JP2510640B2 - 高抗張力無方向性電磁鋼板の製造方法 - Google Patents

高抗張力無方向性電磁鋼板の製造方法

Info

Publication number
JP2510640B2
JP2510640B2 JP62327810A JP32781087A JP2510640B2 JP 2510640 B2 JP2510640 B2 JP 2510640B2 JP 62327810 A JP62327810 A JP 62327810A JP 32781087 A JP32781087 A JP 32781087A JP 2510640 B2 JP2510640 B2 JP 2510640B2
Authority
JP
Japan
Prior art keywords
less
hot
tensile strength
temperature
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62327810A
Other languages
English (en)
Other versions
JPH01227A (ja
JPS64227A (en
Inventor
正弘 中元
晃 坂井田
猛 久保田
美明 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62327810A priority Critical patent/JP2510640B2/ja
Publication of JPH01227A publication Critical patent/JPH01227A/ja
Publication of JPS64227A publication Critical patent/JPS64227A/ja
Application granted granted Critical
Publication of JP2510640B2 publication Critical patent/JP2510640B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高抗張力無方向性電磁鋼板の製造方法に係
わり、高速回転機用の低鉄損で強度の高い磁性材料およ
び電磁開閉器用の耐摩耗性に優れた磁性材料として好適
なものを製造する方法に関する。
(従来の技術) 従来、回転機器に要求されていた回転数は、高々10万
rpm程度であり、ローター(回転子)用材料には積層さ
れた電磁鋼板が用いられてきた。最近、20〜30万rpmも
の超高速回転が要求されるようになり、ローターに加わ
る遠心力が、電磁鋼板の強度を上回る可能性が出てき
た。
このため超高速回転機には、通常、電磁鋼板の代わり
に充分な強度を持つ鋳鋼製のソリッドローターが使用さ
れる。しかし、この場合、鋳鋼板ブロックからローター
を削り出すという複雑な加工工程が必要になるためコス
トが高く、しかも積層タイプに比べ渦電流損失が大き
く、電動機の効率が著しく低下するという問題が生じて
いる。
また、電磁開閉器はその用途上、使用するにつれ接触
面が摩耗するため、磁気特性だけでなく耐摩耗性の優れ
た磁性材料が望まれる。
このようなニーズに対応して、最近では高抗張力を有
する無方向性電磁鋼板について検討され、いくつか提案
されている。例えば、特開昭60-238421号公報は、Siを
3.5〜7.0%と高め、さらにMn:0.1〜11.5%、Ni:0.1〜2
0.0%、Co:0.5〜20.0%、Ti:0.05〜3.0%、W:0.05〜3.0
%、Mo:0.05〜3.0%、Al:0.5〜13.0%の固溶体強化成分
の1種または2種以上を1.0〜20.0%含有させたスラブ
を素材とし、熱延後、熱延板に100〜600℃の温間圧延を
繰返して最終板厚に圧延し焼鈍し、抗張力が50kg/mm2
上の高抗張力無方向性電磁鋼板を製造する方法である。
これは圧延の困難な高Si含有量としているので、面倒
な温間圧延を必須としているが、圧延時に板破断の発生
が多くなる恐れがあり、生産性の低下、歩留りの低下を
もたらすなど改善の余地がある。
特開昭61-84360号公報ではNi:8〜20%、Mo:0.2〜5.0
%、Al:0.1〜2.0%、Ti:0.1〜1.0%、Cr:1.0〜10.0%を
含有する高速回転電動機用の高抗張力軟磁性材料が提案
されている。これは特にNiを、またMo、Crを多量に含有
しているために極めて高価な材料となる。
さらに特開昭61-9520号公報はSi:2.5〜7.0%と、Ti:
0.05〜3.0%、W:0.05〜3.0%、Mo:0.05〜3.0%、Ni:0.1
〜20.0%、Al:0.5〜13.0%の1種または2種以上を1.0
〜20.0%含有する溶鋼から急冷凝固法により高抗張力無
方向性電磁鋼板を製造せんとするものである。これはプ
ロセスが特殊であるために、通常の電磁鋼板の製造設備
では製造できず、工業的に生産することが難しいと考え
られる。
(発明が解決しようとする問題点) このように、高抗張力の無方向性電磁鋼板の製造につ
いて提案がなされているが、通常の電磁鋼板製造設備を
用いて、工業的に安定して製造するまでに到っていない
というのが実情である。
さらに高抗張力無方向性電磁鋼板は、前述の如く超高
速回転電磁機器および電磁開閉器用材料として使用され
るので、高抗張力である他に、鉄損が低く、かつ磁束密
度がすぐれる必要がある。
本発明は、超高速回転機および電磁開閉器用材料とし
て好適な、降伏強さYP≧55kg/mm2、抗張力TS≧60kg/m
m2、硬度Hμv≧150の高強度、耐摩耗性を持つととも
に、磁束密度B50≧1.60Tの優れた磁気特性を兼ね備えた
高抗張力無方向性電磁鋼板を、圧延時や、その他の工程
ラインを通板時に、板破断等を生じることなく工業的に
安定して製造することを目的とする。
(問題点を解決するための手段) 本発明者達は、前記目的を達成すべく種々実験し検討
を重ねてきた。即ち本発明はC:0.01%以下、Si:2.0%以
上3.5%以下、Mn:0.1%以上10.0%以下、P:0.20%以
下、Al:0.10%以上1.50%以下、B:0.008%以下さらに必
要に応じNiを6.0%以下を含有し、残部が鉄および不可
避的不純物からなるスラブを、熱間圧延するにさいし
て、熱延板厚(t;mm)との関係の次式で示される巻取温
度(CT;℃)以下で巻取り、さらに巻取り後5時間以内
に冷却を開始して、300℃までを平均冷却速度100℃/時
間以上となるように冷却し、次いで無焼鈍のまま、ある
いは熱延板焼鈍し、冷間圧延し、焼鈍して、高抗張力お
よび磁気特性のすぐれた無方向性電磁鋼板を製造する方
法である。
CT(℃)≦−200×t(mm)+1000 ただし0.5≦t≦2.5 まず鋼成分について述べる。
Cは磁気特性を劣化させる成分で、0.01(重量)%を
超えて含有すると鉄損を増大させるため、0.01%以下と
する。なお、Cは製鋼で脱炭する代わりに熱延板または
冷延板で脱炭して上記範囲に入れてもよい。
Siは鋼の固有抵抗を高めて渦電流を減らし、鉄損を低
下せしめるとともに、抗張力を高めるが、含有量が2.0
%未満ではその効果が小さい。また3.5%を超えると鋼
を脆化させ、さらに製品の磁束密度を低下させるため3.
5%以下とする。
Mnは鋼の抗張力を高めるとともに、固有抵抗を高め鉄
損を低下させるが、0.1%未満では効果が少なく、好ま
しくは1.0%超から5.0%である。10.0%を超えると成品
の磁束密度が低下するので、0.1〜10.0%とする。
Pは抗張力を高める効果の著しい元素であるが、0.20
%を超えると脆化が激しく、工業的規模での熱延、冷延
等の処理が困難になるため、上限を0.20%とする。
なお、製品を打抜き、または剪断ままの端面で使用す
る場合、150℃以上の雰囲気に長時間さらされるとP0.03
%超で見掛け上伸び劣化を生じることがある。これは高
抗張力鋼板の破断面が比較的マイクロクラックを内在し
やすいこと、および歪時効等に起因すると考えられる。
従って用途上、時効後の伸びが問題になる場合、平
滑かつ歪の残らない端面加工法を採用する。サンドペ
ーパーで打抜き、剪断の表面層を除去する等が有効であ
る。また成分的にP0.03%以下とすれば、上記問題は生
じない。
Alは脱酸材として、少なくとも0.10%は必要であり、
またAlを含有させることにより、強度が向上し、固有抵
抗増加により鉄損も低下するが、1.50%を超えると脆化
が問題になるため、0.10〜1.50%とする。
Bは結晶粒界に偏析し、Pの粒界偏析による脆化を抑
制する効果があるが、0.008%を超えると著しく脆化す
るため、上限を0.008%とする。
さらに必要に応じてNiを含有する。Niは磁性特性への
悪影響が少なく、抗張力向上に有効であるが、6.0%超
では磁束密度の低下が大きいので6.0%以下とする。
前記成分を含み、残部が鉄および不可避的不純物から
なる鋼スラブは、転炉で溶製され連続鋳造あるいは造塊
−分塊圧延により製造される。
鋼スラブは公知の方法で加熱され、ついで例えば0.5
〜3.5mmの板厚に熱間圧延される。熱間圧延の巻取温度
と熱延板厚との関係および巻取り後の冷却条件は、鋼板
の圧延性や加工性を高めるために重要であり、先に述べ
た関係式に従って、熱延板厚に応じた巻取温度以下で巻
取り、巻取り後、5時間以内に冷却を開始して、300℃
まで、平均冷却速度100℃/時間以上で冷却する。
熱間圧延において、巻取温度(CT)を熱延板厚(t;m
m)との関係式 CT(℃)≦−200×t(mm)+1000として巻取る。
その理由はこの式で示される板厚(t)に対応した巻
取温度(CT)超で巻取ると、脆化し、圧延時などに板破
断が多発するから、これを防止するためである。
巻取り後、冷却開始までに長い時間を経過し、また冷
却速度が遅いと、鋼が脆化するので、これを防止するに
は巻取り後、5時間以内に冷却を開始する必要があり、
その冷却速度は100℃/時間以上の平均冷却速度とする
必要がある。
この冷却終点が高いと、圧延性などの加工性が劣化す
るので、300℃までを前記平均冷却速度で冷却する。熱
間圧延後の焼鈍せずに冷間圧延するか、あるいは磁気特
性の向上をさらに図る必要がある場合には、熱延板焼鈍
を500〜1000℃で5秒〜15分間にて行い、その後、冷間
圧延する。
熱延板焼鈍を上記温度、時間の範囲で行うのは、500
℃より低温または5秒より短いと、磁気特性をより高め
る焼鈍効果があらわれてないためであり、一方、1000℃
または15分間を超えると結晶粒が粗大化し、冷延で板破
断を生じたり、最終製品の強度を低下せしめる。
冷間圧延後は700〜900℃で5秒〜15分間の焼鈍を行
う。その理由は700℃未満または5秒未満では、鉄損の
低下と磁束密度の向上を図る十分な焼鈍効果があらわれ
ず、また圧延組織が残ったり平坦度が改善されないまま
残る。900℃超または15分を超えると結晶粒が粗大化す
るため強度が低下し、高抗張力鋼板とならない。
この冷延板の焼鈍においては、必要によっては脱炭雰
囲気として脱炭を行なっても差しつかえない。
(実施例) 実施例1 C:0.0025%、Si:3.05%、Mn:1.40%、P:0.010%、T.A
l:0.50%、B:0.0025%を含有し、残部が鉄および不可避
的不純物からなる鋼スラブをを熱延板厚0.5〜3.5mm、熱
延巻取り温度200〜1000℃で熱延し、巻取り後、冷却開
始までの時間を0〜6時間まで変え、平均冷却速度100
℃/時間で250℃まで冷却した熱延板の繰返し曲げ試験
を行った。
結果を第1図に示す。同図から、本成分系の場合、熱
延板板厚、巻取り温度、巻取り〜毎時100℃の冷却開始
までの時間と熱延板脆性の間には、明らかな相関が認め
られる。下式を満足する場合、繰返し曲げ回数≧3とな
る。
CT(℃)≦−200×t(mm)+1000 ただし0.5≦t≦2.5 しかも、(巻取り〜毎時100℃以上の冷却開始までの
時間)≦5時間熱延に引き続き、熱延板焼鈍なし、また
は熱延板焼鈍条件を(400〜1100)℃×(5〜900)秒間
の範囲で変化させて処理し、冷間圧延で板厚0.5mmにし
たあと、(650〜925)℃×30秒間の焼鈍を行い、機械的
性質およびW15/50の鉄損とB50の磁束密度を測定した。
なお、磁気測定には30mm×320mmのエプスタイン試験
片(圧延方向、直角方向半量ずつ)を用いた。
結果を第1表に示す。
脆化破断のため冷延できなかったNo.1、4、5、7、
8、9、11、12、14、17、18、19、20、21、22のうち、
12は熱延板焼鈍温度が高く、その他はすべて熱延巻取温
度が先に述べた板厚と巻取温度の関係式を満足せず、熱
延板の繰返し曲げ回数が2回以下のものである。
本発明の条件に製造したNo.2、3、6、10、13、15、
16は板破断を生じることなく圧延され、降伏強さYPは55
〜68kg/mm2、高抗張力TSは60〜76kg/mm2と高い強度特性
をもち、さらに鉄損W15/50、磁束密度B50とも優れてい
る。
実施例2 重量%でC:0.0015〜0.0045%、Si:2.8〜3.23%、Mn:
0.04%〜3.05%、P:0.005〜0.50%、Al:0.50〜2.00%、
B:0.000〜0.0100%、Ni:0.75〜1.80%を含有し、残部が
鉄および不可避的不純物からなる鋼スラブ供試材を熱間
圧延で、板厚2.0mmとし、熱延巻取温度を400℃巻取り
後、冷却開始(平均冷却速度100℃/時間)までの時間
を30分で処理し、800℃×30秒間の熱延板焼鈍を実施し
たあと、冷間圧延で板厚0.5mmにし、750℃×30秒間の焼
鈍を施した鋼板の機械的性質および磁気特性を測定し
た。
なお、磁気特性は30mm×320mmのエプスタイン試験片
を圧延方向および直角方向からそれぞれ半量ずつ剪断し
てW15/50の鉄損とB50の磁束密度を測定した。
結果を第2表に示す。
第2表に示された結果から明らかなように、本発明の
条件で製造した試料1〜9は、板破断を生じることなく
圧延され、降伏強さYPは63〜72kg/mm2、抗張力TSは71〜
82kg/mm2で高い強度特性をもち、さらに鉄損W15/50、磁
束密度B50とも優れている。
(発明の効果) 以上のように、本発明によると、超高速回転電動機お
よび電磁開閉器用材料として、好適な高強度性と磁気特
性のすぐれた無方向性電磁鋼板が、圧延時などに板破断
等のトラブルを生じることなく、安定して製造される。
【図面の簡単な説明】
第1図は本発明の一実施例において、熱延板の繰返し曲
げ回数に及ぼす巻取温度と熱延板厚の調査結果を示す図
表である。

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】重量%で C:0.01%以下 Si:2.0%以上3.5%以下 Mn:0.1%以上10.0%以下 P:0.20%以下 Al:0.10%以上1.50%以下 B:0.008%以下 を含有し、残部が鉄および不可避的不純物からなるスラ
    ブを熱間圧延するに際して、熱延板厚(t;mm)との関係
    を次式で示される巻取温度(CT;℃)以下で巻取りした
    のち、さらに巻取り後5時間以内に冷却を開始して、30
    0℃までを平均冷却速度が毎時100℃以上となるように冷
    却し、無焼鈍のままあるいは500℃以上1000℃以下の温
    度で5秒以上15分以下の焼鈍をし、冷延し、さらに700
    ℃以上900℃以下の温度で5秒以上15分間以内の焼鈍を
    行うことを特徴とする高抗張力無方向性電磁鋼板の製造
    方法。 CT(℃)≦−200×t(mm)+1000 ただし0.5≦t≦2.5
  2. 【請求項2】重量%で C:0.01%以下 Si:2.0%以上3.5%以下 Mn:0.1%以上10.0%以下 P:0.20%以下 Al:0.10%以上1.50%以下 B:0.008%以下 Ni:6.0%以下 を含有し、残部が鉄および不可避的不純物からなるスラ
    ブを熱間圧延するに際して、熱延板厚(t;mm)との関係
    を次式で示される巻取温度(CT;℃)以下で巻取りした
    のち、さらに巻取り後5時間以内に冷却を開始し、300
    ℃までを平均冷却速度が毎時100℃以上となるように冷
    却し、無焼鈍のままあるいは500℃以上1000℃以下の温
    度で5秒以上15分間以下の焼鈍をし、冷延し、さらに70
    0℃以上900℃以下の温度で5秒以上15分以内の焼鈍を行
    うことを特徴とする高抗張力無方向性電磁鋼板の製造
    法。 CT(℃)≦−200×t(mm)+1000 ただし0.5≦t≦2.5
JP62327810A 1987-03-11 1987-12-24 高抗張力無方向性電磁鋼板の製造方法 Expired - Lifetime JP2510640B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62327810A JP2510640B2 (ja) 1987-03-11 1987-12-24 高抗張力無方向性電磁鋼板の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-56186 1987-03-11
JP5618687 1987-03-11
JP62327810A JP2510640B2 (ja) 1987-03-11 1987-12-24 高抗張力無方向性電磁鋼板の製造方法

Publications (3)

Publication Number Publication Date
JPH01227A JPH01227A (ja) 1989-01-05
JPS64227A JPS64227A (en) 1989-01-05
JP2510640B2 true JP2510640B2 (ja) 1996-06-26

Family

ID=26397125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62327810A Expired - Lifetime JP2510640B2 (ja) 1987-03-11 1987-12-24 高抗張力無方向性電磁鋼板の製造方法

Country Status (1)

Country Link
JP (1) JP2510640B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19918484C2 (de) 1999-04-23 2002-04-04 Ebg Elektromagnet Werkstoffe Verfahren zum Herstellen von nichtkornorientiertem Elektroblech
KR20220106185A (ko) * 2020-02-20 2022-07-28 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판용 열연 강판

Also Published As

Publication number Publication date
JPS64227A (en) 1989-01-05

Similar Documents

Publication Publication Date Title
JP5000136B2 (ja) 高強度電磁鋼板およびその形状加工部品とそれらの製造方法
JP4880467B2 (ja) 無方向性電磁鋼板の改善された製造方法
JP5223190B2 (ja) 無方向性電磁鋼板およびその製造方法
JP5028992B2 (ja) 無方向性電磁鋼板およびその製造方法
JPWO2003002777A1 (ja) 無方向性電磁鋼板およびその製造方法
CN111418035A (zh) 高磁导率软磁合金和制造高磁导率软磁合金的方法
JP3305806B2 (ja) 高張力無方向性電磁鋼板の製造方法
JP7401729B2 (ja) 無方向性電磁鋼板
JPH0686625B2 (ja) 高抗張力無方向性電磁鋼板の製造方法
US20190360065A1 (en) METHOD FOR PRODUCING A STRIP FROM A CoFe ALLOY AND A SEMI-FINISHED PRODUCT CONTAINING THIS STRIP
US11970757B2 (en) Electric steel strip or sheet for higher frequency electric motor applications, with improved polarization and low magnetic losses
JPH0425346B2 (ja)
JPH0456109B2 (ja)
JPH01226A (ja) 高抗張力無方向性電磁鋼板の製造方法
JP2510640B2 (ja) 高抗張力無方向性電磁鋼板の製造方法
JP2510641B2 (ja) 抗張力の高い無方向性電磁鋼板の製造方法
JPH0686624B2 (ja) 高抗張力無方向性電磁鋼板の製造方法
JP3430794B2 (ja) 磁気特性に優れる無方向性電磁鋼板およびその製造方法
JPH055126A (ja) 無方向性電磁鋼板の製造方法
KR102218470B1 (ko) 자기적 특성 및 외관형상이 우수한 무방향성 전기강판 및 이의 제조방법
JPH01225A (ja) 高抗張力無方向性電磁鋼板の製造方法
JPH01228A (ja) 抗張力の高い無方向性電磁鋼板の製造方法
JP2003105508A (ja) 加工性の優れた無方向性電磁鋼板及びその製造方法
JPH04337050A (ja) 磁気特性の優れた高抗張力磁性材料およびその製造方法
JPH01227A (ja) 高抗張力無方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 12