JP2511705B2 - Carbon / metal composite - Google Patents

Carbon / metal composite

Info

Publication number
JP2511705B2
JP2511705B2 JP63315614A JP31561488A JP2511705B2 JP 2511705 B2 JP2511705 B2 JP 2511705B2 JP 63315614 A JP63315614 A JP 63315614A JP 31561488 A JP31561488 A JP 31561488A JP 2511705 B2 JP2511705 B2 JP 2511705B2
Authority
JP
Japan
Prior art keywords
metal
carbon
molding
composite material
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63315614A
Other languages
Japanese (ja)
Other versions
JPH02160665A (en
Inventor
正人 鹿野
行廣 杉本
潔 酢谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63315614A priority Critical patent/JP2511705B2/en
Priority to KR1019890014828A priority patent/KR930009894B1/en
Priority to CA 2000805 priority patent/CA2000805C/en
Priority to AT89119290T priority patent/ATE135415T1/en
Priority to DE68925936T priority patent/DE68925936T2/en
Priority to EP19930111036 priority patent/EP0572044A2/en
Priority to EP89119290A priority patent/EP0364972B1/en
Priority to US07/422,898 priority patent/US5158828A/en
Priority to EP19930111037 priority patent/EP0572045A2/en
Publication of JPH02160665A publication Critical patent/JPH02160665A/en
Priority to US08/177,791 priority patent/US5531943A/en
Application granted granted Critical
Publication of JP2511705B2 publication Critical patent/JP2511705B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、主に鉄道用パンタグラフ摺板に利用可能
な複合材料に係り、耐摩耗性、耐衝撃性、曲げ強度およ
び電気的特性に優れた炭素・金属複合材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite material mainly applicable to pantograph sliding plates for railroads, and carbon having excellent wear resistance, impact resistance, bending strength and electrical characteristics. -Regarding metal composite materials.

従来の技術 電気車両等の摺動、集電用炭素材料としては、車両の
高速化と冷房設備等による消費電力の増大に対応するた
め、炭素の優れた摺動特性と金属の電気伝導性を生かし
た炭素・金属複合摺板が採用されつつある。
Conventional technology As a carbon material for sliding and collecting electricity in electric vehicles, etc., in order to cope with the speeding up of vehicles and the increase in power consumption due to cooling equipment, etc., the excellent sliding characteristics of carbon and the electrical conductivity of metals have been adopted. A carbon / metal composite sliding plate that makes good use of it is being adopted.

この種の炭素・金属複合材としては、例えば炭素材
の気孔に特定の金属を加圧含浸させる方法により製造し
た複合材、炭素材用原料に金属繊維を配合し、通常の
炭素材の成型方法で成型後、炭化する方法により製造し
た複合材(特開昭62−72564)、炭素材用原料に金属
繊維を一方向に配向させて配合した後、成型、焼成する
方法により製造した複合材(特開昭62−197352)があ
る。
As this kind of carbon / metal composite material, for example, a composite material manufactured by a method in which pores of a carbon material are impregnated with a specific metal under pressure, a metal material is mixed with a raw material for a carbon material, and an ordinary carbon material molding method is used. After being molded with a composite material manufactured by a method of carbonizing (Japanese Patent Application Laid-Open No. 62-72564), a composite material manufactured by a method of molding and firing after metal fibers are unidirectionally orientated and mixed into a raw material for carbon material ( JP 62-197352).

しかし、上記の炭素・金属系摺板は、現用品で
ある金属焼結系摺板から炭素・金属系摺板への移行期、
すなわち金属焼結系と酸素・金属系摺板の混合使用時を
想定したトロリー線(銅製)の荒れた状態での摺動時の
摺板摩耗が大きいという欠点がある。
However, the above-mentioned carbon / metal-based slide plate is a transitional period from the current product metal sintered slide plate to carbon / metal-based slide plate,
That is, there is a drawback that the sliding plate wears greatly when sliding the trolley wire (made of copper) in a rough state, assuming the mixed use of the metal sintered system and the oxygen / metal sliding plate.

かかる欠点を解消するため、本発明者らは、炭素質
骨材粉とバインダーピッチを主成分とする炭素材原料
に、金属繊維や金属粉を配合し、この原料を加圧加熱成
型した後焼成することによって、耐摩耗性の優れた炭素
・金属複合材を得る方法を先に提案した(特願昭63−26
2110)。
In order to eliminate such a defect, the present inventors blended a carbon material raw material mainly composed of carbonaceous aggregate powder and binder pitch with metal fiber or metal powder, press-molded this raw material, and then fired it. We have previously proposed a method of obtaining a carbon-metal composite material having excellent wear resistance by applying the above method (Japanese Patent Application No. 63-26).
2110).

ところで、摺板の使用時、トロリー線に付着した結氷
や何等かの原因により外れたトロリー線吊具(ハンガイ
ヤ)に摺板が激しく当ることがある。その時、摺板の衝
撃強度が低いと摺板が破損し、その破片等が周囲に飛散
し、非常に危険である。したがって、摺板には耐摩耗性
に加え、耐衝撃性も要求される。
By the way, when the slide plate is used, the slide plate may hit violently on the trolley wire hanging on the trolley wire or due to some reason. At that time, if the impact strength of the sliding plate is low, the sliding plate is damaged, and the fragments and the like are scattered around, which is very dangerous. Therefore, the sliding plate is required to have impact resistance as well as wear resistance.

しかるに、前記した炭素・金属複合材は、従来の金属
焼結系摺板と比較し、著しく衝撃強度が劣るという共通
の欠点がある。
However, the carbon-metal composite material described above has a common drawback that it is significantly inferior in impact strength as compared with the conventional metal sintered sliding plate.

この衝撃強度が劣る原因は、基本的に炭素の衝撃強度
が低いことにある。そこで、これを補うために金属成分
の配合量を増せば衝撃強度を向上できるが、金属成分が
多くなるとトロリー線との間で発生するスパークが多く
なり、トロリー線および摺板の摩耗が大きくなり好まし
くない。
The reason why the impact strength is poor is that the impact strength of carbon is basically low. Therefore, in order to compensate for this, the impact strength can be improved by increasing the blending amount of the metal component, but when the metal component increases, the sparks generated between the trolley wire and the trolley wire and the sliding plate increase. Not preferable.

発明が解決しようとする課題 この発明は前に述べたような実情よりみて、仮に結氷
や外れたトロリー線吊具に摺板が激しく当るようなこと
があっても、摺板が破損することがない耐衝撃性を具備
し、さらに安定したスパーク特性と良好な耐摩耗性をも
つ炭素・金属複合材を提供しようとするものである。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In view of the above-mentioned circumstances, the present invention may damage the sliding plate even if the sliding plate violently hits the trolley wire suspending tool which has been frozen due to ice. An object of the present invention is to provide a carbon / metal composite material which has stable impact characteristics and good wear resistance, which has no impact resistance.

課題を解決するための手段 この発明者は、炭素材原料に金属繊維を配合した複合
材において、金属繊維の含有量を増加させずに耐摩耗性
と耐衝撃性の両特性を併せ持つ炭素・金属複合材につい
て種々検討した結果、長さと太さの異なる金属繊維を分
けて配することにより、同一配合量で耐摩耗性、耐衝撃
性および曲げ強度を向上させることが可能であることを
見い出した。
Means for Solving the Problems This inventor has found that in a composite material in which a metal material is mixed with a carbon material, a carbon / metal material having both wear resistance and impact resistance characteristics without increasing the content of the metal fiber. As a result of various studies on composite materials, it was found that it is possible to improve wear resistance, impact resistance and bending strength with the same compounding amount by separately disposing metal fibers having different lengths and thicknesses. .

すなわち、炭素・金属複合材の場合、同一配合量で比
較すると金属繊維が長いほど衝撃強度が向上し、さらに
金属繊維の長さが相当直径(繊維の断面を同じ断面積を
もつ円と考えることにより求められる繊維直径)の10倍
以上、すなわち金属繊維のアスペクト比が10以上の場合
には、繊維の相当直径が大きいほど衝撃強度が向上する
ことを見い出した。
In other words, in the case of carbon / metal composites, the longer the metal fibers are, the higher the impact strength is, and the length of the metal fibers is equivalent to the equivalent diameter (considering that the cross sections of the fibers are circles having the same cross-sectional area). It was found that the impact strength is improved as the equivalent diameter of the fiber is larger when the fiber diameter is 10 times or more, that is, when the aspect ratio of the metal fiber is 10 or more.

しかしながら、長さあるいは相当直径の大きい繊維を
配合すると耐摩耗性が低下することも判明した。
However, it has also been found that the abrasion resistance decreases when fibers having a large length or a large diameter are blended.

かかる知見より、この発明は金属繊維の長さと太さの
いずれか一方または両方を部分的に異ならせて配するこ
とによって、耐摩耗性、耐衝撃性の優れた炭素・金属複
合材を得たものである。
Based on this finding, the present invention provides a carbon / metal composite material having excellent wear resistance and impact resistance by disposing one or both of the length and thickness of the metal fiber so as to be partially different. It is a thing.

例えば摺板を例にとると、トロリー線と摺動する部分
(上部)には、良好な摩耗特性を発現させるのに有効な
短かくて相当直径の小さい金属繊維を配し、トロリー線
と摺動しない部分(下部)には、高い衝撃強度を発現さ
せるのに有効な長くて相当直径の大きい金属繊維を配す
るのである。
For example, in the case of a sliding plate, the portion (upper part) that slides with the trolley wire is provided with metal fibers that are short and have a small diameter, which are effective in developing good wear characteristics. In the non-moving part (lower part), a metal fiber having a long and large diameter which is effective for developing high impact strength is arranged.

作用 この発明における炭素材原料としては、自己焼結性メ
ソフェーズ粉や、コークス粉のような炭素質骨材粉とピ
ッチからなる2元系原料、フェノール樹脂のような熱硬
化性樹脂等種々のものが使用できる。
Action As the carbon material raw material in the present invention, various materials such as self-sintering mesophase powder, binary raw material composed of carbonaceous aggregate powder such as coke powder and pitch, thermosetting resin such as phenol resin, etc. Can be used.

ここで、2元素系原料における炭素質骨材としては、
耐摩耗性の面からピッチや石炭等を1000℃程度で炭化処
理したコークス粉や、フェノール樹脂を炭化して得られ
る等方性炭素等の硬度の高いものが好ましい。
Here, as the carbonaceous aggregate in the two-element raw material,
From the viewpoint of wear resistance, coke powder obtained by carbonizing pitch, coal or the like at about 1000 ° C., or isotropic carbon obtained by carbonizing a phenol resin or the like having high hardness is preferable.

炭素質骨材の粒度は、強度や耐摩耗性の面から粒径の
小さいものが良好であり、20μm以下に粉砕して使用す
るのが好ましい。
Regarding the particle size of the carbonaceous aggregate, a small particle size is preferable from the viewpoint of strength and wear resistance, and it is preferable to use it after pulverizing it to 20 μm or less.

バインダーピッチとしては、コールタール中ピッチ
や、これをさらに熱処理して得られる高軟化点ピッチ等
を使用できる。
As the binder pitch, medium coal tar pitch, high softening point pitch obtained by further heat-treating it, or the like can be used.

なお、ピッチとしては、加熱時流動性を示すもので、
かつ可及的に低揮発分の方が複合材の強度、摩耗性が向
上し好ましい。
In addition, as the pitch, which shows fluidity when heated,
In addition, it is preferable that the volatile content is as low as possible because the strength and wear resistance of the composite material are improved.

金属繊維としては、スチールファイバー、スチールウ
ール、銅ファイバー等種々の金属繊維を使用できる。材
質的には低炭素鋼製スチールファイバーが最も良好な性
能を示す。
As the metal fiber, various metal fibers such as steel fiber, steel wool and copper fiber can be used. In terms of material, low carbon steel steel fiber shows the best performance.

摩耗特性を発現させるのに有効な金属繊維の大きさと
しては、相当直径が0.3mm以下、好ましくは0.1mm以下
で、長さが10mm以下のものが適する。
As the size of the metal fiber effective for developing the wear characteristics, a metal fiber having an equivalent diameter of 0.3 mm or less, preferably 0.1 mm or less and a length of 10 mm or less is suitable.

また、耐衝撃性の向上に有効な金属繊維の大きさとし
ては、前記摩耗特性の良好な金属繊維に対して相当直径
で2倍以上、長さで2倍以上のものが好適である。
Further, as the size of the metal fiber effective in improving the impact resistance, it is preferable that the size of the metal fiber having a good wear property is twice or more in equivalent diameter and twice or more in length.

なお、配合される金属繊維のアスペクト比が10以上の
場合には、繊維の相当直径が大きいほど衝撃強度は向上
するが、相当直径が1mmを超えると金属繊維と炭素の結
合が悪くなり、曲げ強度が低下するため、配合する金属
繊維の相当直径は1mm以下が好ましい。
When the aspect ratio of the metal fibers to be blended is 10 or more, the larger the equivalent diameter of the fiber is, the more the impact strength is improved, but when the equivalent diameter exceeds 1 mm, the bond between the metal fiber and the carbon is deteriorated and the bending is increased. Since the strength decreases, the equivalent diameter of the metal fibers to be mixed is preferably 1 mm or less.

金属繊維の形状は特に限定されるものではなく、針
状、くさび状、網状、あるいはそれらの混合物のいずれ
も使用可能である。
The shape of the metal fiber is not particularly limited, and any of a needle shape, a wedge shape, a net shape, or a mixture thereof can be used.

全金属繊維の配合量は特に限定されず、50〜60体積%
の高い配合率においても高強度で優れた耐摩耗性、耐衝
撃性が得られるが、スパーク特性を考慮すると50体積%
以下が好ましい。
The total metal fiber content is not particularly limited, and is 50-60% by volume.
High strength and excellent wear resistance and impact resistance can be obtained even at a high compounding ratio of 50% by volume, considering the spark characteristics.
The following are preferred.

このような長さと太さのいずれか一方または両方が異
なる金属繊維が分けて配された炭素・金属繊維複合材
は、大きさの異なる金属繊維を装入順序を変えて成形用
金型へ充填した後、成形、焼成することにより得られ
る。
The carbon / metal fiber composite material, in which metal fibers having different lengths and / or thicknesses are separately arranged, is used to fill metal molds of different sizes in a molding die by changing the loading order. After that, it is obtained by molding and firing.

成型方法としては、冷間型込め成型、押出し成型、加
圧加熱成型等種々の方法が採用できる。このうち、バイ
ンダーとしてピッチを使用し、加圧加熱成型する方法が
最も強度、耐摩耗性の良好な炭素・金属複合材が得られ
る。
As the molding method, various methods such as cold mold molding, extrusion molding, and pressure heating molding can be adopted. Among these, the method of using pressure as the binder and press-molding under heating gives the carbon / metal composite material having the best strength and wear resistance.

加圧加熱成型条件としては、バインダーピッチが固化
する温度域、すなわち480℃以上、好ましくは500℃以上
の温度域を加圧加熱することが必要であるため、加圧加
熱最高温度は480℃以上、好ましくは500℃以上とする。
As the pressurizing and heating molding conditions, it is necessary to pressurize the temperature range in which the binder pitch is solidified, that is, 480 ° C or higher, preferably 500 ° C or higher. , Preferably 500 ° C or higher.

加圧加熱成型の圧力は少なくとも常温〜加圧加熱最高
温度の一部の領域で40kg/cm2以上、好ましくは80kg/cm2
以上とする。これは、成型圧力が40kg/cm2未満ではバイ
ンダー〜金属間の結合力が低下し、良好な摩耗特性を有
する炭素・金属複合材が得られないためである。
Pressure of and heating the molding at least in some areas of the room temperature to the pressing and heating up to a temperature 40 kg / cm 2 or more, preferably 80 kg / cm 2
Above. This is because when the molding pressure is less than 40 kg / cm 2 , the binding force between the binder and the metal decreases, and a carbon / metal composite material having good wear characteristics cannot be obtained.

加圧加熱成型法で得られた成型体は、通常の炭素材と
同様の方法で焼成する。
The molded body obtained by the pressure heating molding method is fired in the same manner as a normal carbon material.

実施例 第1図は加圧加熱成型用金型の一例を示す概略図で、
(1)は上プレスヘッド、(2)は下プレスヘッド(固
定)、(3)は上金型、(4)は下金型、(5)は金
枠、(6)は成型原料、(7)はシーズヒーター(7−
1)入り熱板、(8)は断熱材である。
Example FIG. 1 is a schematic view showing an example of a mold for pressurizing and heating,
(1) is an upper press head, (2) is a lower press head (fixed), (3) is an upper mold, (4) is a lower mold, (5) is a metal frame, (6) is a forming raw material, ( 7) is a sheath heater (7-
1) The hot plate, and (8) is the heat insulating material.

すなわち、上金型(3)と下金型(4)との間に成型
原料(6)を充填した後、シーズヒーター(7−1)に
通電して熱板(7)を加熱し、プレスヘッド(1)によ
り加圧する。上記金型は予熱しておいてもよい。
That is, after filling the molding raw material (6) between the upper mold (3) and the lower mold (4), the sheath heater (7-1) is energized to heat the hot plate (7) and press. Pressurize with head (1). The mold may be preheated.

このような加圧加熱成型法で得られた成型体は、非酸
化性雰囲気中において金属ファイバーの融点以下の温度
で焼成することができる。
The molded body obtained by such a pressure heating molding method can be fired at a temperature not higher than the melting point of the metal fiber in a non-oxidizing atmosphere.

次に、第1図に示す金型を用いた加圧加熱成形法と通
常の焼成法により製造した炭素・金属複合材について説
明する。
Next, the carbon / metal composite material produced by the pressure heating molding method using the mold shown in FIG. 1 and the usual firing method will be described.

成型用骨材としては、レギュラーグレード石油コーク
スを1000℃で炭化後、直径10mmのステンレス球を詰めた
振動ミルで粉砕して得た平均粒径15μmのコークス粉を
用いた。
As the molding aggregate, coke powder having an average particle diameter of 15 μm was used, which was obtained by carbonizing regular grade petroleum coke at 1000 ° C. and then pulverizing it with a vibration mill filled with stainless balls having a diameter of 10 mm.

バインダーピッチとしては、コールタールを100mmHg
の減圧下440℃で2時間熱処理して得られた高化式フロ
ーテスターで測定した軟化点が240℃のコールタールピ
ッチを、60メッシュ以下に粉砕したものを用いた。
Coal tar is 100mmHg as binder pitch
The coal tar pitch having a softening point of 240 ° C. measured by a Koka type flow tester obtained by heat treatment at 440 ° C. under reduced pressure for 2 hours was crushed to 60 mesh or less.

金属繊維としては、(a)0.05mm×0.05mm×長さ3mm
(相当直径0.056mm×長さ3mm)、(b)0.1mm×0.1mm×
長さ6mm(相当直径0.113mm×長さ6mm)、(c)0.5mm×
0.5mm×長さ30mm(相当直径0.564mm×長さ30mm)の3種
類の低炭素鋼ファイバーを用いた。
As metal fiber, (a) 0.05mm × 0.05mm × length 3mm
(Equivalent diameter 0.056 mm x length 3 mm), (b) 0.1 mm x 0.1 mm x
Length 6 mm (equivalent diameter 0.113 mm x length 6 mm), (c) 0.5 mm x
Three types of low carbon steel fibers of 0.5 mm x length 30 mm (equivalent diameter 0.564 mm x length 30 mm) were used.

本実施例ではこれらの原料を第1表に示す配合比で混
合して得たA〜Eの6種の配合原料を組合せ、内寸が幅
100mm×長さ200mmの金型内の下部半分に長くて断面積の
大きい金属繊維を、上部半分に短かくて断面積の小さい
金属繊維を、各々成型後の厚みが5mmになる量を分割し
て装入した後、加圧能力500tonの油圧プレスを用いて加
圧加熱成形(成形圧力200kg/cm2の加圧下、昇温速度5
℃/分で550℃まで昇温し、1時間保持後冷却)し、幅1
00mm×長さ200mm×厚さ10mmの成形体を得た。
In this example, six raw materials A to E obtained by mixing these raw materials at the blending ratio shown in Table 1 were combined, and the inner size was varied.
In a 100 mm × 200 mm long mold, a metal fiber with a long and large cross-section is laid in the lower half, and a metal fiber with a short and small cross-section is laid in the upper half. , And then press-heat molding using a hydraulic press with a pressing capacity of 500 tons (molding pressure of 200 kg / cm 2 under pressure, heating rate 5
Temperature rises to 550 ° C at ℃ / min, holds for 1 hour and then cool), width 1
A molded body of 00 mm × length 200 mm × thickness 10 mm was obtained.

得られた成型体は、粉コークスを詰めたステンレス製
容器に入れ、窒素雰囲気下10℃/Hrの昇温速度で1000℃
まで昇温し、4時間保持後冷却して焼成した。
The obtained molded body was placed in a stainless steel container filled with powdered coke, and heated at 1000 ° C under a nitrogen atmosphere at a heating rate of 10 ° C / Hr.
The temperature was raised to 4 hours, held for 4 hours, cooled, and baked.

得られた炭素・金属複合材から、幅10mm×長さ60mm
(厚みは焼上り後の厚みと同じ)のテストピースを切出
し、シャルピー衝撃値、曲げ強度および電気比抵抗値を
測定した。
From the obtained carbon-metal composite material, width 10 mm x length 60 mm
A test piece (having the same thickness as the thickness after baking) was cut out, and the Charpy impact value, the bending strength and the electrical resistivity value were measured.

テストピースの切出し方向は、長さ60mmの方向が成型
体の長さ200mmの方向と一致するようにした。
The cutting direction of the test piece was such that the direction of the length of 60 mm coincided with the direction of the length of 200 mm of the molded body.

シャルピー衝撃値の測定は、打撃方向が成型時のプレ
ス方向と垂直になるようにして行なった。
The Charpy impact value was measured so that the impact direction was perpendicular to the pressing direction during molding.

曲げ強度の測定は、曲げスパン40mmで成型時の上部に
当る部分より圧下して行なった。
The bending strength was measured with a bending span of 40 mm by pressing down from the portion corresponding to the upper part during molding.

次に、同じ炭素・金属複合材から、幅8mm×長さ8mm×
高さ10mmのテストピースを、高さ方向が成型時のプレス
方向と一致するように切出し、このテストピースを成型
時の上面に当る面を摺動面とし、下記条件で摩耗試験を
実施し、摩耗試験後、テストピースの厚み変化を測定
し、摺動距離100Km当りの摩耗体積を算出した。
Next, from the same carbon-metal composite material, width 8 mm × length 8 mm ×
Cut out a test piece with a height of 10 mm so that the height direction matches the pressing direction at the time of molding, and use this test piece as the sliding surface at the surface that contacts the upper surface at the time of molding, and perform a wear test under the following conditions, After the abrasion test, the change in thickness of the test piece was measured, and the abrasion volume per 100 km of sliding distance was calculated.

上記シャルピー衝撃値、曲げ強度、曲耗量および電気
比抵抗値を第2表に示す。
Table 2 shows the Charpy impact value, bending strength, bending amount and electrical resistivity.

なお第2表には比較のため、同一寸法の金属繊維を用
い、本発明と同一の方法により加圧加熱成型、焼成処理
を行なって得られた炭素・金属複合材の物性を併せて示
す。
For comparison, Table 2 also shows the physical properties of the carbon-metal composite material obtained by using metal fibers of the same size and performing pressure heating molding and firing treatment by the same method as in the present invention.

第2表より明らかなごとく、上下同一寸法の金属繊維
で構成した比較例は、いずれも摩耗量と衝撃値が両立で
きていないのに対し、上下異なる寸法の金属繊維で構成
した本発明はいずれも摩耗特性および衝撃特性共に優れ
ている。
As is clear from Table 2, the comparative examples constituted by the metal fibers having the same size in the upper and lower sides are not compatible with the wear amount and the impact value, whereas the present invention constituted by the metal fibers having different sizes in the upper and lower sides is Also has excellent wear characteristics and impact characteristics.

発明の効果 以上説明したごとく、この発明に係る炭素・金属複合
材は、大きさにより異なる特性を発現する金属繊維を分
けて配して、摩耗特性と衝撃特性を向上させたものであ
るから、特にパンタグラフ用摺板として優れた特性を発
揮し、そのもたらす効果は甚大である。
Effects of the Invention As described above, the carbon-metal composite material according to the present invention is one in which the metal fibers expressing different characteristics depending on the size are separately arranged, so that the wear characteristics and the impact characteristics are improved, In particular, it exhibits excellent characteristics as a sliding plate for pantograph, and its effect is enormous.

【図面の簡単な説明】 第1図はこの発明方法を実施するための加圧加熱成型用
金型の一例を示す概略図である。 1……上プレスヘッド、2……下プレスヘッド 3……上金型、4……下金型 5……金枠、6……成型原料 7……熱板、8……断熱材
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing an example of a press-heating molding die for carrying out the method of the present invention. 1 ... Upper press head, 2 ... Lower press head 3 ... Upper mold, 4 ... Lower mold 5 ... Mold frame, 6 ... Molding material 7 ... Hot plate, 8 ... Insulation material

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭素材原料に金属繊維を配合した複合材で
あって、長さと太さのいずれか一方、または両方が異な
る金属繊維を分けて配して構成したことを特徴とする炭
素・金属複合材。
1. A composite material in which a metal material is mixed with a carbon material as a raw material, wherein the carbon material is constituted by separately disposing metal fibers having different lengths or thicknesses or both. Metal composite.
JP63315614A 1988-10-17 1988-12-13 Carbon / metal composite Expired - Lifetime JP2511705B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP63315614A JP2511705B2 (en) 1988-12-13 1988-12-13 Carbon / metal composite
CA 2000805 CA2000805C (en) 1988-10-17 1989-10-16 Carbon/metal composite
KR1019890014828A KR930009894B1 (en) 1988-10-17 1989-10-16 Carbon/metal composite
DE68925936T DE68925936T2 (en) 1988-10-17 1989-10-17 Carbon / metal composite
EP19930111036 EP0572044A2 (en) 1988-10-17 1989-10-17 Carbon/metal composite
EP89119290A EP0364972B1 (en) 1988-10-17 1989-10-17 Carbon/metal composite
AT89119290T ATE135415T1 (en) 1988-10-17 1989-10-17 CARBON/METAL COMPOSITE
US07/422,898 US5158828A (en) 1988-10-17 1989-10-17 Carbon/metal composite
EP19930111037 EP0572045A2 (en) 1988-10-17 1989-10-17 Carbon/metal composite
US08/177,791 US5531943A (en) 1988-10-17 1994-01-05 Method of making a carbon/metal composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63315614A JP2511705B2 (en) 1988-12-13 1988-12-13 Carbon / metal composite

Publications (2)

Publication Number Publication Date
JPH02160665A JPH02160665A (en) 1990-06-20
JP2511705B2 true JP2511705B2 (en) 1996-07-03

Family

ID=18067485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63315614A Expired - Lifetime JP2511705B2 (en) 1988-10-17 1988-12-13 Carbon / metal composite

Country Status (1)

Country Link
JP (1) JP2511705B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110683854A (en) * 2019-11-21 2020-01-14 常思荣 Pantograph carbon slide plate and preparation method thereof

Also Published As

Publication number Publication date
JPH02160665A (en) 1990-06-20

Similar Documents

Publication Publication Date Title
CN104926347B (en) High-speed railway EMUs pantograph slide composite material and preparation method thereof
CN107857591A (en) A kind of method that pantograph metal-impregnated carbon draw runner material is prepared using nano-carbon powder
CN101165818A (en) Carbon base composite material for collector shoe sliding block and its preparation method
CN107022690B (en) A method of aluminium/C-base composte material is prepared by Pressure Infiltration aluminium alloy
CN105150857A (en) C/C-Cu composite material for pantograph pan and preparing method
JP2511705B2 (en) Carbon / metal composite
KR930009894B1 (en) Carbon/metal composite
JP2007511197A (en) Combined current collector
JPH04280865A (en) Carbon-metal composite material
CN110436924B (en) Copper-impregnated carbon sliding plate material for high-speed train pantograph and preparation method thereof
JPH02160664A (en) Carbon-metal composite material
JPH02160663A (en) Carbon-metal composite material
RU2150444C1 (en) Material for current-conducting contact products, method of making said material, and product
CN110436925B (en) Pure carbon sliding plate for high-speed train pantograph and preparation method thereof
JPH02160662A (en) Carbon-metal composite material
RU2207962C1 (en) Method of manufacture of electric vehicle current collector contact slipper
CN1061960C (en) Carbon-carbon composition material for electric collection
JPH01270571A (en) Production of carbon material for sliding and current collection
JPH02107564A (en) Production of carbon-metal composite material
JPH0456787B2 (en)
JPS62197352A (en) Manufacture of carbon material for sliding and electric power collecting
JPH06172029A (en) Carbon-metal composite material and its production
JPH04207903A (en) Production of carbon material for sliding current collection
JPH04207902A (en) Production of carbon material for sliding current collection
JPH05279120A (en) Composite material of carbon and metal