JP2510391B2 - Ship handling control device for two 2-axle 2-rudder vessels - Google Patents

Ship handling control device for two 2-axle 2-rudder vessels

Info

Publication number
JP2510391B2
JP2510391B2 JP5041608A JP4160893A JP2510391B2 JP 2510391 B2 JP2510391 B2 JP 2510391B2 JP 5041608 A JP5041608 A JP 5041608A JP 4160893 A JP4160893 A JP 4160893A JP 2510391 B2 JP2510391 B2 JP 2510391B2
Authority
JP
Japan
Prior art keywords
rudder
clutch
lever
steering
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5041608A
Other languages
Japanese (ja)
Other versions
JPH06255586A (en
Inventor
幸雄 冨田
博敬 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SODA SHISUTEMU KK
Original Assignee
NIPPON SODA SHISUTEMU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SODA SHISUTEMU KK filed Critical NIPPON SODA SHISUTEMU KK
Priority to JP5041608A priority Critical patent/JP2510391B2/en
Publication of JPH06255586A publication Critical patent/JPH06255586A/en
Application granted granted Critical
Publication of JP2510391B2 publication Critical patent/JP2510391B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/21Control means for engine or transmission, specially adapted for use on marine vessels
    • B63H21/213Levers or the like for controlling the engine or the transmission, e.g. single hand control levers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/02Initiating means for steering, for slowing down, otherwise than by use of propulsive elements, or for dynamic anchoring
    • B63H2025/026Initiating means for steering, for slowing down, otherwise than by use of propulsive elements, or for dynamic anchoring using multi-axis control levers, or the like, e.g. joysticks, wherein at least one degree of freedom is employed for steering, slowing down, or dynamic anchoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H2025/066Arrangements of two or more rudders; Steering gear therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/38Rudders

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、2基2軸2枚舵船の操
船制御装置に関し、詳しくは、1本の操作レバーにより
舵および推進器を操作するものに係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a marine vessel maneuvering control device for a two-barreled, two-shaft, two-rudder ship, and more particularly to one for operating a rudder and a propulsion device with a single operating lever.

【0002】[0002]

【従来の技術】従来、2枚の高揚力舵の夫々の回転位置
を組み合わせることにより、プロペラが前進方向運転の
ままでプロペラ後流を制御し、360 °全周方向にわたり
船体にスラストを与えることができる操船システムが知
られている。
2. Description of the Related Art Conventionally, by combining the rotational positions of two high lift rudders, the propeller wake can be controlled while the propeller is still operating in the forward direction, and thrust can be applied to the hull over the entire 360 ° direction. There is a known ship handling system.

【0003】従来の操船システムにおいては、船尾に配
した左右の各舵を別々に制御するために、各舵に対応し
てそれぞれ操作器およびクラッチ切換用押釦等を設けて
いる。操船者は、目的とする船体運動を行わせるため
に、その都度それぞれの操作器を操作することにより左
右の舵を別々に操舵して各舵の舵角を決めており、また
各クラッチ切換用押釦を押すことにより各主機関のクラ
ッチの切換操作を行って前進または後進を行なわせてい
た。
In the conventional marine vessel maneuvering system, in order to control the left and right rudders arranged at the stern separately, an operating device and a clutch switching push button are provided for each rudder. In order to perform the desired hull movement, the ship operator operates the respective operating devices each time to steer the left and right rudder separately to determine the rudder angle of each rudder, and for each clutch switching By pushing the push button, the clutch of each main engine is switched to move forward or backward.

【0004】[0004]

【発明が解決しようとする課題】上記した従来の構成に
おいて、操船者が意図する船体運動を実現するために
は、時々刻々変化する船の運航状況に合わせて、無限に
存在する舵角の組合せの中から最も適切な舵角の組合せ
を選択して制御しなければならない。しかし、上述した
ように、各舵および各推進器をそれぞれ別途の操作器お
よびクラッチ切換用押釦で操作するのでは極めて操作性
が悪く、離着岸時などいろいろな条件を同時に判断して
即応しなければならない状況においては、操船者にかな
りの負担を強いる問題があった。
In order to realize the hull motion intended by the operator in the above-mentioned conventional structure, an infinite number of combinations of rudder angles are selected in accordance with the operating conditions of the ship, which change from moment to moment. It is necessary to select and control the most appropriate combination of steering angles from among the above. However, as described above, operating each rudder and each propulsion device with separate operating devices and clutch switching pushbuttons results in extremely poor operability. In the situation where it must be done, there is a problem that it puts a heavy burden on the operator.

【0005】本発明は上記課題を解決するもので、2枚
の舵の舵角を組み合わせるとともに、各主機関における
前後進ギヤを切換ることにより行う煩雑な操船作業を、
1本の操作レバーを持つ操作器(ジョイスティック)で
容易に行える2基2軸2枚舵船の操船制御装置を提供す
ることを目的とする。
The present invention solves the above-mentioned problems, and combines the rudder angles of two rudders with each other, and performs a complicated marine vessel maneuvering work by switching the forward and backward gears of each main engine.
It is an object of the present invention to provide a marine vessel maneuvering control device for a two-group, two-shaft, two-rudder vessel that can be easily operated with an operating device (joystick) having one operating lever.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明の2基2軸2枚舵船の操船制御装置は、定速
回転する主機関2基を装備し、それぞれの主機関により
クラッチ付減速機を介して駆動される固定ピッチプロペ
ラを船尾の左右に配し、各プロペラ後方に高揚力舵を配
し、各高揚力舵ごとに舵取機を配した船舶において、2
枚の舵の回転角位置を適宜組合わせ、各主機関に直結し
たクラッチ付減速機によりプロペラの回転方向を切換え
て任意の船体運動を行なわせる操船制御装置であって、
1本の操作レバーをX−Y座標上の任意の位置(X,
Y)に置くことができる操作器を設け、前記操作レバー
の各位置に対応して発信する命令信号により、各クラッ
チ付減速機の切換操作および各舵取機の舵回転操作を制
御する船体運動制御演算回路を設け、この船体運動制御
演算回路は、操作器の操作レバーの操作範囲をX・Y直
交座標系で−1≦x≦1,−1≦y≦1としたとき、k
1 ,k2 ,k3 を任意の定数として左舷舵角δP および
右舷舵角δS を次式で求めて各舵取機を制御し、 δP =−{k1 +k2 (1−|y|)}x+k3 (1−
|y|) δS =−{k1 +k2 (1−|y|)}x−k3 (1−
|y|) かつ、操作レバーをホバー位置に当るy=0位置よりや
や前方、およびそれよりさらに前方へ傾転させたとき、
各クラッチ付減速機を前進回転側に切換操作し、y=0
位置よりやや後方、およびそれよりさらに後方に傾転さ
せたとき各クラッチ付減速機を後進回転側に切換操作す
るように構成したものである。
In order to solve the above-mentioned problems, a marine vessel maneuvering control system for a two-shaft, two-shaft, two-rudder ship according to the present invention is equipped with two main engines that rotate at a constant speed. A fixed-pitch propeller driven by a speed reducer with a clutch is arranged on the left and right of the stern, a high lift rudder is arranged behind each propeller, and a steering gear is arranged for each high lift rudder.
A vessel maneuvering control device for performing arbitrary hull movements by appropriately combining the rotational angle positions of the rudder sheets and switching the rotational direction of the propeller by a reduction gear with a clutch directly connected to each main engine,
Move one operating lever to any position (X,
Y), which is provided with an operation device, and which controls the switching operation of each reduction gear with clutch and the steering rotation operation of each steering gear by a command signal transmitted corresponding to each position of the operation lever. A control calculation circuit is provided, and this hull motion control calculation circuit is such that when the operation range of the operation lever of the operation device is -1≤x≤1, -1≤y≤1 in the XY orthogonal coordinate system, k
1 , k 2 and k 3 are set as arbitrary constants, the port steering angle δ P and the starboard steering angle δ S are calculated by the following equations to control each steering gear, and δ P = − {k 1 + k 2 (1- | y |)} x + k 3 (1-
| Y |) δ S = - {k 1 + k 2 (1- | y |)} x-k 3 (1-
| Y |) and when the operation lever is tilted slightly forward of the y = 0 position that hits the hover position, and further forward of that,
Change the speed reducer with each clutch to the forward rotation side, and y = 0
When the vehicle is tilted slightly rearward from the position and further rearward, the speed reducer with each clutch is switched to the reverse rotation side.

【0007】[0007]

【作用】上記した構成により、k1 ,k2 ,k3 は調整
可能な定数で、操作レバーの各位置に対応する舵角の大
きさを船の操縦性能に合わせて設定するためのもので、
任意の適当な値とする。
With the above construction, k 1 , k 2 and k 3 are adjustable constants and are used to set the size of the steering angle corresponding to each position of the operating lever in accordance with the steering performance of the ship. ,
Take any appropriate value.

【0008】そして、操作器の操作レバーが−1≦x≦
1,0<y≦1の範囲にあるときには、クラッチ付減速
機のギアを前進側に嵌合させ、定速回転するそれぞれの
主機関によりクラッチ付減速機を介して固定ピッチプロ
ペラを回転駆動する。一方、操作レバーの操作位置に応
じて左右の高揚力舵に与える舵角δP ,δS を船体運動
制御演算回路において算出し、各舵取機によりそれぞれ
の高揚力舵を回転操作して2枚の舵の回転角位置を適宜
組合わせ、船体を直前進、前進左旋回、前進右旋回を行
わせる。
The operating lever of the operating device is -1≤x≤.
When in the range of 1,0 <y ≦ 1, the gears of the reduction gear with clutch are fitted to the forward side, and the fixed-pitch propellers are rotationally driven through the reduction gear with clutch by each main engine that rotates at a constant speed. . On the other hand, the rudder angles δ P and δ S given to the left and right high lift rudders are calculated by the ship motion control arithmetic circuit according to the operating position of the operating lever, and each high lift rudder is rotated by each steering gear to By appropriately combining the rotational angle positions of the rudders, the hull is made to move forward, turn left forward, and turn right forward.

【0009】そして、操作レバーがホバー位置に当るx
=0,y=0の位置にあるときには、主機関によりクラ
ッチ付減速機を介して固定ピッチプロペラを回転駆動す
るとともに、双方の高揚力舵に適当舵角をδP ,δS
えて、船体をその場静止させる。
Then, the operation lever hits the hover position x
= 0, y = 0, the main engine rotationally drives the fixed pitch propeller through the speed reducer with a clutch, and gives both high lift rudders an appropriate rudder angle δ P , δ S. To stop on the spot.

【0010】そして、操作器の操作レバーが−1≦x≦
1,−1≦y<0の範囲にあるときには、クラッチ付減
速機のギアを後進側に嵌合させ、定速回転するそれぞれ
の主機関によりクラッチ付減速機を介して固定ピッチプ
ロペラを回転駆動する。一方、操作レバーの操作位置に
応じて左右の高揚力舵に与える舵角δP ,δS を船体運
動制御演算回路において算出し、各舵取機によりそれぞ
れの高揚力舵を回転操作して2枚の舵の回転角位置を適
宜組合わせ、船体を直後進、後進左旋回、後進右旋回を
行わせる。
The operating lever of the operating device is -1≤x≤.
When in the range of 1, -1 ≤ y <0, the gear of the speed reducer with clutch is fitted to the reverse side, and the fixed-pitch propellers are rotationally driven through the speed reducer with clutch by each main engine that rotates at a constant speed. To do. On the other hand, the rudder angles δ P and δ S given to the left and right high lift rudders are calculated by the ship motion control arithmetic circuit according to the operating position of the operating lever, and each high lift rudder is rotated by each steering gear to By appropriately combining the rotational angle positions of the rudders, the hull is made to move backward, reverse left, and reverse right.

【0011】以上のように、ただ1本の操作レバーを操
作するだけで、直前後進、前進左右旋回、後進左右旋回
のほかに、主機関を運転したままでのその場静止等の様
々な船体運動を行うことができる。したがって、迅速、
容易な離接岸を達成でき、かつ、操船者の負担を著しく
軽減することができる。
As described above, by operating only one operating lever, various hulls such as immediately backward / forward, left / right turn, backward / left / right turn, and still on the spot while the main engine is operating can be used. You can exercise. So quick,
It is possible to achieve easy separation and berthing, and it is possible to significantly reduce the burden on the operator.

【0012】[0012]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1は本実施例の操船制御装置を示すブロック
ダイアグラムである。図1において、船舶は定速回転す
る2基の主機関1,1を装備し、それぞれの主機関1,
1によりクラッチ付減速機2,2を介して駆動する固定
ピッチプロペラ3,3を船尾の左右に配している。この
クラッチ付減速機2,2はギアの嵌合を前進側と後進側
とに切換えることにより固定ピッチプロペラ3,3の回
転方向を切換えるものである。また、各プロペラ3,3
の後方には、それぞれ高揚力舵4,4を配しており、各
高揚力舵4,4毎に舵取機5,5を設けている。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a marine vessel maneuvering control device according to this embodiment. In FIG. 1, the ship is equipped with two main engines 1, 1 that rotate at a constant speed.
Fixed pitch propellers 3, 3 driven by a reduction gear with clutch 2, 2 by 1 are arranged on the left and right of the stern. The speed reducers 2 and 2 with clutches switch the rotational directions of the fixed pitch propellers 3 and 3 by switching the engagement of gears between the forward drive side and the reverse drive side. In addition, each propeller 3,3
High-lifting rudders 4 and 4 are respectively arranged in the rear of, and steering machines 5 and 5 are provided for each high-lifting rudder 4 and 4.

【0013】クラッチ付減速機2,2および舵取機5,
5を操作するために、操作器(ジョイスティック)6に
接続して船体運動制御演算回路7を設けており、船体運
動制御演算回路7には双方の舵取機5,5をそれぞれサ
ーボアンプ8,8を介して接続するとともに、双方のク
ラッチ付減速機2,2をケーブルを介して接続してい
る。
Reduction gears 2 and 2 with clutch and steering gear 5,
In order to operate the vehicle 5, a hull motion control arithmetic circuit 7 is provided in connection with an operation device (joystick) 6, and both steering gears 5, 5 are respectively provided in the hull motion control arithmetic circuit 7 with servo amplifiers 8, 8 and the speed reducers 2 and 2 with clutches are both connected via a cable.

【0014】図2に示すように、操作器6はコントロー
ラー61と1本の操作レバー62とで構成したものであ
り、操作レバー62の移動範囲内の各位置に対応して命
令信号を発するものである。そして、図3に示すよう
に、操縦時には、2枚の高揚力舵舵4,4の回転角位置
を適宜組合わせることにより、船体に直前進、前進左旋
回、前進右旋回、その場静止を行わせ、さらにクラッチ
付減速機2,2のギアの嵌合を切り換えることによりプ
ロペラ3,3の回転方向を切換えて、直後進、後進左旋
回、後進右旋回を行なわせる。
As shown in FIG. 2, the operating device 6 is composed of a controller 61 and one operating lever 62, and issues a command signal corresponding to each position within the moving range of the operating lever 62. Is. Then, as shown in FIG. 3, at the time of maneuvering, by appropriately combining the rotational angle positions of the two high lift rudders 4 and 4, the hull is moved forward immediately, leftwardly forward, rightwardly forward and left stationary. Then, the rotation directions of the propellers 3, 3 are switched by switching the engagement of the gears of the reduction gears 2 and 2 with clutches to perform a reverse drive, a reverse left turn, and a reverse right turn.

【0015】つまり、前進時には、操作レバー62を前
進側に操作し、船体運動制御演算回路7を介してクラッ
チ付減速機2,2を操作し、固定ピッチプロペラ3,3
の回転が正転方向となるように、クラッチ付減速機2,
2の切換ギヤを嵌合させ、主機関1,1の回転力を固定
ピッチプロペラ3,3に伝達する。
That is, at the time of forward movement, the operating lever 62 is operated to the forward side, the speed reducers 2 and 2 with clutches are operated via the ship motion control arithmetic circuit 7, and the fixed pitch propellers 3 and 3 are operated.
So that the rotation of the
The two switching gears are fitted and the rotational force of the main engines 1, 1 is transmitted to the fixed pitch propellers 3, 3.

【0016】一方、操作器6は操作レバー62の傾転方
向と傾転の大きさ(傾転角)に見合った信号を船体運動
制御演算回路7に与える。船体運動制御演算回路7は、
操作レバー62の傾転方向と傾転角に対応した推進力と
旋回力を与えるように、左右の高揚力舵4,4の舵角の
組合せを演算し、サーボアンプ8,8にそれぞれの舵取
機5,5の制御信号を与える。サーボアンプ8,8は舵
取機5,5を駆動し、船体運動制御演算回路7の演算し
た指令舵角になったときに舵取機5,5は停止する。
On the other hand, the operating device 6 gives a signal corresponding to the tilting direction of the operating lever 62 and the magnitude of tilting (tilt angle) to the ship motion control arithmetic circuit 7. The hull motion control arithmetic circuit 7 is
The combination of the steering angles of the left and right high lift rudders 4, 4 is calculated so that the propulsive force and the turning force corresponding to the tilt direction and tilt angle of the operation lever 62 are calculated, and the servo amplifiers 8, 8 are operated to control the respective steering angles. The control signals of the machines 5 and 5 are given. The servo amplifiers 8 and 8 drive the steering gears 5 and 5, and the steering gears 5 and 5 stop when the command steering angle calculated by the ship motion control arithmetic circuit 7 is reached.

【0017】また、後進時には、操作レバー62を後進
側に操作し、船体運動制御演算回路7を介してクラッチ
付減速機2,2を操作し、クラッチ付減速機2,2の切
換ギヤ嵌合を後進状態となし、固定ピッチプロペラ3,
3の回転方向を逆転させて後進推力を発生する。
Further, at the time of reverse travel, the operating lever 62 is operated to the reverse travel side, the speed reducers 2 and 2 with clutches are operated through the ship motion control arithmetic circuit 7, and the switching gears of the speed reducers 2 and 2 with clutch are fitted. Is set to reverse, fixed pitch propeller 3,
Reverse rotation direction of 3 is generated to generate reverse thrust.

【0018】一方、操作レバー62の傾転方向と傾転角
に対応した信号電圧を受けて、船体運動制御演算回路7
は左右舵のそれぞれの指令舵角を演算してサーボアンプ
8,8に与え、サーボアンプ8,8は、高揚力舵4,4
がそれぞれの指令舵角になるまで舵取機5,5を駆動す
る。
On the other hand, in response to the signal voltage corresponding to the tilting direction and tilting angle of the operating lever 62, the ship motion control arithmetic circuit 7
Calculates the command rudder angle of each of the left and right rudder and gives the commanded rudder angle to the servo amplifiers 8 and 8.
The steering gears 5, 5 are driven until the respective command steering angles become.

【0019】船体運動制御演算回路7は、操作器(ジョ
イスティック)6の操作レバー62の操作範囲をX−Y
直交座標系としてとらえ、X・Y直交座標系でx軸、y
軸の可動範囲を、−1≦x≦1,−1≦y≦1としたと
き、操作レバー62の各位置に対応する指令舵角を左舷
側舵δP ,右舷側舵δS として、これらの間の関係式が
次式となるように演算制御を行ない、各舵取機5,5を
制御する。
The ship motion control arithmetic circuit 7 sets the operation range of the operation lever 62 of the operation device (joystick) 6 to XY.
Considered as a Cartesian coordinate system, x-axis, y in the XY Cartesian coordinate system
When the movable range of the shaft is −1 ≦ x ≦ 1, −1 ≦ y ≦ 1, the commanded steering angles corresponding to the respective positions of the operation lever 62 are port side rudder δ P and starboard side rudder δ S. The arithmetic control is performed so that the relational expression between the following equations becomes the following equation, and each steering gear 5, 5 is controlled.

【0020】 δP =−{k1 +k2 (1−|y|)}x+k3 (1−|y|)…(1)式 δS =−{k1 +k2 (1−|y|)}x−k3 (1−|y|)…(2)式 ここで、k1 ,k2 ,k3 は定数で、操作レバー62の
各位置に対する各舵角の大きさを加減することを目的と
したもので、固定ピッチプロペラ3,3からの推力、舵
特性、船体運動特性等を考慮して適宜に選定する。
Δ P =-{k 1 + k 2 (1- | y |)} x + k 3 (1- | y |) (1) Formula δ S =-{k 1 + k 2 (1- | y |) } X−k 3 (1− | y |) (2) where k 1 , k 2 , and k 3 are constants, and the magnitude of each steering angle for each position of the operating lever 62 can be adjusted. It is intended, and is selected as appropriate in consideration of thrust from fixed pitch propellers 3, 3 and rudder characteristics and ship motion characteristics.

【0021】また、船体運動制御演算回路7は、操作レ
バー62をホバー位置に当るy=0位置よりやや前方、
およびそれよりさらに前方へ傾転させたとき、各クラッ
チ付減速機2,2を前進回転側に切換操作し、y=0位
置よりやや後方、およびそれよりさらに後方に傾転させ
たとき各クラッチ付減速機2,2を後進回転側に切換操
作する。
Further, the ship body motion control arithmetic circuit 7 is arranged so that the operation lever 62 is slightly forward of the y = 0 position, which is the hover position.
And when the vehicle is tilted further forward than that, the speed reducers 2 and 2 with clutches are switched to the forward rotation side, and when the vehicle is tilted slightly rearward from the y = 0 position and further rearwardly, each clutch Switch the speed reducers 2 and 2 to the reverse rotation side.

【0022】以下に上記内容を具体的に述べる。例とし
て、図4にk1 =50,k2 =−30,k3 =80の場
合について、操作レバー62の位置と高揚力舵4,4の
それぞれの舵角の関係を示す。なお、図4では高揚力舵
4,4の最大転舵角が70°の場合について表示した。
The above contents will be specifically described below. As an example, FIG. 4 shows the relationship between the position of the operating lever 62 and the steering angles of the high lift rudders 4 and 4 when k 1 = 50, k 2 = −30, and k 3 = 80. Note that FIG. 4 shows the case where the maximum turning angle of the high lift rudders 4 and 4 is 70 °.

【0023】図5は、図1のブロックダイアグラムをよ
り詳細に表わしたものである。操作器(ジョイスティッ
ク)6において、操作レバー62の操作領域をX−Y直
交座標系としてとらえるとき、ポテンショメータ611
は操作レバー62のX座標値、ポテンショメータ612
はY座標値を電圧値として出力するように構成してい
る。尚、各ポテンショメータ611,612の抵抗両端
には定電圧を印加するものとする。
FIG. 5 shows the block diagram of FIG. 1 in more detail. In the operation device (joystick) 6, when the operation area of the operation lever 62 is regarded as an XY orthogonal coordinate system, the potentiometer 611 is used.
Is the X coordinate value of the operating lever 62, and the potentiometer 612.
Is configured to output the Y coordinate value as a voltage value. A constant voltage is applied across the resistances of the potentiometers 611 and 612.

【0024】電圧調整用可変抵抗器11は、ポテンショ
メータ611,612の出力Vx ,Vy をX−Y座標表
現するための基準化電圧VB を発生する。このとき、x
=Vx /VB ,y=Vy /VB とする。
The voltage adjusting variable resistor 11 generates a standardized voltage V B for expressing the outputs V x and V y of the potentiometers 611 and 612 in XY coordinates. At this time, x
= V x / V B, and y = V y / V B.

【0025】絶対値回路12はY軸のポテンショメータ
612の出力Vy の絶対値を出力する。加算器13は1
2の出力|Vy |および11の出力−VB の和の極性反
転出力 (Rf1/Rk11 )VB −(Rf1/Rk12 )|Vy | を出力する。この出力と加算器14からの出力−(Rf4
/Rk4)Vx との積 −[(Rf1/Rk11 )VB −(Rf1/Rk12 )|Vy
|](Rf4/Rk4)Vx が乗算器15から出力される。また、加算器16から
は、加算器13の出力が極性反転されて −(Rf2/Rk2)[(Rf1/Rk11 )VB −(Rf1/R
k12 )|Vy |] が出力される。
The absolute value circuit 12 outputs the absolute value of the output V y of the Y-axis potentiometer 612. The adder 13 is 1
The output of the two outputs | V y | and the output of 11 −V B , which is the polarity inversion output (R f1 / R k11 ) V B − (R f1 / R k12 ) | V y | This output and the output from the adder 14 − (R f4
/ R k4 ) V x -[(R f1 / R k11 ) V B − (R f1 / R k12 ) | V y
|] (R f4 / R k4 ) V x is output from the multiplier 15. Further, the adder 16, the output of the adder 13 is the polarity inversion - (R f2 / R k2) [(R f1 / R k11) V B - (R f1 / R
k12) | V y |] is output.

【0026】加算器17ではこれらの和の極性反転信号 Vδp =−{(Rf3/Rk33 )−(Rf3/Rk32 )[(Rf1/Rk11 )VB − (Rf1/Rk12 )|Vy |(Rf4/Rk4)]}Vx +(Rf3/Rk31 )(Rf2/ Rk2)[(Rf1/Rk11 )VB −(Rf1/Rk12 )|Vy |]…(3)式 が出力される。The polarity inversion signal Vδ adder 17 In these sum p = - {(R f3 / R k33) - (R f3 / R k32) [(R f1 / R k11) V B - (R f1 / R k12) | V y | (R f4 / R k4)]} V x + (R f3 / R k31) (R f2 / R k2) [(R f1 / R k11) V B - (R f1 / R k12) | V y |] Equation (3) is output.

【0027】この信号がリミッター18を経由してサー
ボアンプ8に与えられ、サーボアンプ8は、左舷側の舵
取機5を駆動して高揚力舵4を転舵させる。また、舵軸
からのフィードバック信号がフィードバックポテンショ
ンメータ19からサーボアンプ8に帰還され、この帰還
信号電圧とリミッター18からの信号電圧とが一致する
と、即ち設定舵角になると舵取機5への駆動信号が零と
なり高揚力舵4は停止する。尚、リミッター18は高揚
力舵4の最大転舵角以上の信号はサチュレートさせ、そ
れ以上の大きさの信号はサーボアンプへ入れないように
するために設けたものである。
This signal is given to the servo amplifier 8 via the limiter 18, and the servo amplifier 8 drives the port side steer 5 to steer the high lift rudder 4. Further, the feedback signal from the rudder shaft is fed back from the feedback potentiometer 19 to the servo amplifier 8, and when the feedback signal voltage and the signal voltage from the limiter 18 match, that is, when the set rudder angle is reached, the steering gear 5 is fed. The drive signal becomes zero and the high lift rudder 4 stops. The limiter 18 is provided in order to saturate a signal having a maximum turning angle of the high lift rudder 4 or more and to prevent a signal having a larger value from entering the servo amplifier.

【0028】同様に、加算器20から VδS =−{(Rf5/Rk53 )−(Rf5/Rk52 )[(Rf1/Rk11 )VB − (Rf1/Rk11 )|Vy |(Rf4/Rk4)]}Vx −(Rf5/Rk51 )[(Rf1 /Rk11 )VB −(Rf1/Rk12 )|Vy |]…(4)式 が出力される。リミッター21およびフィードバックポ
テンションメータ22は上記左舷側舵について説明した
のと同様に作用し、右舷側の高揚力舵4が作動する。
Similarly, from the adder 20, V δ S =-{(R f5 / R k53 )-(R f5 / R k52 ) [(R f1 / R k11 ) V B- (R f1 / R k11 ) V y | (R f4 / R k4 )]} V x − (R f5 / R k51 ) [(R f1 / R k11 ) V B − (R f1 / R k12 ) | V y │] ... (4) Is output. The limiter 21 and the feedback potentiometer 22 operate in the same manner as described for the port side rudder, and the starboard side high lift rudder 4 operates.

【0029】ここで、Rk11 =Rk12 、Rk32 =Rf3
k4=Rf4,Rk52 =Rf5,Rk33 =Rk53 ,Rf3=R
f5,Rk51 =Rk2,Rf5=Rf2とし、 k1 =(Rf3/Rk33 )VB ,k2 =−(Rf1/R
k11 )VB 2 ,k3 =(Rf2/Rk2)(Rf1/Rk11
B かつ、x=Vx /VB ,y=Vy /VB とおくと
(3),(4)式は次のように書き替えられる。
[0029] In this case, R k11 = R k12, R k32 = R f3,
R k4 = R f4, R k52 = R f5, R k33 = R k53, R f3 = R
f5 , R k51 = R k2 , R f5 = R f2, and k 1 = (R f3 / R k33 ) V B , k 2 = − (R f1 / R
k11) V B 2, k 3 = (R f2 / R k2) (R f1 / R k11)
If V B and x = V x / V B and y = V y / V B are set, the equations (3) and (4) can be rewritten as follows.

【0030】 Vδp =−{k1 +k2 (1−|y|}x+k3 (1−|y|)…(5)式 VδS =−{k1 +k2 (1−|y|}x+k3 (1−|y|)…(6)式 即ち、(5),(6)式は(1),(2)式に対応し、
目的とする制御を行なわせることができる。
p = − {k 1 + k 2 (1- | y |} x + k 3 (1- | y |) ... (5) Formula Vδ S =-{k 1 + k 2 (1- | y |} x + k 3 (1- | y |) Equation (6) That is, Equations (5) and (6) correspond to Equations (1) and (2),
The desired control can be performed.

【0031】次に、クラッチ付減速機2,2の制御につ
いて述べる。図6〜図7において、操作レバー62をY
1より前方へ倒すと前進“入”信号を発する。前進
“入”信号はそれより前方およびY=0位置までON状
態を保持し、Y=0位置より後方になると“入”信号は
OFFとなる。
Next, the control of the speed reducers 2 and 2 with clutch will be described. 6 to 7, the operation lever 62 is set to Y.
When it is tilted forward from 1, it issues a forward "ON" signal. The forward "ON" signal keeps the ON state up to the front and Y = 0 position, and the "ON" signal turns OFF when the Y = 0 position is behind.

【0032】逆に後進クラッチ“入”信号は、Y2位置
より後方へ操作レバー62を倒すとONになり、それよ
り後方およびY=0位置までON状態を保持し、Y=0
位置より後方になると“入”信号はOFFとなる。ヒス
テリシスのバンド幅Y=0〜Y1,Y=0〜Y2は調節
可能とする。
On the contrary, the reverse clutch "ON" signal is turned ON when the operation lever 62 is tilted rearward from the Y2 position, and the ON state is maintained to the rear and Y = 0 position, and Y = 0.
When it comes to the rear of the position, the "ON" signal turns OFF. The hysteresis band widths Y = 0 to Y1 and Y = 0 to Y2 are adjustable.

【0033】Ry1,Ry2による前進、後進信号はそ
れぞれクラッチ付減速機2の制御回路に与えられ、前
進、後進ギヤの嵌脱を行なわせる。図8は図5における
前後進判別回路23を詳しく示したものであり、図8に
よって前後進判別の仕方の一例を述べる。コンパレータ
31は、操作器6のY軸のポテンショメータ612から
の信号電圧Vy が演算増幅器の設定基準電Vy1より小さ
いとリレーY1は非励磁状態となり、信号電圧Vy が設
定基準電Vy1を越えるとリレーY1は励磁されるように
回路を構成している。コンパレータ32は、信号電圧V
y が零より大きいとリレーY01は非励磁状態となり、
信号電圧Vyが零より小さいとリレーY01は励磁され
るように回路を構成している。
The forward and reverse signals from Ry1 and Ry2 are given to the control circuit of the speed reducer 2 with a clutch, respectively, to engage and disengage the forward and reverse gears. FIG. 8 shows the forward / backward traveling determination circuit 23 in FIG. 5 in detail, and an example of the method of forward / backward traveling determination will be described with reference to FIG. In the comparator 31, when the signal voltage V y from the Y-axis potentiometer 612 of the operating device 6 is smaller than the set reference voltage V y1 of the operational amplifier, the relay Y1 is in the non-excited state, and the signal voltage V y is the set reference voltage V y1 . The relay Y1 is configured to be excited when it is exceeded. The comparator 32 has a signal voltage V
If y is greater than zero, relay Y01 will be in the de -energized state,
The circuit is configured so that the relay Y01 is excited when the signal voltage V y is smaller than zero.

【0034】また、コンパレータ33は、ポテンショメ
ータ612からの信号電圧Vy が演算増幅器の設定基準
電圧Vy2より大きいとリレーY2は非励磁状態となり、
信号電圧Vy が設定基準電圧Vy2より小さいとリレー2
は励磁されるように回路を構成している。コンパレータ
34は、信号電圧Vy が零より小さいとリレーY02は
非励磁状態となり、信号電圧Vy 零より大きくなるとリ
レーY01は励磁されるように回路を構成している。
Further, in the comparator 33, when the signal voltage V y from the potentiometer 612 is larger than the set reference voltage V y2 of the operational amplifier, the relay Y2 is in the non-excitation state,
If the signal voltage V y is smaller than the set reference voltage V y2 , the relay 2
Configures the circuit to be excited. The comparator 34 constitutes a circuit so that the relay Y02 is in a non-excited state when the signal voltage V y is smaller than zero and the relay Y01 is excited when the signal voltage V y is larger than zero.

【0035】リレー回路35のような回路を構成する
と、Ry1,Ry2はY1,Y01,Y2,Y02の動
作により図7に示すようなヒステリシス信号を発生す
る。これを操作器6の操作と合せ見ると、始めに操作レ
バー62がY=0位置にあると、Ry1,Ry2ともO
FFで、クラッチ付減速機2,2の制御回路への信号は
出ない。操作レバー62が前方に倒されてY1の位置を
越えると、Ry1がONとなってクラッチ付減速機2,
2の制御回路には前進信号が与えられる。操作レバー6
2がY1より前方であればRy1のON信号は持続し、
操作レバー62が引き戻されてY=0位置より後方にな
るとY01が励磁されるので、自己保持していたRy1
の励磁が解けて前進信号Ry1は切れる。
When a circuit such as the relay circuit 35 is constructed, Ry1 and Ry2 generate hysteresis signals as shown in FIG. 7 by the operations of Y1, Y01, Y2 and Y02. Looking at this together with the operation of the operation device 6, when the operation lever 62 is initially at the Y = 0 position, both Ry1 and Ry2 are O.
In FF, no signal is output to the control circuit of the speed reducers 2 and 2 with clutch. When the operation lever 62 is tilted forward and exceeds the position of Y1, Ry1 is turned on and the speed reducer with clutch 2,
A forward signal is provided to the second control circuit. Operation lever 6
If 2 is ahead of Y1, the ON signal of Ry1 will continue,
When the operation lever 62 is pulled back to the rear of the Y = 0 position, Y01 is excited, so that the self-held Ry1
The excitation signal is released and the forward signal Ry1 is cut off.

【0036】操作レバー62が後方に引かれ、Y2位置
より後方になるとリレーRy2が励磁されてクラッチ付
減速機2,2には後進ONの信号が与えられる。操作レ
バー62が前方へ倒されても、Y=0になるまでは、リ
レーRy2は自己保持し、後進信号を出しつづける。Y
=0より前方へ操作レバー62が倒されるとY02が励
磁され、自己保持が解けて後進信号Ry2は切れる。
When the operating lever 62 is pulled rearward and is moved rearward from the Y2 position, the relay Ry2 is excited and the reverse gear ON signal is given to the speed reducers 2 and 2 with clutches. Even when the operation lever 62 is tilted forward, the relay Ry2 holds itself and continues to output the reverse signal until Y = 0. Y
When the operation lever 62 is tilted forward from = 0, Y02 is excited, the self-holding is released, and the reverse signal Ry2 is cut off.

【0037】[0037]

【発明の効果】以上述べたように本発明によれば、1つ
の操作器の1本の操作レバーを操作することにより、船
体運動制御演算回路を介して舵取機およびクラッチ付減
速機を制御することができ、2の舵の回転角位置の組合
わせ操作、および固定ピッチプロペラの回転方向の切換
操作を行って、直前後進、前進左右旋回、後進左右旋回
のほかに、主機関を運転したままでのその場静止等の様
々な船体運動を行うことができる。したがって、離接岸
時等における操船作業を迅速、容易に行うことができ、
操船者の負担を著しく軽減することができる。
As described above, according to the present invention, by operating one operating lever of one operating device, the steering gear and the speed reducer with a clutch are controlled via the ship motion control arithmetic circuit. By performing the combination operation of the rotational angle positions of the rudder 2 and the switching operation of the rotation direction of the fixed-pitch propeller, the main engine was operated in addition to the previous reverse, the forward left / right turn, and the reverse left / right turn. It is possible to perform various ship motions such as standing still in place. Therefore, it is possible to quickly and easily carry out marine vessel maneuvering at the time of berthing or berthing,
The burden on the operator can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における2基2軸2枚舵船の
操船制御装置のブロックダイアグラムを示す図である。
FIG. 1 is a diagram showing a block diagram of a marine vessel maneuvering control device for a two-shaft two-shaft two-rudder ship according to an embodiment of the present invention.

【図2】同実施例における操作器の斜視図である。FIG. 2 is a perspective view of an operating device according to the embodiment.

【図3】同実施例における各操縦モードの舵の位置を示
す概念図である。
FIG. 3 is a conceptual diagram showing the position of the rudder in each control mode in the same embodiment.

【図4】同実施例における操作レバーと舵角との関係を
示す図である。
FIG. 4 is a diagram showing a relationship between an operation lever and a steering angle in the embodiment.

【図5】同実施例における2基2軸2枚舵船の操船制御
装置の詳細なブロックダイアグラムを示す図である。
FIG. 5 is a diagram showing a detailed block diagram of a marine vessel maneuvering control device for a two-group, two-axis, two-rudder vessel in the embodiment.

【図6】同実施例における操作レバーの操作範囲を示す
概念図である。
FIG. 6 is a conceptual diagram showing an operation range of an operation lever in the embodiment.

【図7】同実施例のクラッチ付減速機における回転方向
切換ギヤの嵌脱制御信号と操作レバーの操作範囲との関
係を示す図である。
FIG. 7 is a diagram showing a relationship between an engagement / disengagement control signal of a rotation direction switching gear and an operation range of an operation lever in the reduction gear with a clutch of the embodiment.

【図8】同実施例における前後進判別回路のブロックダ
イアグラムを示す図である。
FIG. 8 is a diagram showing a block diagram of a forward / backward movement determination circuit in the embodiment.

【符号の説明】[Explanation of symbols]

1 主機関 2 クラッチ付減速機 3 固定ピッチプロペラ 4 高揚力舵 5 舵取機 6 操作器 7 船体運動制御演算回路 62 操作レバー 1 Main Engine 2 Reducer with Clutch 3 Fixed Pitch Propeller 4 High Lift Rudder 5 Steering Gear 6 Operator 7 Ship Motion Control Arithmetic Circuit 62 Operation Lever

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 定速回転する主機関2基を装備し、それ
ぞれの主機関によりクラッチ付減速機を介して駆動され
る固定ピッチプロペラを船尾の左右に配し、各プロペラ
後方に高揚力舵を配し、各高揚力舵ごとに舵取機を配し
た船舶において、2枚の舵の回転角位置を適宜組合わ
せ、各主機関に直結したクラッチ付減速機によりプロペ
ラの回転方向を切換えて任意の船体運動を行なわせる操
船制御装置であって、1本の操作レバーをX−Y座標上
の任意の位置(X,Y)に置くことができる操作器を設
け、前記操作レバーの各位置に対応して発信する命令信
号により、各クラッチ付減速機の切換操作および各舵取
機の舵回転操作を制御する船体運動制御演算回路を設
け、この船体運動制御演算回路は、 操作器の操作レバーの操作範囲をX・Y直交座標系で−
1≦x≦1,−1≦y≦1としたとき、k1 ,k2 ,k
3 を任意の定数として左舷舵角δP および右舷舵角δS
を次式で求めて各舵取機を制御し、 δP =−{k1 +k2 (1−|y|)}x+k3 (1−
|y|) δS =−{k1 +k2 (1−|y|)}x−k3 (1−
|y|) かつ、操作レバーをホバー位置に当るy=0位置よりや
や前方、およびそれよりさらに前方へ傾転させたとき、
各クラッチ付減速機を前進回転側に切換操作し、y=0
位置よりやや後方、およびそれよりさらに後方に傾転さ
せたとき各クラッチ付減速機を後進回転側に切換操作す
るように構成したことを特徴とする2基2軸2枚舵船の
操船制御装置。
1. A fixed-pitch propeller, which is equipped with two main engines that rotate at a constant speed and is driven by a reduction gear with a clutch by each main engine, is arranged on the left and right of the stern, and a high-lift rudder is provided behind each propeller. In a ship in which a steering gear is arranged for each high lift rudder, the rotation angle positions of the two rudders are appropriately combined, and the rotation direction of the propeller is switched by the clutched speed reducer directly connected to each main engine. A marine vessel maneuvering control device for performing an arbitrary hull movement, comprising an operating device capable of placing one operating lever at an arbitrary position (X, Y) on XY coordinates, and each position of the operating lever. In response to the command signal transmitted in accordance with the above, a hull motion control arithmetic circuit for controlling the switching operation of each reduction gear with clutch and the rudder rotation operation of each steering gear is provided. Set the lever operation range to X / Y In the coordinate system -
When 1 ≦ x ≦ 1, −1 ≦ y ≦ 1, k 1 , k 2 , k
With port 3 as an arbitrary constant, port side steering angle δ P and starboard side steering angle δ S
Is calculated by the following equation to control each steering gear, and δ P = − {k 1 + k 2 (1- | y |)} x + k 3 (1-
| Y |) δ S = - {k 1 + k 2 (1- | y |)} x-k 3 (1-
| Y |) and when the operation lever is tilted slightly forward of the y = 0 position that hits the hover position, and further forward of that,
Change the speed reducer with each clutch to the forward rotation side, and y = 0
A marine vessel maneuvering control device for a two-shaft two-shaft two-rudder boat, characterized in that when the vehicle is tilted slightly rearward of the position and further rearwardly, the speed reducer with clutch is configured to be switched to a reverse rotation side. .
JP5041608A 1993-03-03 1993-03-03 Ship handling control device for two 2-axle 2-rudder vessels Expired - Lifetime JP2510391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5041608A JP2510391B2 (en) 1993-03-03 1993-03-03 Ship handling control device for two 2-axle 2-rudder vessels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5041608A JP2510391B2 (en) 1993-03-03 1993-03-03 Ship handling control device for two 2-axle 2-rudder vessels

Publications (2)

Publication Number Publication Date
JPH06255586A JPH06255586A (en) 1994-09-13
JP2510391B2 true JP2510391B2 (en) 1996-06-26

Family

ID=12613078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5041608A Expired - Lifetime JP2510391B2 (en) 1993-03-03 1993-03-03 Ship handling control device for two 2-axle 2-rudder vessels

Country Status (1)

Country Link
JP (1) JP2510391B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189103A (en) * 2007-02-05 2008-08-21 Ouchi Ocean Consultant Inc Low fuel consumption main engine mounted vessel
JP6053494B2 (en) * 2012-12-18 2016-12-27 ジャパン・ハムワージ株式会社 Biaxial ship rudder
JP6504647B2 (en) * 2014-09-26 2019-04-24 三菱重工業株式会社 Turning control device, ship, turning control method and program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684160B2 (en) * 1988-11-04 1994-10-26 川崎重工業株式会社 Ship handling equipment

Also Published As

Publication number Publication date
JPH06255586A (en) 1994-09-13

Similar Documents

Publication Publication Date Title
JP2824072B2 (en) Steering and steering system for water transport vessels
JP4809794B2 (en) Maneuvering equipment
JPS6250296A (en) Turning controller for ship
US11904997B1 (en) Methods for maneuvering a marine vessel
JP2019516623A (en) Method and control device for operating a ship
WO2013001874A1 (en) Ship maneuvering device
JP2882930B2 (en) Ship control equipment
JP2510391B2 (en) Ship handling control device for two 2-axle 2-rudder vessels
US20230150637A1 (en) System for and method of controlling watercraft
GB2374847A (en) Integrated vessel control system
US20130072076A1 (en) Method for maneuvering a yacht
US20220306257A1 (en) System for and method of controlling watercraft
JP3057413B2 (en) Automatic ship maneuvering equipment
JP3615985B2 (en) Maneuvering equipment
JP2510389B2 (en) Hull movement instruction method and rudder angle instruction method
US20160375975A1 (en) Felton flyer
JP2988903B2 (en) Ship maneuvering equipment
US20220396346A1 (en) Marine vessel maneuvering system and marine vessel
JP2004042688A (en) Rudder angle control system of ship having two rudders
JP3260265B2 (en) Emergency ship maneuvering method
JP2021151855A (en) System and method for marine propulsion control
US20230202633A1 (en) Marine propulsion system and marine vessel
JP2023159902A (en) Hull motion control device for uniaxial, two rudder vessel
JP2024068483A (en) Ship propulsion system and ship equipped with same
JPH0339876B2 (en)