block diagram of a conventional example. (11) …… Auxiliary measurement object, (13) …… Through hole, (17) ……
Background, (18) …… Lighting means, (19) …… Light receiving means, (2
0) ... Auxiliary light receiving means, (21) ... discriminating means, (25) ...
... Auxiliary discrimination means,

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被測定物表面に投光する照明手段と、貫通
孔を形成された被測定物を測定位置に設置したとき照明
手段に対し被測定物を挟んだ反対側に位置するとともに
被測定物表面で照明手段からの照明を反射する反射光に
比し相対的に暗い背景と、貫通孔面に向けて設置され被
加工物表面が反射する反射光を感知し感知する明暗に応
じて信号を発生する受光手段と、受光手段に取り付けら
れ被測定物表面に焦点をあわせられた被写界深度が浅い
焦点調整手段と、受光手段とは貫通孔に対し角度をもた
せて設置され被加工物表面で反射する反射光を感知する
とともに感知する明暗に応じて信号を発生する補助受光
手段と、補助受光手段に取り付けられ被測定物表面に焦
点をあわせられた被写界深度が浅い焦点調整手段と、反
射光を発生せず貫通孔を通した背景の暗部として受光手
段で感知される貫通孔像とあらかじめ測定された所望の
被測定物の受光手段で感知される所望の基準貫通孔像を
比較する判別手段と、反射光を発生せず貫通孔を通した
背景の暗部として補助受光手段で感知される貫通孔像と
あらかじめ測定された所望の被測定物の補助受光手段で
感知される所望の基準貫通孔像を比較する補助判別手段
とからなることを特徴とする貫通孔の三次元位置測定装
置。
1. An illumination means for projecting light onto a surface of an object to be measured and an object to be measured having a through hole formed therein are positioned on the opposite side of the object to be measured with respect to the illumination means when the object to be measured is placed. Depending on the background that is relatively dark compared to the reflected light that reflects the illumination from the illumination means on the surface of the object to be measured, and the light and darkness that senses and senses the reflected light that is installed toward the through-hole surface and reflected by the surface of the workpiece. The light receiving means for generating a signal, the focus adjusting means attached to the light receiving means and focused on the surface of the object to be measured and having a shallow depth of field, and the light receiving means are installed at an angle to the through hole to be processed. Auxiliary light receiving means that senses the reflected light reflected on the object surface and generates a signal according to the detected light and darkness, and a focus adjustment with a shallow depth of field that is attached to the auxiliary light receiving means and focused on the surface of the object to be measured Means and through without generating reflected light As a dark portion of the background through the hole, the through hole image sensed by the light receiving means and the determination means for comparing the desired reference through hole image sensed by the light receiving means of the desired object to be measured measured in advance, and the reflected light Aid for comparing the through hole image sensed by the auxiliary light receiving means as a dark part of the background that does not occur and through the through hole with the desired reference through hole image sensed in advance by the auxiliary light receiving means of the desired object to be measured. A three-dimensional position measuring device for a through hole, comprising: a discriminating means.
JP62115651A 1987-05-12 1987-05-12 Through-hole three-dimensional position measuring device Expired - Lifetime JP2519183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62115651A JP2519183B2 (en) 1987-05-12 1987-05-12 Through-hole three-dimensional position measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62115651A JP2519183B2 (en) 1987-05-12 1987-05-12 Through-hole three-dimensional position measuring device

Publications (2)

Publication Number Publication Date
JPS63279105A JPS63279105A (en) 1988-11-16
JP2519183B2 true JP2519183B2 (en) 1996-07-31

Family

ID=14667915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62115651A Expired - Lifetime JP2519183B2 (en) 1987-05-12 1987-05-12 Through-hole three-dimensional position measuring device

Country Status (1)

Country Link
JP (1) JP2519183B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59155704A (en) * 1983-02-24 1984-09-04 Mitsubishi Electric Corp Position detection equipment of hole center
JPS61207904A (en) * 1985-03-11 1986-09-16 Koito Mfg Co Ltd Inspecting method for pierced hole by piercing device

Also Published As

Publication number Publication date
JPS63279105A (en) 1988-11-16

Similar Documents

Publication Publication Date Title
KR100382577B1 (en) Wheel measuring apparatus
US5566244A (en) Method of inspecting a workpiece surface including a picturing system with a shortened focal plane
JP2005347790A (en) Projector provided with trapezoidal distortion correction apparatus
US7502504B2 (en) Three-dimensional visual sensor
JP2000002518A (en) Three dimensional input device
JP2019074470A (en) Adjustment method of image measurement device
JP2519183B2 (en) Through-hole three-dimensional position measuring device
JP2519187B2 (en) Through-hole three-dimensional position measuring device
JP2572286B2 (en) 3D shape and size measurement device
JPH052923B2 (en)
JPH1073419A (en) Device for inspecting erroneous and missing parts mounted externally on engine
JPH05118831A (en) End-face inspecting apparatus for optical connector
JPH0789044B2 (en) Through-hole measuring light-receiving device, through-hole measuring light-receiving method, through-hole three-dimensional position measuring device, through-hole three-dimensional position measuring method, multiple through-hole three-dimensional position measuring device, and multiple through-hole three-dimensional position measuring device Method
CN105229409A (en) Use the method for the narrow recessed features of machine vision metrology
JPH11258113A (en) Method for measuring car headlight
JPH06105212B2 (en) Headlight main optical axis inspection method
JP2520365B2 (en) Work measurement position setting method in optical length measuring device
JP3396676B2 (en) Lens meter
JP2881671B2 (en) Headlight light source position measuring method, optical axis measuring method, and measuring device
JP3168864B2 (en) Surface defect inspection equipment
JP2953689B2 (en) Optometry device
JPH08233545A (en) Method and apparatus for measuring hole shape
JPH0830782B2 (en) How to measure the amount of image point displacement
JPS63210705A (en) Light receiver for through hole measurement
JPH07122571B2 (en) Work tilt angle measuring device for bending machine