JP2500739B2 - Self-propelled device in pipeline - Google Patents

Self-propelled device in pipeline

Info

Publication number
JP2500739B2
JP2500739B2 JP5060034A JP6003493A JP2500739B2 JP 2500739 B2 JP2500739 B2 JP 2500739B2 JP 5060034 A JP5060034 A JP 5060034A JP 6003493 A JP6003493 A JP 6003493A JP 2500739 B2 JP2500739 B2 JP 2500739B2
Authority
JP
Japan
Prior art keywords
cylinder
pipe
pipeline
tire
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5060034A
Other languages
Japanese (ja)
Other versions
JPH06270795A (en
Inventor
清 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansei Co
Original Assignee
Kansei Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansei Co filed Critical Kansei Co
Priority to JP5060034A priority Critical patent/JP2500739B2/en
Publication of JPH06270795A publication Critical patent/JPH06270795A/en
Application granted granted Critical
Publication of JP2500739B2 publication Critical patent/JP2500739B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は円形小口径管路内の検
査,物品の搬入等に適する管路内自走装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an in-pipe self-propelled device suitable for inspecting a circular small-diameter pipe, carrying in articles, and the like.

【0002】[0002]

【従来の技術】一般に、下水管路等の管路内を検査する
ために工業用テレビカメラ等を装備してなる管路内自走
装置としては、自走用モータの駆動で回転するキャタビ
ラやベルト等の履帯を備えた自走車本体にテレビカメラ
を搭載し、管路内の自走とテレビカメラによる管内の撮
影を可能とした構成となっている(例えば、実公昭56
−3427号公報参照)。即ち、従来この種の管路内自
走装置は、独立した履帯式自走車本体とテレビカメラと
を単に組合わせた構成を採っているため、どうしても構
造が複雑且つ大型化され、家庭用下水配管等の如き小口
径の管路に案内しえる小型の管路内自走装置を得ること
はできなかった(旧来は精々φ250mm程度までの管
路を対象としていた)。勿論、工業用テレビカメラも従
来は単なる撮像管タイプであったため、この点からも小
型化に限度があった。
2. Description of the Related Art Generally, an in-pipe self-propelled device equipped with an industrial TV camera or the like for inspecting the inside of a pipe such as a sewer pipe includes a caterpillar which is rotated by the drive of a self-propelled motor. A TV camera is mounted on the body of a self-propelled vehicle equipped with a crawler belt such as a belt, so that the self-propelled vehicle in the pipeline and the picture taken in the tube by the TV camera can be configured (for example, Jikho Sho 56).
-3427 publication). That is, conventionally, this type of self-propelled device in a pipeline has a structure in which an independent crawler-type self-propelled vehicle main body and a TV camera are simply combined, so that the structure is inevitably complicated and large, and household sewers are sewage-treated. It has not been possible to obtain a small self-propelled device in a pipeline that can be guided to a pipeline having a small diameter such as a pipe (previously, a pipeline up to about φ250 mm was targeted). Of course, the industrial television camera has been a mere image pickup tube type in the past, and there is a limit to downsizing from this point as well.

【0003】[0003]

【発明が解決しようとする課題】しかし、近時は工業用
テレビカメラ等の発展も著しく、CCDカメラとか光フ
ァイバースコープなどの極小撮影機器の出現を見るに至
っている。だが、それに反し小口径管路に対する管路内
自走装置の開発は遅れ、例えば家庭用下水配管等の如き
小口径管(φ25mm〜30mm等)内を自走させるた
めの移動手段は無く、同管路内を簡単に検査することは
できず、小口径管内を簡単に自走できる装置の早期出現
が待たれている。
However, in recent years, the development of industrial television cameras and the like has been remarkable, and the emergence of ultra-small image-taking equipment such as CCD cameras and optical fiber scopes has been seen. However, on the contrary, the development of the self-propelled device in the pipeline for the small diameter pipeline is delayed, and there is no moving means for self-propelling in the small diameter pipe (φ25 mm to 30 mm etc.) such as household sewage pipe, etc. The inside of the pipeline cannot be easily inspected, and the early appearance of a device that can easily self-propell in a small-diameter pipe is awaited.

【0004】本発明は上記実情に鑑み、自走装置本体
を、内側を固定筒に外側を回転筒とした二重筒とし、更
に回転筒の外周囲に壁面を摺接する車輪(タイヤ)を傾
斜配設することで、回転筒に螺旋状(ねじの原理)の推
進力を得るようになり、前記課題を解決する簡略構造の
管路内自走装置を提供することを目的としたものであ
る。
In view of the above situation, the present invention employs a self-propelled device main body having a double cylinder having a fixed cylinder inside and a rotary cylinder outside, and a wheel (tire) slidably contacting a wall surface around the outer periphery of the rotary cylinder. By arranging it, it is possible to obtain a helical (screw principle) propulsive force in the rotary cylinder, and it is an object to provide a self-propelled device in a conduit having a simple structure that solves the above problems. .

【0005】[0005]

【課題を解決するための手段】本発明は、小型テレビカ
メラ,検査器等の管内挿入目的物を先端部に収容する中
空室を設けた固定筒を内側に配設し、該固定筒の外側
に、固定筒側末端に備えるモータ又は外部導入の駆動用
ケーブルで可逆転する回転子部に連設した回転筒をベア
リングを介して配設し二重筒体を形成し、且つ前記回転
筒の外周には管路壁面に所定の与圧をもって接触する
数個のタイヤを、それぞれ管路に対し一定角度に傾けた
車軸で斜め装着とし、前記回転筒の回転に伴い転動する
タイヤに螺旋状推進力を発生させ、回転筒自体の正,逆
転のみで下水管路等の管路内を前,後進するようにした
ものである。
SUMMARY OF THE INVENTION The present invention is directed to a compact television set.
While accommodating an object to be inserted into the tube such as a camera or a tester at the tip
The fixed cylinder with the vacant chamber is arranged inside, and the outside of the fixed cylinder
A motor provided at the end of the fixed cylinder or a drive for external introduction
Bare rotating barrel connected to the rotor that can be reversibly rotated with a cable
Arranged via a ring to form a double cylinder and
On the outer circumference of the cylinder, a plurality of tires that come into contact with the wall surface of the pipe line with a predetermined pressure are inclined at a constant angle with respect to the pipe line.
It is mounted diagonally on the axle so that a spiral propulsive force is generated in the tire that rolls with the rotation of the rotary cylinder so that it can move forward and backward in a pipeline such as a sewer pipe only by the forward and reverse rotations of the rotary cylinder itself. It was done.

【0006】また、小型テレビカメラ,検査器等の管内
挿入目的物を先端部に収容する中空室を設けた固定筒を
内側に配設し、該固定筒の外側に配設する回転筒の構成
を、中央に前記固定筒が臨む中空部分をもつ複数基の回
転板を前後方向に所定間隔で配すと共に、この各中間部
材を接続用コイルバネとなるスプリング胴で連結し長手
方向に撓み自在とし、全体として屈曲タイプの二重筒体
を形成し、且つ前記各回転板の周囲に配置する管路壁面
に接触する複数個のタイヤを、それぞれ回転板に傾斜状
突設したバネで外方に広がりをもつ所定長さの支持アー
ムの先端に管路に対し一定角度の斜め装着とし、前記回
転筒側の末端に設けた支持筒部に接続のケーブルの回転
に伴い転動するタイヤに螺旋状推進力を発生させ、回転
筒自体の正,逆転のみで下水管路等の管路曲り部でも前
記スプリング胴が撓む追従となり前,後進するようにし
たものである。
[0006] In addition, in a small TV camera, inspector, etc.
A fixed cylinder with a hollow chamber that houses the insertion target at the tip
Structure of a rotary cylinder disposed inside and outside the fixed cylinder
Is a plurality of units with a hollow portion in the center facing the fixed cylinder.
The rolling plates are arranged in the front-rear direction at predetermined intervals, and the intermediate parts
Connect the materials with a spring body that serves as a coil spring for connection
Flexible double cylinder that bends in any direction
And the wall surface of the conduit that is formed around the rotary plates
A plurality of tires in contact with, inclined to each rotating plate
Supporting arm of a specified length that extends outward with a protruding spring
At the tip of the pipe, attach it at an angle to the pipeline and
Rotation of the cable connected to the support cylinder provided at the end on the cylinder side
A spiral propulsion force is generated in the tires that roll with
Only in the forward and reverse of the cylinder itself, forward even in the bends of sewer lines
The spring cylinder is designed to follow the bending and to move forward and backward.

【0007】[0007]

【作用】上記のように、適宜手段で回転を受ける回転筒
の外周囲に管路の内壁に圧接するタイヤ(車輪)を、管
路の長手方向に対し所定角度を傾けた配設としたため、
回転筒に回転を与えれば管路の内壁に接して転動するタ
イヤは、管内を螺旋状に回転しながら進むものである。
この場合、固定筒と回転筒間にベヤリングを介在すれば
確実に外側回転筒のみが回動する。
As described above, since the tires (wheels) which are pressed against the inner wall of the pipeline on the outer periphery of the rotary cylinder which is rotated by appropriate means are arranged at a predetermined angle with respect to the longitudinal direction of the pipeline,
A tire that rolls in contact with the inner wall of the pipe when the rotary cylinder is rotated rotates in the pipe while spirally rotating.
In this case, if the bearing is interposed between the fixed cylinder and the rotary cylinder, only the outer rotary cylinder is reliably rotated.

【0008】ここで、いま走行原理を説明すれば、先ず
平面上でタイヤを転がすことを考え、図1(A)に示す
ようにタイヤの転がり方向と外力が同一方向の場合、タ
イヤTの転がり方向に外力(力)bを加えると、進行方
向aは外力bを加える方向と同じになるが、図1(B)
に示すようにタイヤT′の車軸dをある角度だけ傾けた
傾斜配置とした場合、タイヤT′に外力bを与えると、
進行方向aは傾けたヤイヤT′の転がり方向になり加え
た方向(外力b)と一致しなくなる。ここで、タイヤの
接触平面を弯曲させ円筒状にしてみると、この状態でタ
イヤT′に力を加えると螺旋状に進んで行く。このよう
に、車軸dをある角度傾けたタイヤT′をもつ構造体が
自転すれば、図2に示すように円管C内を所謂ねじの原
理をもって移動することが判る。但し、図2中、Dは固
定筒で、Eは回転筒を示す。
Now, the driving principle will be described. First, considering rolling the tire on a flat surface, if the rolling direction of the tire and the external force are in the same direction, as shown in FIG. When an external force (force) b is applied in the direction, the traveling direction a becomes the same as the direction in which the external force b is applied, but FIG.
In the case where the axle d of the tire T ′ is inclined by a certain angle as shown in FIG.
The traveling direction a is the rolling direction of the tilted yare T'and does not match the applied direction (external force b). Here, when the contact plane of the tire is curved to have a cylindrical shape, when a force is applied to the tire T ′ in this state, the tire T ′ advances in a spiral shape. As described above, if the structure having the tire T'in which the axle d is tilted by a certain angle rotates, it is understood that the structure moves in the circular pipe C by the so-called screw principle as shown in FIG. However, in FIG. 2, D is a fixed cylinder and E is a rotary cylinder.

【0009】いま、更にこの「ねじの原理」を用いた管
内移動機構となる推進力発生理論を詳述すれば、ここで
推進力が発生するメカニズムをモデルから求めてみる。
ここで用いるパラメータとは以下の通りである。
Now, the theory of propulsive force generation, which is an in-pipe moving mechanism using the "screw principle", will be described in more detail. Here, the mechanism of propulsive force generation will be determined from a model.
The parameters used here are as follows.

【0010】F:入力 X方向外力、 L:負荷
Y方向外力、f1 :タイヤの転がり摩擦、 f2 :
タイヤの鉛直方向摩擦力、Fx:回転力(X方向移動
力)、FY :推進力(Y方向移動力)、μmax :最大静
止摩擦係数、 μ:滑り摩擦係数、N:タイヤの与圧
(垂直荷重)、θ:タイヤの傾き、 ここで、F及びLは自由に変える事ができる。f1 はベ
アリングでの内部摩擦等による。この最大静止摩擦力を
f2maxとすると、[f2max=μmax ×N]である。ここ
でf2 は[Fsin θ+Lcos θ≦f2 max ]の状態で、
f2 =Fsin θ+Lcos θとなる。タイヤが滑り始める
と摩擦力は滑り摩擦力となり、f2 =μ×Nとなる。こ
の状態ではf2 はFに依存しない。
F: input X direction external force, L: load Y direction external force, f1: tire rolling friction, f2:
Vertical frictional force of tire, Fx: Rotational force (X direction moving force), FY: Propulsion force (Y direction moving force), μmax: Maximum static friction coefficient, μ: Sliding friction coefficient, N: Tire pressure (vertical) Load), θ: tire inclination, where F and L can be freely changed. f1 is due to internal friction in the bearing. If this maximum static friction force is f2max, then [f2max = μmax × N]. Where f2 is [Fsin θ + Lcos θ ≦ f2 max] and
f2 = Fsin θ + Lcos θ. When the tire begins to slip, the frictional force becomes a sliding frictional force, and f2 = μ × N. In this state, f2 does not depend on F.

【0011】いま、このときの入力と負荷,摩擦力,合
成ベクトルの関係を図3,図4,図5で示す。図3では
タイヤの進行方向の力はFcos θ−Lsin θ−f1 で、
図5ではタイヤの鉛直方向の力はf2 −Fsin θ−Lco
s θである。
Now, the relationship among the input, the load, the frictional force, and the combined vector at this time is shown in FIGS. 3, 4 and 5. In FIG. 3, the force in the traveling direction of the tire is Fcos θ−Lsin θ−f1,
In FIG. 5, the vertical force of the tire is f2 -Fsin θ-Lco
s θ.

【0012】以上より、 Fx =(Fcos θ−Lsin θ−f1 )cos θ−(f2 −
Fsin θ−Lcos θ)sin θ Fx =F−f1 cos θ−f2 sin θ:回転力 回転方向負荷は[f1cos θ+f2sin θ]となる。
From the above, Fx = (Fcos θ−Lsin θ−f1) cos θ− (f2−
Fsin θ−L cos θ) sin θ Fx = F−f1 cos θ−f2 sin θ: Rotational force The rotation direction load is [f1cos θ + f2sin θ].

【0013】FY =(Fcos θ−Lsin θ−f1 )sin
θ+(f2 −Fsin θ−Lcos θ)cos θ FY =f2 cos θ−f1 sin θ−L:推進力 ここで、タイヤが鉛直方向に滑らない場合(静止摩擦
状態で使用) f2 =Fsin θ+Lcos θ≦f 2max Fx =F−f1cos θ−(Fsin +Lcos θ)sin θ =Fsin 2 θ−(f1 +Lsin θ)cos θ Fx >0より F>(f1+Lsin θ)cos θcosec 2 θ・・・必要条件
1 FY =(Fsin θ+Lcos θ)cos θ−f1sin θ−L =Fsin θcos θ−(Lsin θ+f1)sin θ FY >0より F>(f1+Lsin θ)sec θ ・・・必要条件
2 よって、必要条件1,2を共に満たすFを与えた場合に
推進力が生じる。
FY = (Fcos θ−Lsin θ−f1) sin
θ + (f2−Fsin θ−Lcos θ) cos θ FY = f2 cos θ−f1 sin θ−L: Propulsion force Here, when the tire does not slide vertically (used in static friction) f2 = Fsin θ + Lcos θ ≦ f 2max Fx = F-f1cos θ- (Fsin + Lcos θ) sin θ = Fsin 2 θ- (f1 + Lsin θ) cos θ From Fx> 0 F> (f1 + Lsin θ) cos θcosec 2 θ ... Requirement 1 FY = (Fsin θ + Lcos θ) cos θ−f1sin θ−L = Fsin θcos θ− (Lsin θ + f1) sin θ FY> 0 From F> (f1 + Lsin θ) sec θ ・ ・ ・ Requirement 2 Propulsion occurs when a satisfying F is given.

【0014】タイヤが滑る場合 f2=μN Fx =F−f1cos θ−μNsin θ Fx >0より F>f1cos θ+μNsin θ ・・・必要条件
1 FY =μNcos θ−f1sin θ−L FY >0より μNcos θ>f1sinθ+L ・・・必要条件
2 よって、必要条件1,2を共に満たすFを与えた場合に
推進力が生じる。
When the tire slips f2 = μN Fx = F−f1cos θ−μNsin θ Fx> 0 F> f1cos θ + μN sin θ ・ ・ ・ Requirement 1 FY = μNcos θ−f1sin θ−L FY> 0 μNcos θ> f1sin θ + L ... Necessary condition 2 Therefore, when F that satisfies both the necessary conditions 1 and 2 is given, a propulsive force is generated.

【0015】この状態では、推進力はタイヤの鉛直方向
の摩擦力に比例する。
In this state, the driving force is proportional to the vertical frictional force of the tire.

【0016】及びより最大推進力は、f2 max によ
って決まることが判り、よって推進力を大きくするには
最大摩擦力を大きくしてやればよい。
Further, it can be seen that the maximum propulsive force is determined by f2 max. Therefore, the maximum frictional force can be increased by increasing the propulsive force.

【0017】以上の結果から。タイヤに与えれれる力と
発生する推進力との関係をグラフに示してみる(図6,
図7)。但し、各グラフに就いて以下の値が一定として
与えられる。
From the above results. A graph showing the relationship between the force applied to the tire and the propulsive force generated (Fig. 6,
(Fig. 7). However, the following values are given as constants for each graph.

【0018】L=0 負荷 Y方向外力(Kg重) F1 =0.05 タイヤの転がり摩擦力(Kg重) μmax =1.0 最大静止摩擦係数 μ=0.6 滑り摩擦係数 また、グラフでの入力F,推進力FY 及び回転負荷の単
位はKg重である。
L = 0 load Y direction external force (Kg weight) F1 = 0.05 Tire rolling friction force (Kg weight) μmax = 1.0 Maximum static friction coefficient μ = 0.6 Sliding friction coefficient The unit of the input F, the propulsive force FY, and the rotational load is Kg weight.

【0019】[0019]

【実施例】以下、本発明を実施例の図面に基づいて説明
すれば、次の通りである。
The present invention will be described below with reference to the drawings of the embodiments.

【0020】図8は回転筒の駆動手段をモータの回転子
部とした自走装置を示し、1は中央に管内挿入目的物
(例えば小型テレビカメラ,光ファイバースコープ等)
2を収容する中空室3を設けた固定筒で、該固定筒1の
外周にベアリング4を介在して回転自在の回転筒5を配
設して二重筒体6を形成し、この回転筒5の外周囲に被
検査路となる管路7の内壁面7aに所定の与圧をもって
接触するタイヤ8を、該タイヤ8の車軸8aを管路7の
長手方向に対して一定の角度θを傾けた取付けとし、且
つ回転筒5の基端を、二重筒体6の基端に一体装着した
モータ9の回転子部9aに直結して回転構造とし、これ
ら全体の構成で管路内自走装置10とする。
FIG. 8 shows a self-propelled device in which the driving means of the rotary cylinder is a rotor part of a motor, and 1 is an object to be inserted into a tube in the center (for example, a small TV camera, an optical fiber scope, etc.).
A fixed cylinder provided with a hollow chamber 3 for accommodating 2 and a rotatable cylinder 5 disposed on the outer periphery of the fixed cylinder 1 with a bearing 4 interposed therebetween to form a double cylinder body 6. A tire 8 that comes into contact with the inner wall surface 7a of the pipe 7 to be inspected on the outer periphery of the pipe 5 with a predetermined pressurizing force is applied to the axle 8a of the tire 8 at a constant angle θ with respect to the longitudinal direction of the pipe 7. It is mounted in a tilted manner, and the base end of the rotary cylinder 5 is directly connected to the rotor portion 9a of the motor 9 integrally mounted on the base end of the double cylinder body 6 to form a rotary structure. The running device 10 is used.

【0021】次にこの作用を説明すると、先ず所定の小
口径管の管路7の管内検査に当たって、予め中央位置と
なる固定筒1部に小型カメラ等の検査器(管内挿入目的
物)2を収容し、この状態で管路内自走装置10をマン
ホール箇所等より小口径管路7に搬入し、この基端に配
設したモータ9を適宜遠隔的に回転させれば、この回転
子部9aと一体となった回転筒5のみが直接回転し、該
回転筒5の外周囲に突設したタイヤ8が長手方向に対し
傾け配置しているため、管路内壁面7aに接するタイヤ
8にはねじの原理に基づく螺旋状の推進力が働き前進す
るものとなる。但し、この中央の固定筒1はあくまでベ
アリング4を介して位置するため実質的に不動状態を呈
する。このため、固定筒1に収容の検査器2に管内の状
況を確実に撮り、別途モニター(図示ぜす)等に写し出
し得る。
To explain this action, first, in the in-pipe inspection of the pipe line 7 of a predetermined small-diameter pipe, an inspection device (object to be inserted into the pipe) 2 such as a small camera is attached to the fixed cylinder 1 part which is located at the central position in advance. In this state, the in-pipe self-propelled device 10 is carried into the small-diameter pipe 7 from a manhole or the like in this state, and the motor 9 arranged at the base end thereof is appropriately rotated remotely, so that the rotor portion can be obtained. Only the rotating cylinder 5 integrated with 9a directly rotates, and the tire 8 projecting from the outer periphery of the rotating cylinder 5 is inclined with respect to the longitudinal direction. Is driven by a spiral propulsion force based on the screw principle. However, since the fixed cylinder 1 at the center is positioned only through the bearing 4, it is substantially immobile. Therefore, the situation inside the tube can be reliably captured by the inspection device 2 housed in the fixed barrel 1 and can be separately displayed on a monitor (shown in the figure) or the like.

【0022】勿論、このとき管路内自走装置10を後退
させるには、モータ9の回転を逆転させれば、逆ねじの
送りとなり後退移動をする。なお、管路内自走装置10
には駆動用電源線と映像用コードとなる少なくとも2本
のリード線17を接続することにより遠隔操作を可能と
する。また、この場合駆動用電源をバッテリー(図示せ
ず)等とし、無線にて遠隔操作することも可能となる。
Of course, at this time, in order to retreat the in-pipe self-propelled device 10, if the rotation of the motor 9 is reversed, the reverse screw is fed to move backward. In addition, the self-propelled device 10 in the pipeline
A remote control is enabled by connecting a drive power source line and at least two lead wires 17 which are video cords. Further, in this case, the driving power source may be a battery (not shown) or the like, and the remote control can be performed wirelessly.

【0023】図9は回転筒5の構成を、管路内壁を押圧
する傾斜のタイヤ8を複数基(図示で3枚)の回転板1
2に突設し、各複数基の回転板12を中間部材となる接
続用コイルバネのスプリング胴13で接続し一体構成の
屈曲タイプとした他の実施例を示すものである。なお、
この実施例では中央に臨む固定筒1を、可撓性部材を用
い屈曲自在とし得るようにすることは勿論である。
FIG. 9 shows the structure of the rotary cylinder 5, in which a plurality of (three in the figure) rotary plates 1 having inclined tires 8 for pressing the inner wall of the pipe line are provided.
2 shows another embodiment in which a plurality of rotary plates 12 are provided in a protruding manner and are connected to each other by a spring shell 13 of a connecting coil spring serving as an intermediate member to form a bending type having an integral structure. In addition,
In this embodiment , a flexible member is used for the fixed cylinder 1 facing the center .
Of course, it should be flexible.

【0024】この場合、回転筒5の中央に形成された中
空部分11を固定筒1の配設位置とし、該固定筒1の中
空室3に前記同様に目的物を案内する。また、このとき
の回転筒5の駆動手段としては、該回転筒5の末端に設
けた支持筒部14に回転するケーブル15を直接接続
し、このケーブル15自体に与える外部回転を連動させ
て回転させる構成を取る。また、この実施例における固
定筒1内にも光ファイバー等の検査器2を収容し、固定
筒1の外周と回転筒5間にベアリング4(図示せず)を
介在させ、全体として管路内自走装置10とする。ま
た、このとき各回転板12の外周に張り出す3個の傾斜
設定のタイヤ8の支持は、基端を回転板12に枢着した
バネ(図示せず)にて外方へ広がりをもつ支持アーム1
6に配され、管路内壁面7aに所定の圧力をもって接す
ると共に、管径等の変化にも対応するよう形成してい
る。
In this case, the hollow portion 11 formed in the center of the rotary cylinder 5 is set as the position where the fixed cylinder 1 is disposed, and the target object is guided into the hollow chamber 3 of the fixed cylinder 1 as described above. Further, as a driving means of the rotary cylinder 5 at this time, a rotating cable 15 is directly connected to a supporting cylinder portion 14 provided at the end of the rotary cylinder 5, and the external rotation given to the cable 15 itself is interlocked to rotate. Take the configuration to let. In addition, an inspection device 2 such as an optical fiber is also accommodated in the fixed barrel 1 in this embodiment, and a bearing 4 (not shown) is interposed between the outer circumference of the fixed barrel 1 and the rotary barrel 5 so that the inside of the pipeline is self-contained as a whole. The running device 10 is used. In addition, at this time, the tires 8 having three inclinations projecting to the outer periphery of each rotary plate 12 are supported by a spring (not shown) whose base end is pivotally attached to the rotary plate 12 so as to have an outward spread. Arm 1
6 is formed so as to be in contact with the inner wall surface 7a of the pipe line with a predetermined pressure and to cope with changes in the pipe diameter and the like.

【0025】この実施例の動作としては、管路内自走装
置10の構成が中間部に複数個の接続コイルバネとなる
スプリング胴13を配設し長手方向に撓み自在となるた
め、管路7に曲がり部分があっても管路内自走装置10
全体が屈曲し管路7に追従し得る。即ち、管路内自走装
置10の基端のケーブル15に回転を与えれば、回転筒
5となる複数枚(3枚)の回転板12とこれを結ぶ3個
のコイルバネのスプリング胴13が一体回転し、管路7
の内壁面7aに圧接する傾斜配置のタイヤ8に前記同様
な螺旋状推進力が発生し、管路7内を前進する。また、
中央に形成される中空部分に別途光ファイバー等の検査
器2を臨ませておけば、管路内を確実に撮り得、所定の
検査ができる。
In the operation of this embodiment, since the self-propelled device 10 in the pipeline is provided with a plurality of spring cylinders 13 serving as connecting coil springs in the middle portion and is flexible in the longitudinal direction, the pipeline 7 is provided. Self-propelled device in pipeline 10 even if there is a bend in
The whole can be bent and follow the duct 7. That is, when the cable 15 at the base end of the in-pipe self-propelled device 10 is rotated, a plurality of (three) rotary plates 12 that form the rotary cylinder 5 and a spring body 13 of three coil springs that connect the rotary plates 12 are integrated. Rotating, pipeline 7
A spiral propulsion force similar to the above is generated in the inclined tires 8 that are in pressure contact with the inner wall surface 7a of the tire, and the tire 8 advances in the pipe line 7. Also,
If the inspection device 2 such as an optical fiber is separately exposed to the hollow portion formed in the center, the inside of the pipe can be surely taken and a predetermined inspection can be performed.

【0026】[0026]

【発明の効果】上述のように、本発明の管路内自走装置
は固定筒と回転筒を内外とする二重筒体とし、回転筒の
外周囲に管路に対し所定角度を傾けたタイヤ(車輪)を
配すだけの構成とすることで、装置全体が超小型に形成
し得、家庭用下水配管等の如く小口径管への搬入が可能
となり、且つこの回転筒を回転させるだけで管路内壁面
に圧接のタイヤ部分に螺旋状の推進力が生じ、確実な前
進又は後退が自動的に行なえ得る所謂マイクロ・ロボッ
トとなり、各種管路内自走装置に最適となる。しかも、
回転筒と固定筒間にベヤリングを介在しているため、該
固定筒は安定配置となり、中央位置に備えた光ファイバ
ー,テレビカメラ等の撮影部の管内撮影が最良となる。
また、固定筒は不動で直進するため非破壊試験用部材の
搬入等にも最適となる。更に、本発明装置は全体として
簡略化構造を呈するため、長期使用においても故障,破
損等を招かない堅牢タイプとなる等の効果を有する。
As described above, the in-pipe self-propelled device of the present invention is a double cylinder body having a fixed cylinder and a rotary cylinder inside and outside, and is inclined at a predetermined angle with respect to the pipe line around the outside of the rotary cylinder. By only arranging tires (wheels), the entire device can be made ultra-compact, and it can be carried into a small-diameter pipe such as domestic sewage pipe, and only this rotating cylinder can be rotated. Thus, a spiral propulsive force is generated in the tire portion that is pressed against the inner wall surface of the pipeline, and it becomes a so-called micro robot capable of automatically performing a reliable forward or backward movement, which is optimum for various self-propelled devices in pipelines. Moreover,
Since the bearing is interposed between the rotary cylinder and the fixed cylinder, the fixed cylinder is in a stable arrangement, and it is best to photograph inside the tube of the photographing unit such as an optical fiber or a television camera provided at the central position.
Further, since the fixed cylinder is immovable and moves straight, it is optimal for carrying in nondestructive testing members. Further, since the device of the present invention has a simplified structure as a whole, it has an effect of becoming a robust type that does not cause a failure or damage even in long-term use.

【0027】なお、上記管路に対する説明は、小口径管
路を主体として述べた、この管路内自走装置を全体とし
て大型化構成にすれば、下水本管とか石油のパイプライ
ン、又はガス管等の大径管路内の自走装置にも適するこ
とは勿論である。
The description of the above-mentioned pipeline was mainly made up of small-diameter pipelines. If the self-propelled device in the pipeline is made large in size as a whole, a sewer main, a petroleum pipeline, or a gas pipeline will be used. Of course, it is also suitable for a self-propelled device in a large diameter pipe such as a pipe.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示すタイヤの傾きによる進行
方向の変化を示す説明図であり、(A)はタイヤを傾け
ない状態、(B)はタイヤを傾けた状態を示す。
FIG. 1 is an explanatory view showing a change in a traveling direction due to a tilt of a tire according to an embodiment of the present invention, (A) shows a state where the tire is not tilted, and (B) shows a state where the tire is tilted.

【図2】同走行原理の説明図である。FIG. 2 is an explanatory diagram of the same traveling principle.

【図3】同タイヤに掛かる入力と負荷の関係を示す説明
図である。
FIG. 3 is an explanatory diagram showing a relationship between an input applied to the tire and a load.

【図4】同タイヤに掛かる摩擦力の関係を示す説明図で
ある。
FIG. 4 is an explanatory diagram showing a relationship of a frictional force applied to the tire.

【図5】同タイヤに掛かる合成力ベクトルを示す説明図
である。
FIG. 5 is an explanatory diagram showing a combined force vector applied to the tire.

【図6】タイヤを5°角度曲げ場合の推進力の特性図で
ある。
FIG. 6 is a characteristic diagram of propulsive force when a tire is bent at an angle of 5 °.

【図7】同タイヤを10°角度曲げ場合の推進力の特性
図である。
FIG. 7 is a characteristic diagram of propulsive force when the tire is bent at an angle of 10 °.

【図8】外周の回転筒をモータの回転子に一体とする実
施例の要部断面図である。
FIG. 8 is a cross-sectional view of essential parts of an embodiment in which a rotary cylinder on the outer periphery is integrated with a rotor of a motor.

【図9】同回転筒の他の実施例の斜視図である。FIG. 9 is a perspective view of another embodiment of the rotary cylinder.

【符号の説明】[Explanation of symbols]

1 固定筒 5 回転筒 6 二重筒体 7 管路 8 タイヤ 1 Fixed cylinder 5 Rotating cylinder 6 Double cylinder 7 Pipe line 8 Tire

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 小型テレビカメラ,検査器等の管内挿入
目的物を先端部に収容する中空室を設けた固定筒を内側
に配設し、該固定筒の外側に、固定筒側末端に備えるモ
ータ又は外部導入の駆動用ケーブルで可逆転する回転子
部に連設した回転筒をベアリングを介して配設し二重筒
体を形成し、且つ前記回転筒の外周には管路壁面に所定
の与圧をもって接触する複数個のタイヤを、それぞれ管
路に対し一定角度に傾けた車軸で斜め装着とし、前記回
転筒の回転に伴い転動するタイヤに螺旋状推進力を発生
させ、回転筒自体の正,逆転のみで下水管路等の管路内
を前,後進することを特徴とした管路内自走装置。
1. A small television camera, an inspection device, or the like inserted into a pipe.
Inside the fixed cylinder with a hollow chamber that houses the target object
Is installed on the outside of the fixed cylinder and is provided at the end of the fixed cylinder side.
Rotor that can be reversibly rotated with a motor or an externally installed drive cable
A double cylinder with a rotating cylinder that is connected to the section is arranged via a bearing
A body is formed, and the outer circumference of the rotary cylinder is fixed on the wall surface of the conduit.
A plurality of tires that come into contact with each other under
It is installed diagonally on an axle that is inclined at a certain angle to the road, and a spiral propulsion force is generated in the tire that rolls with the rotation of the rotary cylinder, and a pipeline such as a sewer pipe is formed only by forward and reverse rotation of the rotary cylinder itself. A self-propelled device in a pipeline characterized by moving forward and backward in the interior.
【請求項2】 小型テレビカメラ,検査器等の管内挿入
目的物を先端部に収容する中空室を設けた固定筒を内側
に配設し、該固定筒の外側に配設する回転筒の構成を、
中央に前記固定筒が臨む中空部分をもつ複数基の回転板
を前後方向に所定間隔で配すと共に、この各中間部材を
接続用コイルバネとなるスプリング胴で連結し長手方向
に撓み自在とし、全体として屈曲タイプの二重筒体を形
成し、且つ前記各回転板の周囲に配置する管路壁面に接
触する複数個のタイヤを、それぞれ回転板に傾斜状突設
したバネで外方に広がりをもつ所定長さの支持アームの
先端に管路に対し一定角度の斜め装着とし、前記回転筒
側の末端に設けた支持筒部に接続のケーブルの回転に伴
い転動するタイヤに螺旋状推進力を発生させ、回転筒自
体の正,逆転のみで下水管路等の管路曲り部でも前記ス
プリング胴が撓む追従となり前,後進をすることを特徴
とした管路内自走装置。
2. A small television camera, an inspection device, etc., inserted into a pipe.
Inside the fixed cylinder with a hollow chamber that houses the target object
And the configuration of the rotary cylinder disposed outside the fixed cylinder,
A plurality of rotating plates having a hollow portion in the center facing the fixed cylinder
Are arranged at predetermined intervals in the front-back direction, and each of these intermediate members
Longitudinal direction by connecting with a spring body that serves as a connection coil spring
The flexible double cylinder is formed as a whole.
And connect to the wall surface of the pipes arranged around each rotating plate.
A plurality of tires to be touched , each with an inclined projection on the rotating plate
Of a support arm of a specified length that has an outward spread with a spring
The rotary cylinder is attached to the tip diagonally at a certain angle to the pipeline.
When the cable connected to the support cylinder provided at the end of the
The spiral rolling force is generated in the rolling tire,
Even if the body bends only in the normal and reverse directions, the above-mentioned
An in-pipe self-propelled device characterized by following the bending of the pulling cylinder and moving forward and backward.
JP5060034A 1993-03-19 1993-03-19 Self-propelled device in pipeline Expired - Fee Related JP2500739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5060034A JP2500739B2 (en) 1993-03-19 1993-03-19 Self-propelled device in pipeline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5060034A JP2500739B2 (en) 1993-03-19 1993-03-19 Self-propelled device in pipeline

Publications (2)

Publication Number Publication Date
JPH06270795A JPH06270795A (en) 1994-09-27
JP2500739B2 true JP2500739B2 (en) 1996-05-29

Family

ID=13130391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5060034A Expired - Fee Related JP2500739B2 (en) 1993-03-19 1993-03-19 Self-propelled device in pipeline

Country Status (1)

Country Link
JP (1) JP2500739B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5415985B2 (en) * 2010-02-09 2014-02-12 大阪瓦斯株式会社 In-pipe moving device
JP5415984B2 (en) * 2010-02-09 2014-02-12 大阪瓦斯株式会社 In-pipe moving device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5291213A (en) * 1976-01-22 1977-08-01 Ogiwara Katsuichi Driven wheel in cylindrical pipe
JPS619746Y2 (en) * 1980-08-18 1986-03-28
JP2566641B2 (en) * 1988-12-14 1996-12-25 株式会社イトーキクレビオ Transfer device

Also Published As

Publication number Publication date
JPH06270795A (en) 1994-09-27

Similar Documents

Publication Publication Date Title
US10895341B2 (en) Pipe pig
KR200479032Y1 (en) In-Pipe Inspection Robot
JP4677595B1 (en) Pipe inspection device
JP6301078B2 (en) Pipe moving device
JPS6132195B2 (en)
JPH05185931A (en) In-tube traveling vehicle
WO2002070943A9 (en) Gas main robotic inspection system
JPH07108659B2 (en) In-pipe traveling device and in-pipe inspection traveling device
JP5574861B2 (en) Pipe thinning measuring device
AU2015203020B2 (en) Pipe pig
JP2500739B2 (en) Self-propelled device in pipeline
JPH03573B2 (en)
JPH08233976A (en) Traveling device for inspecting inside of pipe conduit
US7284456B2 (en) Apparatus for moving a measuring device along a pipe
JPS59187312A (en) Observation device for pipeline
JP2617137B2 (en) In-pipe drive trolley
KR20090011494U (en) Self-Propelled Car
JPS61200464A (en) Running apparatus in pipe
JP2627013B2 (en) Self-propelled pipe inner surface polishing / measuring device
KR102465998B1 (en) Pipeline search apparatus having fall prevention function
JPH07232639A (en) Running device in pipe
WO2024095631A1 (en) Intra-pipeline work device
JP2011011638A (en) In-pipe self-advancing device
JPS61113555A (en) Travelling device in duct
JPH0756536Y2 (en) In-robot robot camera

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100313

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees