JP2024515985A - Derivatives of six-membered aromatic heterourea rings and uses thereof - Google Patents

Derivatives of six-membered aromatic heterourea rings and uses thereof Download PDF

Info

Publication number
JP2024515985A
JP2024515985A JP2023566656A JP2023566656A JP2024515985A JP 2024515985 A JP2024515985 A JP 2024515985A JP 2023566656 A JP2023566656 A JP 2023566656A JP 2023566656 A JP2023566656 A JP 2023566656A JP 2024515985 A JP2024515985 A JP 2024515985A
Authority
JP
Japan
Prior art keywords
compound
mmol
pharma
added
acceptable salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023566656A
Other languages
Japanese (ja)
Other versions
JPWO2022228365A5 (en
Inventor
シャオビン イェン
ウェイ ライ
シャン スン
チャールズ ズィー. ディン
リーホン ホー
シューフイ チェン
Original Assignee
メッドシャイン ディスカバリー インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メッドシャイン ディスカバリー インコーポレイテッド filed Critical メッドシャイン ディスカバリー インコーポレイテッド
Publication of JP2024515985A publication Critical patent/JP2024515985A/en
Publication of JPWO2022228365A5 publication Critical patent/JPWO2022228365A5/ja
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Urology & Nephrology (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

式(I)で表される6員芳香族ヘテロ尿素環の誘導体、及び糖尿病性腎症又は高血圧性腎症を治療するための医薬の製造におけるその使用を開示する。【化1】TIFF2024515985000111.tif57168Disclosed are derivatives of 6-membered aromatic heterourea rings represented by formula (I) and their use in the manufacture of medicaments for treating diabetic or hypertensive nephropathy.

Description

発明の詳細な説明Detailed Description of the Invention

本出願は下記の優先権を主張する。
CN202110462009.4、出願日は:2021年04月27日であり、
CN202210307799.3、出願日は:2022年03月25日である。
This application claims priority to the following:
CN202110462009.4, filing date: April 27, 2021;
CN202210307799.3, filing date: March 25, 2022.

[技術分野]
本発明は、一類の6員芳香族ヘテロ尿素環の誘導体及びその使用を開示し、具体的には、式(I)で表される化合物及びその薬学的に許容される塩を開示する。
[Technical field]
The present invention discloses a class of 6-membered aromatic heterourea derivatives and uses thereof, specifically, the compounds represented by formula (I) and pharma- ceutically acceptable salts thereof.

[背景技術]
可溶性グアニル酸シクラーゼ(sGC)は、哺乳動物細胞のサイトゾルに広く存在し、αサブユニット及びβサブユニットで構成されるヘテロ二量体であり、αサブユニット及びβサブユニットにはそれぞれ2つのアイソフォーム、α1、α2及びβ1、β2が含まれる。α1β1二量体は主に心血管組織に分布し、発現レベルは組織の血管新生の程度と正の相関があるのに対して、α2β1二量体は主に脳及び神経系で発現される。この2つは組織分布と細胞局在に大きな違いがあるが、sGC酵素機能の維持においては同様の役割を果たしている。
[Background Art]
Soluble guanylate cyclase (sGC) is widely present in the cytosol of mammalian cells and is a heterodimer composed of α and β subunits, which each have two isoforms, α1, α2 and β1, β2. The α1β1 dimer is mainly distributed in cardiovascular tissues and its expression level is positively correlated with the degree of tissue angiogenesis, whereas the α2β1 dimer is mainly expressed in the brain and nervous system. Although the two have significant differences in tissue distribution and cellular localization, they play similar roles in maintaining sGC enzyme function.

可溶性グアニル酸シクラーゼは、NO-sGC-cGMPシグナル経路における重要なシグナル伝達酵素であり、sGCは体内で活性化された後、グアノシン三リン酸(GTP)から環状グアノシン一リン酸(cGMP)への変換を触媒する。cGMPは重要なセカンドメッセンジャー分子であり、ホスホジエステラーゼ(PDE)、環状ヌクレオチド依存性イオンチャネル(CNG)、プロテインキナーゼG(PKG)などの様々な下流エフェクター分子を活性化させることにより、一連の下流カスケード反応を引き起して、血管や平滑筋の弛緩の促進、血小板凝集、血管リモデリング、細胞のアポトーシス及び炎症の抑制、神経伝達への関与など、胃腸系、血液循環系及び神経系において重要な生理学的機能を果たしている。病態生理学的条件下では、NO/cGMPシステムが阻害される可能性があり、高血圧、血小板活性化、細胞増殖の増加、内皮機能不全、動脈硬化、狭心症、心不全、心筋梗塞、血栓症、脳卒中、性機能障害などの症状を引き起こす可能性がある。過去2年間の研究により、sGCによって媒介されるシグナル伝達経路の異常が慢性腎臓病、全身性硬化症などの線維性疾患の発生と密接に関連していることが示された。 Soluble guanylate cyclase is an important signaling enzyme in the NO-sGC-cGMP signaling pathway, and after sGC is activated in the body, it catalyzes the conversion of guanosine triphosphate (GTP) to cyclic guanosine monophosphate (cGMP). cGMP is an important second messenger molecule that activates various downstream effector molecules, such as phosphodiesterase (PDE), cyclic nucleotide-gated ion channel (CNG), and protein kinase G (PKG), thereby triggering a series of downstream cascade reactions to play important physiological functions in the gastrointestinal system, blood circulation system, and nervous system, such as promoting relaxation of blood vessels and smooth muscles, platelet aggregation, vascular remodeling, suppressing cell apoptosis and inflammation, and participating in neurotransmission. Under pathophysiological conditions, the NO/cGMP system may be inhibited, which may lead to symptoms such as hypertension, platelet activation, increased cell proliferation, endothelial dysfunction, arteriosclerosis, angina pectoris, heart failure, myocardial infarction, thrombosis, stroke, and sexual dysfunction. Research over the past two years has demonstrated that abnormalities in the signaling pathway mediated by sGC are closely related to the development of fibrotic diseases such as chronic kidney disease and systemic sclerosis.

可溶性グアニル酸シクラーゼに対する従来の刺激治療では、有機硝酸塩などのNOに基づいて効果を発揮する化合物のみが使用されている。これは生体内変換によって形成され、ヘムの中心鉄原子を攻撃することで可溶性グアニル酸シクラーゼを活性化する。副作用に加えて、耐性の発現もこの種の治療法の決定的な欠点の1つである。 Conventional stimulation treatments of soluble guanylate cyclase only use compounds that exert their effect based on NO, such as organic nitrates, which are formed by biotransformation and activate soluble guanylate cyclase by attacking the central iron atom of heme. In addition to side effects, the development of resistance is also one of the crucial drawbacks of this type of treatment.

2013年10月、FDAは、肺動脈性肺高血圧症の治療に使用されるピラゾロピリジン化合物としてリオシグアト(Riociguat)と称される新しいグアニル酸シクラーゼ刺激剤を承認したが(WO2003095451A1)、人体内での半減期がより短く、クリアランスが高いため、1日3回の投与が必要である。 In October 2013, the FDA approved a new guanylate cyclase stimulator called riociguat (WO2003095451A1) for the treatment of pulmonary arterial hypertension, but it has a shorter half-life in the human body and high clearance, which requires three times daily dosing.

Figure 2024515985000002
Figure 2024515985000002

現在の市場及び臨床現場におけるそのような可溶性グアニル酸シクラーゼ刺激剤に対する満たされていないニーズを考慮して、本発明は、可溶性グアニル酸シクラーゼの刺激剤として使用することができ、グアニル酸シクラーゼに対して有効な体外刺激活性を示し、優れた薬物動態特性を有する、新しい種類の化合物を提供する。 In view of the current unmet need for such soluble guanylate cyclase stimulators in the market and in clinical practice, the present invention provides a new class of compounds that can be used as stimulators of soluble guanylate cyclase, exhibit effective in vitro stimulatory activity against guanylate cyclase, and have excellent pharmacokinetic properties.

[発明の概要]
一つの方面において、本発明は、式(I)で表される化合物又はその薬学的に許容される塩を提供する。
Summary of the Invention
In one aspect, the present invention provides a compound represented by formula (I) or a pharma- ceutically acceptable salt thereof.

Figure 2024515985000003
Figure 2024515985000003

ただし、Rは、H、F又はClであり、
は、C1-6アルキル、-CH-フェニル、-CH-ピリジル又は-CH-ピリミジニルであり、ここで、前記C1-6アルキル、-CH-フェニル、-CH-ピリジル又は-CH-ピリミジニルは、それぞれ独立して任意選択で1、2、3、4又は5つのRにより置換され、
各Rは、独立してH、F、Cl、Br、I、-OH、-CN、-NH、-NO、-C(=O)OH、C1-3アルコキシ又は任意選択で1、2又は3つの独立してF、Cl、Br、I、-OH、-CN、-NH及び-OCHから選択される置換基により置換されたC1-3アルキルであり、
及びRは、それぞれ独立してH、F、Cl、Br、I、-OH、-CN又は-NHであり、
は、-L-Rであり、
Lは、単結合、-NRC(=O)O-又は-NRC(=O)-であり、
は、C1-6アルキル、
where R 1 is H, F or Cl;
R 2 is C 1-6 alkyl, —CH 2 -phenyl, —CH 2 -pyridyl or —CH 2 -pyrimidinyl, wherein said C 1-6 alkyl, —CH 2 -phenyl, —CH 2 -pyridyl or —CH 2 -pyrimidinyl is each independently optionally substituted by 1, 2, 3, 4 or 5 R a ;
each R a is independently H, F, Cl, Br, I, -OH, -CN, -NH 2 , -NO 2 , -C(=O)OH, C 1-3 alkoxy or C 1-3 alkyl optionally substituted with 1 , 2 or 3 substituents independently selected from F, Cl, Br, I, -OH, -CN, -NH 2 and -OCH 3 ;
R3 and R4 are each independently H, F, Cl, Br, I, -OH, -CN, or -NH2 ;
R5 is -L- Rb ;
L is a single bond, -NR c C(=O)O- or -NR c C(=O)-;
R b is C 1-6 alkyl,

Figure 2024515985000004
であり、ここで、前記C1-6アルキル、
Figure 2024515985000004
wherein said C 1-6 alkyl,

Figure 2024515985000005
は、それぞれ独立して任意選択で1、2又は3つのRにより置換され、Rは、H、-CH又は-CHCHであり、
Figure 2024515985000005
are each independently optionally substituted with 1, 2 or 3 R; R c is H, —CH 3 , or —CH 2 CH 3 ;

各Rは、独立してF、Cl、Br、I、-OH、-CN、-NH、-NO、C1-3アルコキシ又は任意選択で1、2又は3つの独立してF、Cl、Br、I、-OH、-CN、-NH及び-OCHから選択される置換基により置換されたC1-3アルキルであり、
或いは、R及びRは、それらと連結された炭素原子と連結され、構造単位
each R is independently F, Cl, Br, I, -OH, -CN, -NH2 , -NO2 , C1-3alkoxy or C1-3alkyl optionally substituted with 1, 2 or 3 substituents independently selected from F, Cl, Br, I, -OH, -CN, -NH2 and -OCH3 ;
Alternatively, R 3 and R 5 are linked to the carbon atom to which they are linked to form a structural unit

Figure 2024515985000006
Figure 2024515985000006
but

Figure 2024515985000007
から選択されるようにし、
Figure 2024515985000007
Select from

、R及びRは、それぞれ独立してF、Cl、Br、I、-OH、-CN、-NH、-NO又は任意選択で1、2又は3つの独立してF、Cl、Br、I、-OH、-CN、-NH及び-OCHから選択される置換基により置換されたC1-3アルキ
ルである。
R 6 , R 7 and R 8 are each independently F, Cl, Br, I, -OH, -CN, -NH 2 , -NO 2 or C 1-3 alkyl optionally substituted with 1, 2 or 3 substituents independently selected from F, Cl, Br, I, -OH, -CN, -NH 2 and -OCH 3 .

本発明の一部の実施形態において、上記Lは、単結合、-NH-C(=O)O-、-NH-C(=O)-、-N(CH)-C(=O)O-又は-N(CH)-C(=O)-であり、他の変量は本発明で定義された通りである。 In some embodiments of the invention, L is a single bond, -NH-C(=O)O-, -NH-C(=O)-, -N(CH 3 )-C(=O)O- or -N(CH 3 )-C(=O)-, and all other variables are as defined herein.

本発明の一部の実施形態において、上記化合物又はその薬学的に許容される塩において、その化合物は、式(I-1)~(I-4)で表される構造を有する。 In some embodiments of the present invention, the compound or a pharma- ceutically acceptable salt thereof has a structure represented by formulas (I-1) to (I-4).

Figure 2024515985000008
Figure 2024515985000008

ただし、R、R、R及びRは、本発明で定義された通りである。
本発明の一部の実施形態において、上記各Rは、独立してF、Cl、Br、I、-OH、-CN、-NH、-NO、-CH、-CHCH、-OCH、-OCHCH、-CF、-CHCF、-CHCHCF、-CHOH又は-CHCHOHであり、他の変量は本発明で定義された通りである。
wherein R 1 , R 2 , R 4 and R b are as defined in the present invention.
In some embodiments of the invention, each R is independently F, Cl, Br, I, -OH, -CN, -NH 2 , -NO 2 , -CH 3 , -CH 2 CH 3 , -OCH 3 , -OCH 2 CH 3 , -CF 3 , -CH 2 CF 3 , -CH 2 CH 2 CF 3 , -CH 2 OH or -CH 2 CH 2 OH, with the other variables being as defined herein.

本発明の一部の実施形態において、上記Rは、C1-4アルキル、 In some embodiments of the present invention, R b is C 1-4 alkyl,

Figure 2024515985000009
であり、ここで、前記C1-4アルキル、
Figure 2024515985000009
wherein said C 1-4 alkyl,

Figure 2024515985000010
は、それぞれ独立して任意選択で1、2又は3つのRにより置換され、R及び他の変量は本発明で定義された通りである。
Figure 2024515985000010
is each independently optionally substituted with 1, 2 or 3 R, where R and the other variables are as defined herein.

本発明の一部の実施形態において、上記Rは、-CH、-CHCH、-CHCHCH、-CH(CH、-CHCHCHCH、-CH(CH)CHCH、-CHCH(CH、-C(CH In some embodiments of the invention, R b is -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -CH(CH 3 ) 2 , -CH 2 CH 2 CH 2 CH 3 , -CH(CH 3 ) CH 2 CH 3 , -CH 2 CH(CH 3 ) 2 , -C(CH 3 ) 3 ,

Figure 2024515985000011
であり、R及び他の変量は本発明で定義された通りである。
Figure 2024515985000011
where R and other variables are as defined herein.

本発明の一部の実施形態において、上記Rは、-CH、-CHCH、-CHCHCH、-CH(CH、-CHCHCHCH、-CH(CH)CHCH、-CHCH(CH、-C(CH In some embodiments of the invention, R b is -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -CH(CH 3 ) 2 , -CH 2 CH 2 CH 2 CH 3 , -CH(CH 3 ) CH 2 CH 3 , -CH 2 CH(CH 3 ) 2 , -C(CH 3 ) 3 ,

Figure 2024515985000012
であり、他の変量は本発明で定義された通りである。
Figure 2024515985000012
and other variables are as defined in the present invention.

本発明の一部の実施形態において、上記Rは、-NH-C(=O)O-C1-4アルキル、-NHC(=O)-C1-4アルキル、-N(CH)-C(=O)O-C1-4
アルキル、-NH-C(=O)-(C3-6シクロアルキル)、-N(CH)C(=O)-(C3-6シクロアルキル)、-NH-C(=O)-フェニル、-N(CH)-C(=O)-フェニル又は5~6員ヘテロシクロアルキルであり、ここで、前記NH-C(=O)O-C1-4アルキル、-NHC(=O)-C1-4アルキル、-N(CH)-C(=O)O-C1-4アルキル、-NH-C(=O)-(C3-6シクロアルキル)、-N(CH)C(=O)-(C3-6シクロアルキル)、-NH-C(=O)-フェニル、-N(CH)-C(=O)-フェニル及び5~6員ヘテロシクロアルキルは、それぞれ独立して任意選択で1、2又は3つのRにより置換され、R及び他の変量は本発明で定義された通りである。
In some embodiments of the present invention, R 5 is -NH-C(=O)O-C 1-4 alkyl, -NHC(=O)-C 1-4 alkyl, -N(CH 3 )-C(=O)O-C 1-4
and 5-6 membered heterocycloalkyl, wherein said NH-C(=O)O-C 1-4 alkyl, -NHC(=O)-C 1-4 alkyl, -N(CH 3 )-C(=O)O-C 1-4 alkyl, -NH-C(=O)-(C 3-6 cycloalkyl ), -N(CH 3 )-C(=O)-(C 3-6 cycloalkyl), -NH - C(=O )-phenyl, -N(CH 3 ) -C(=O)-phenyl and 5-6 membered heterocycloalkyl are each independently optionally substituted by 1, 2 or 3 R, and R and the other variables are as defined herein.

本発明の一部の実施形態において、上記Rは、-NH-C(=O)O-CH、-NH-C(=O)O-CHCH、-NH-C(=O)O-CHCHCH、-NH-C(=O)O-CH(CH、-NH-C(=O)-CH、-NH-C(=O)-CHCH、-NH-C(=O)-CHCHCH、-NH-C(=O)-CH(CH、-N(CH)-C(=O)O-CH、-N(CH)-C(=O)O-CHCH、-N(CH)-C(=O)O-CHCHCH、-N(CH)-C(=O)O-CH(CH In some embodiments of the invention, R 5 is -NH-C(=O)O-CH 3 , -NH-C(=O)O-CH 2 CH 3 , -NH-C(=O)O-CH 2 CH 2 CH 3 , -NH-C(=O)O-CH(CH 3 ) 2 , -NH-C(=O)-CH 3 , -NH-C(=O)-CH 2 CH 3 , -NH-C(=O)-CH 2 CH 2 CH 3 , -NH-C(=O)-CH(CH 3 ) 2 , -N(CH 3 )-C(=O)O-CH 3 , -N(CH 3 )-C(=O)O-CH 2 CH 3 , -N(CH 3 )-C(=O)O-CH 2 CH 2 CH 3 , -N(CH 3 )-C(=O)O-CH( CH3 ) 2 ,

Figure 2024515985000013
であり、R及び他の変量は本発明で定義された通りである。
Figure 2024515985000013
where R and other variables are as defined herein.

本発明の一部の実施形態において、上記Rは、-NH-C(=O)O-CH、-NH-C(=O)O-CHCH、-NH-C(=O)O-CHCHCH、-NH-C(=O)O-CH(CH、-NH-C(=O)-CH、-NH-C(=O)-CHCH、-NH-C(=O)-CHCHCH、-NH-C(=O)-CH(CH、-N(CH)-C(=O)O-CH、-N(CH)-C(=O)O-CHCH、-N(CH)-C(=O)O-CHCHCH、-N(CH)-C(=O)O-CH(CH In some embodiments of the invention, R 5 is -NH-C(=O)O-CH 3 , -NH-C(=O)O-CH 2 CH 3 , -NH-C(=O)O-CH 2 CH 2 CH 3 , -NH-C(=O)O-CH(CH 3 ) 2 , -NH-C(=O)-CH 3 , -NH-C(=O)-CH 2 CH 3 , -NH-C(=O)-CH 2 CH 2 CH 3 , -NH-C(=O)-CH(CH 3 ) 2 , -N(CH 3 )-C(=O)O-CH 3 , -N(CH 3 )-C(=O)O-CH 2 CH 3 , -N(CH 3 )-C(=O)O-CH 2 CH 2 CH 3 , -N(CH 3 )-C(=O)O-CH( CH3 ) 2 ,

Figure 2024515985000014
であり、他の変量は本発明で定義された通りである。
Figure 2024515985000014
and other variables are as defined in the present invention.

本発明の一部の実施形態において、上記化合物又はその薬学的に許容される塩において、その化合物は、式(I-5)~(I-13)で表される構造を有する。 In some embodiments of the present invention, the compound or a pharma- ceutically acceptable salt thereof has a structure represented by formulas (I-5) to (I-13).

Figure 2024515985000015
Figure 2024515985000015

ただし、pは、0、1又は2であり、Rは、H又は-NHであり、R及びRは、本発明で定義された通りである。
本発明の一部の実施形態において、上記化合物又はその薬学的に許容される塩において、その化合物は、式(I-14)~(I-15)で表される構造を有する。
wherein p is 0, 1 or 2, R 4 is H or —NH 2 , and R 2 and R are as defined herein.
In some embodiments of the present invention, in the above compound or a pharma- ceutically acceptable salt thereof, the compound has a structure represented by formula (I-14) to (I-15).

Figure 2024515985000016
Figure 2024515985000016

ただし、R、R、R、R、R及びRは、本発明で定義された通りである。
本発明の一部の実施形態において、上記化合物又はその薬学的に許容される塩において、その化合物は、式(I-16)~(I-19)で表される構造を有する。
wherein R 1 , R 2 , R 4 , R 6 , R 7 and R 8 are as defined in the present invention.
In some embodiments of the present invention, in the above compound or a pharma- ceutically acceptable salt thereof, the compound has a structure represented by formulae (I-16) to (I-19).

Figure 2024515985000017
Figure 2024515985000017

ただし、R、R、R及びRは、本発明で定義された通りである。
本発明の一部の実施形態において、上記構造単位
wherein R 2 , R 6 , R 7 and R 8 are as defined in the present invention.
In some embodiments of the present invention, the structural unit

Figure 2024515985000018
は、
Figure 2024515985000018
teeth,

Figure 2024515985000019
であり、他の変量は本発明で定義された通りである。
Figure 2024515985000019
and other variables are as defined in the present invention.

本発明の一部の実施形態において、上記構造単位 In some embodiments of the present invention, the structural unit

Figure 2024515985000020
は、
Figure 2024515985000020
teeth,

Figure 2024515985000021
であり、他の変量は本発明で定義された通りである。
Figure 2024515985000021
and other variables are as defined in the present invention.

本発明の一部の実施形態において、上記R、R及びRは、それぞれ独立してF、Cl、Br、I、-OH、-CN、-NH、-NO、-CH、-CHCH、-CF、-CHCF又は-CHCHOHであり、他の変量は本発明で定義された通りである。 In some embodiments of the invention, R 6 , R 7 and R 8 are each independently F, Cl, Br, I, -OH, -CN, -NH 2 , -NO 2 , -CH 3 , -CH 2 CH 3 , -CF 3 , -CH 2 CF 3 or -CH 2 CH 2 OH, and other variables are as defined herein.

本発明の一部の実施形態において、上記化合物又はその薬学的に許容される塩において、その化合物は、式(I-20)~(I-25)で表される構造を有する。 In some embodiments of the present invention, the compound or a pharma- ceutically acceptable salt thereof has a structure represented by formulas (I-20) to (I-25).

Figure 2024515985000022
Figure 2024515985000022

ただし、Rは本発明で定義された通りである。
本発明の一部の実施形態において、上記各Rは、独立してH、F、Cl、Br、I、-OH、-CN、-NH、-NO、-C(=O)OH、-CH、-CHCH、-CHCHCH、-CH(CH、-OCH、-OCHCH、-CF、-CHCF、-CFCF、-CHCHCF、-CHOH又は-CHCHOHであり、他の変量は本発明で定義された通りである。
wherein R2 is as defined herein.
In some embodiments of the invention, each R a is independently H, F, Cl, Br, I, -OH, -CN, -NH 2 , -NO 2 , -C(═O)OH, -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -CH(CH 3 ) 2 , -OCH 3 , -OCH 2 CH 3 , -CF 3 , -CH 2 CF 3 , -CF 2 CF 3 , -CH 2 CH 2 CF 3 , -CH 2 OH or -CH 2 CH 2 OH, with the other variables being as defined herein.

本発明の一部の実施形態において、上記各Rは、独立してH、F、Cl、又は-NHであり、他の変量は本発明で定義された通りである。
本発明の一部の実施形態において、上記Rは、C1-6アルキル、-CH-フェニル、-CH-ピリジル、-CH-ピリミジニル又は-CH-ピラジニルであり、ここで、前記C1-6アルキル、フェニル、ピリジル、ピリミジニル及びピラジニルは、任意選択で1、2、3、4又は5つのRにより置換され、R及び他の変量は本発明で定義された通りである。
In some embodiments of the invention, each R a above is independently H, F, Cl, or --NH2 , and all other variables are as defined herein.
In some embodiments of the invention, R 2 is C 1-6 alkyl, -CH 2 -phenyl, -CH 2 -pyridyl, -CH 2 -pyrimidinyl or -CH 2 -pyrazinyl, wherein said C 1-6 alkyl, phenyl, pyridyl, pyrimidinyl and pyrazinyl are optionally substituted by 1, 2, 3, 4 or 5 R a , and R a and other variables are as defined herein.

本発明の一部の実施形態において、上記Rは、 In some embodiments of the present invention, R2 is

Figure 2024515985000023
であり、R及び他の変量は本発明で定義された通りである。
Figure 2024515985000023
where R a and other variables are as defined herein.

本発明の一部の実施形態において、上記Rは、 In some embodiments of the present invention, R2 is

Figure 2024515985000024
であり、他の変量は本発明で定義された通りである。
Figure 2024515985000024
and other variables are as defined in the present invention.

本発明の一部の実施形態において、上記R及びRは、それぞれ独立してH又は-NHであり、他の変量は本発明で定義された通りである。
本発明の一部の実施形態において、上記化合物は、式(I-15-a)、(I-15-b)、(I-15-c)又は(I-15-d)で表される構造を有する。
In some embodiments of the present invention, R 3 and R 4 are each independently H or -NH 2 , and other variables are as defined herein.
In some embodiments of the invention, the compound has a structure represented by formula (I-15-a), (I-15-b), (I-15-c) or (I-15-d).

Figure 2024515985000025
Figure 2024515985000025

ただし、R、R、R、R及びRは、本発明で定義された通りである。
本発明一部の実施形態は、更に上記の変量の任意の組み合わせにより形成される。
本発明の一部の実施形態において、上記化合物又はその薬学的に許容される塩は、下記から選択される。
wherein R 1 , R 4 , R 7 , R 8 and R a are as defined in the present invention.
Some embodiments of the present invention are further formed by any combination of the above variables.
In some embodiments of the invention, the compound, or a pharma- ceutically acceptable salt thereof, is selected from the following:


Figure 2024515985000026
Figure 2024515985000027

Figure 2024515985000026
Figure 2024515985000027

本発明は、更に糖尿病性腎症又は高血圧性腎症を治療するための医薬の製造における、上記化合物又はその薬学的に許容される塩の使用を提供する。
本発明は、更に対象に有効量の上記技術的解決策のいずれかで限定された化合物又はその薬学的に許容される塩を提供することを含む、必要とする対象における糖尿病性腎症又は高血圧性腎症の治療方法を提供する。
The present invention further provides the use of the above compound, or a pharma- ceutically acceptable salt thereof, in the manufacture of a medicament for treating diabetic or hypertensive nephropathy.
The present invention further provides a method for treating diabetic nephropathy or hypertensive nephropathy in a subject in need thereof, comprising providing to the subject an effective amount of a compound defined in any of the above technical solutions or a pharma- ceutically acceptable salt thereof.

[技術効果]
本発明は、一類の可溶性グアニル酸シクラーゼ刺激剤に関し、関連化合物はグアニル酸シクラーゼに対して有意な体外刺激活性を有し、優れた薬物動態特性を有し、5つのCYPアイソザイムに対していずれも弱い阻害効果を示す。
[Technical Effects]
The present invention relates to a class of soluble guanylate cyclase stimulators, the related compounds of which have significant in vitro stimulating activity against guanylate cyclase, excellent pharmacokinetic properties, and weak inhibitory effects against all five CYP isoenzymes.

[定義及び説明]
別途に説明しない限り、本明細書で用いられる下記の用語及び連語は以下の意味を含む。1つの特定の用語又は連語は、特別に定義されない場合、不確定又は不明瞭ではなく、一般的な定義として理解されるべきである。本明細書で商品名が出た場合、相応の商品又はその活性成分を指す。
[Definitions and Explanations]
Unless otherwise stated, the following terms and phrases used herein have the following meanings: A particular term or phrase, unless specifically defined, should be understood to be generally defined, not indefinite or unclear. When a trade name appears in this specification, it refers to the corresponding product or its active ingredient.

本明細書で用いられる「薬学的許容される」は、それらの化合物、材料、組成物及び/又は剤形に対するもので、これらは信頼できる医学判断の範囲内にあり、ヒト及び動物の組織との接触に適し、毒性、刺激性、アレルギー反応又はほかの問題又は合併症があまりなく、合理的な利益/リスク比に合う。 As used herein, "pharmacologically acceptable" refers to those compounds, materials, compositions and/or dosage forms which are within the scope of sound medical judgment, suitable for contact with human and animal tissues, without significant toxicity, irritation, allergic response or other problem or complication, and consistent with a reasonable benefit/risk ratio.

用語「薬学的に許容される塩」とは、本発明の化合物の塩を指し、本発明で発見された特定の置換基を有する化合物と比較的に無毒の酸又は塩基とで製造される。本発明の化合物に比較的に酸性の官能基が含まれる場合、単独の溶液又は適切な不活性溶媒において十分な量の塩基でこれらの化合物と接触することで塩基付加塩を得ることができる。薬学的許容される塩基付加塩は、ナトリウム、カリウム、カルシウム、アンモニウム、有機アミン又はマグネシウム塩あるいは類似の塩を含む。本発明で化合物に比較的塩基性の官能基が含まれる場合、単独の溶液又は、適切な不活性溶媒において十分な量の酸でこれらの化合物と接触することで酸付加塩を得ることができる。薬学的に許容される酸付加塩の実例は、無機酸塩及び有機酸塩、更にアミノ酸(例えばアルギニンなど)の塩、及びグルクロン酸のような有機酸の塩を含み、上記無機酸は、例えば塩酸、臭化水素酸、硝酸、炭酸、炭酸水素イオン、リン酸、リン酸一水素イオン、リン酸二水素イオン、硫酸、硫酸水素イオン、ヨウ化水素酸、亜リン酸などを含み、上記有機酸は、例えば酢酸、プロピオン酸、イソ酪酸、マレイン酸、マロン酸、安息香酸、コハク酸、スベリン酸、フマル酸、乳酸、マンデル酸、フタル酸、ベンゼンスルホン酸、p-トルエンスルホン酸、クエン酸、酒石酸及びメタンスルホン酸などの類似の酸を含む。本発明の一部の特定的の化合物は、塩基性及び酸性の官能基を含有するため、任意の塩基付加塩又は酸付加塩に転換することができる。 The term "pharmaceutical acceptable salts" refers to salts of the compounds of the present invention, which are prepared with relatively non-toxic acids or bases with certain substituents found in the present invention. When the compounds of the present invention contain relatively acidic functional groups, base addition salts can be obtained by contacting these compounds with a sufficient amount of base in a solution alone or in a suitable inert solvent. Pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amine or magnesium salts or similar salts. When the compounds of the present invention contain relatively basic functional groups, acid addition salts can be obtained by contacting these compounds with a sufficient amount of acid in a solution alone or in a suitable inert solvent. Examples of pharma- ceutically acceptable acid addition salts include inorganic and organic acid salts, as well as salts of amino acids (e.g., arginine, etc.), and salts of organic acids such as glucuronic acid, such as inorganic acids including, for example, hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, bicarbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, hydrogen sulfate, hydroiodic acid, phosphorous acid, and the like, and organic acids including, for example, acetic acid, propionic acid, isobutyric acid, maleic acid, malonic acid, benzoic acid, succinic acid, suberic acid, fumaric acid, lactic acid, mandelic acid, phthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, citric acid, tartaric acid, and methanesulfonic acid and similar acids. Some specific compounds of the present invention contain basic and acidic functional groups and can therefore be converted into any base or acid addition salt.

本発明の薬学的許容される塩は、酸基又は塩基性基を含む母体化合物から通常の化学的方法で合成することができる。通常の場合、このような塩の製造方法は、水又は有機溶媒或いは両者の混合物において、遊離酸又は塩基の形態のこれらの化合物を化学量論量の適切な塩基又は酸と反応させて製造する。 The pharma- ceutically acceptable salts of the present invention can be synthesized by conventional chemical methods from parent compounds that contain acidic or basic groups. Typically, such salts are prepared by reacting these compounds in their free acid or base form with a stoichiometric amount of the appropriate base or acid in water or an organic solvent, or a mixture of both.

本発明の化合物は、特定の幾何又は立体異性体の形態が存在してもよい。本発明は、全てのこのような化合物を想定し、シス及びトランス異性体、(-)-及び(+)-エナンチオマー、(R)-及び(S)-エナンチオマー、ジアステレオマー、(D)-異性体、(L)-異性体、及びそのラセミ混合物並びに他の混合物、例えばエナンチオマー又はジアステレオマーを多く含有する混合物を含み、全てのこれらの混合物は本発明の範囲内に
含まれる。アルキル等の置換基に他の不斉炭素原子が存在してもよい。全てのこれらの異性体及びこれらの混合物はいずれも本発明の範囲内に含まれる。
The compounds of the present invention may exist in particular geometric or stereoisomeric forms. The invention contemplates all such compounds, including cis and trans isomers, (-)- and (+)-enantiomers, (R)- and (S)-enantiomers, diastereomers, (D)-isomers, (L)-isomers, and racemic and other mixtures, such as mixtures enriched in an enantiomer or diastereomer, and all such mixtures are included within the scope of the invention. Other asymmetric carbon atoms may be present in substituents such as alkyl. All such isomers and mixtures thereof are both included within the scope of the invention.

別途に説明しない限り、用語「エナンチオマー」又は「光学異性体」とは互いに鏡像の関係にある立体異性体である。
別途に説明しない限り、用語「シス-トランス異性体」又は「幾何異性体」とは二重結合又は環構成炭素原子の単結合が自由に回転できないことによるものである。
Unless otherwise stated, the terms "enantiomers" or "optical isomers" are stereoisomers that are mirror images of each other.
Unless otherwise stated, the terms "cis-trans isomers" or "geometric isomers" refer to the inability to freely rotate about double bonds or single bonds of ring carbon atoms.

別途に説明しない限り、用語「ジアステレオマー」とは分子が二つ又は複数のキラル中心を有し、かつ分子同士は非鏡像の関係である立体異性体である。
別途に説明しない限り、「(+)」は右旋性を意味し、「(-)」は左旋性を意味し、「(±)」はラセミ体を意味する。
Unless otherwise explained, the term "diastereomer" is a stereoisomer in which the molecules have two or more centers of chirality and the molecules are not mirror-images of each other.
Unless otherwise stated, "(+)" means dextrorotatory, "(-)" means levorotatory, and "(±)" means racemic.

別途に説明しない限り、楔形実線結合( Unless otherwise stated, solid wedge connections (

Figure 2024515985000028
)及び楔形点線結合(
Figure 2024515985000028
) and dotted wedge bonds (

Figure 2024515985000029
)で1つの立体中心の絶対配置を、直線実線結合(
Figure 2024515985000029
) to indicate the absolute configuration of one stereocenter, and a straight solid bond (

Figure 2024515985000030
)及び直線点線結合(
Figure 2024515985000030
) and straight dotted line bond (

Figure 2024515985000031
)で立体中心の相対配置を、波線(
Figure 2024515985000031
) to indicate the relative configuration of stereocenters, and wavy lines (

Figure 2024515985000032
)で楔形実線結合(
Figure 2024515985000032
) and solid wedge connection (

Figure 2024515985000033
)又は楔形点線結合(
Figure 2024515985000033
) or dotted wedge bond (

Figure 2024515985000034
)を、或いは波線(
Figure 2024515985000034
), or a wavy line (

Figure 2024515985000035
)で直線実線結合(
Figure 2024515985000035
) with a straight solid line connection (

Figure 2024515985000036
)及び直線点線結合(
Figure 2024515985000036
) and straight dotted line bond (

Figure 2024515985000037
)を表す。
Figure 2024515985000037
)

本発明の化合物は、特定の形態で存在することができる。特に明記しない限り、「互変異性体」又は「互変異性体の形態」という用語は、異なる官能基の異性体が室温で動的平衡状態にあり、かつ急速に相互変換可能であることを意味する。互変異性体が可能であれば(例えば、溶液の中等)、互変異性体の化学的平衡を達成することができる。例えば、プロトン互変異性体(proton tautomer)(プロトトロピー互変異性体(prototropic tautomer)とも呼ばれる)は、プロトンの移動を介する相互変換、例えばケト-エノール異性化やイミン-エナミン異性化を含む。原子価互変異性体(valence tautomer)は、一部の結合電子の再結合による相互変換を含む。ここで、ケト-エノール互変異性化の具体的な実例は、ペンタン-2,4-ジオンと4-ヒドロキシペント-3-エン-2-オンの二つの互変異性体の間の相互変換である。 The compounds of the present invention can exist in specific forms. Unless otherwise specified, the term "tautomer" or "tautomeric form" means that isomers of different functional groups are in dynamic equilibrium at room temperature and can be rapidly interconverted. If tautomers are possible (e.g., in solution), chemical equilibrium of the tautomers can be achieved. For example, proton tautomers (also called prototropic tautomers) include interconversions via the transfer of a proton, such as keto-enol isomerization and imine-enamine isomerization. Valence tautomers include interconversions via recombination of some of the bond electrons. Here, a specific example of keto-enol tautomerization is the interconversion between the two tautomers of pentane-2,4-dione and 4-hydroxypent-3-en-2-one.

別途に説明しない限り、「1つの異性体が豊富な」、「異性体が豊富な」、「1つのエナンチオマーが豊富な」又は「エナンチオマーが豊富な」という用語は、その中の1つの異性体又はエナンチオマーの含有量が100%未満であり、且つこの異性体又はエナンチオマーの含有量が60%以上、又は70%以上、又は80%以上、又は90%以上、又は95%以上、又は96%以上、又は97%以上、又は98%以上、又は99%以上、又は99.5%以上、又は99.6%以上、又は99.7%以上、又は99.8%以上、又は99.9%以上であることを指す。 Unless otherwise stated, the terms "enriched in one isomer," "enriched in one enantiomer," or "enantiomer-enriched" refer to a mixture that contains less than 100% of one isomer or enantiomer and that contains 60% or more, or 70% or more, or 80% or more, or 90% or more, or 95% or more, or 96% or more, or 97% or more, or 98% or more, or 99% or more, or 99.5% or more, or 99.6% or more, or 99.7% or more, or 99.8% or more, or 99.9% or more.

別途に説明しない限り、「異性体過剰率」又は「エナンチオマー過剰率」という用語は、2つの異性体又は2つのエナンチオマーの相対百分率の間の差を指す。例えば、1つの異性体又はエナンチオマーの含有量が90%であり、もう1つの異性体又はエナンチオマーの含有量が10%である場合、異性体又はエナンチオマー過剰率(ee値)は80%である。 Unless otherwise stated, the term "isomer excess" or "enantiomeric excess" refers to the difference between the relative percentages of two isomers or two enantiomers. For example, if one isomer or enantiomer is present at 90% and the other isomer or enantiomer at 10%, the isomeric or enantiomeric excess (ee value) is 80%.

光学活性な(R)-及び(S)-異性体、ならびにD及びL異性体は、キラル合成又はキラル試薬又は他の通常の技術によって製造することができる。本発明のある化合物の一つのエナンチオマーを得るには、不斉合成又はキラル補助剤を有する誘導作用によって製造することができ、ここで、得られたジアステレオマー混合物を分離し、かつ補助基を切断して純粋な所望のエナンチオマーを提供する。或いは、分子に塩基性官能基(例えばアミノ)又は酸性官能基(例えばカルボキシル)が含まれる場合、適切な光学活性な酸又は塩基とジアステレオマーの塩を形成し、次に当分野で公知の通常の方法によってジアステレオマーの分割を実行した後、回収して純粋なエナンチオマーを得る。また、エナンチオマーとジアステレオマーの分離は、通常、クロマトグラフィーを使用し、前記クロマトグラフィーはキラル固定相を使用し、かつ任意選択で化学的誘導体化法(例えば、アミンからカルバメートを生成する)を組み合わせて実行される。 Optically active (R)- and (S)-isomers, as well as D- and L-isomers, can be prepared by chiral synthesis or chiral reagents or other conventional techniques. One enantiomer of a compound of the invention can be prepared by asymmetric synthesis or derivatization with a chiral auxiliary, where the resulting diastereomeric mixture is separated and the auxiliary is cleaved to provide the pure desired enantiomer. Alternatively, if the molecule contains a basic (e.g., amino) or acidic (e.g., carboxyl) functional group, the salt of the diastereomeric form with an appropriate optically active acid or base is formed, and then the separation of the diastereomers is carried out by conventional methods known in the art, followed by recovery to obtain the pure enantiomers. Separation of enantiomers and diastereomers is also typically carried out using chromatography, which uses a chiral stationary phase and is optionally combined with chemical derivatization methods (e.g., forming carbamates from amines).

本発明の化合物は、化合物を構成する1つ又は複数の原子に不自然な割合の原子同位体を含有してもよい。例えば、化合物はトリチウム(H)、ヨウ素-125(125I)、C-14(14C)などの放射性同位元素で標識することができる。又は例えば、重水素で水素を置換して重水素化薬物を形成させることができ、重水素と炭素で形成された結合は、通常の水素と炭素で形成された結合よりも強く、非重水素化薬物と比較して、重水素化薬物は、毒性副作用を低減し、薬物の安定性を高め、有効性を増強し、薬物の生物学的半減期を延長するなどの利点がある。本発明の化合物の同位体からなる変換は、放射性であるか否かにかかわらず、本発明の範囲内に含まれる。 The compounds of the present invention may contain unnatural proportions of atomic isotopes in one or more atoms that constitute the compounds. For example, the compounds may be labeled with radioactive isotopes such as tritium ( 3 H), iodine-125 ( 125 I), C-14 ( 14 C), etc. Or, for example, deuterium may be substituted for hydrogen to form a deuterated drug, in which the bond formed between deuterium and carbon is stronger than the bond formed between normal hydrogen and carbon, and compared to non-deuterated drugs, deuterated drugs have the advantages of reduced toxic side effects, increased drug stability, enhanced efficacy, and extended biological half-life of the drug. Isotopic variations of the compounds of the present invention, whether radioactive or not, are included within the scope of the present invention.

用語「任意」また「任意に」は後記の事項又は状況によって可能であるが必ずしも現れるわけではなく、且つ当該記述はそれに記載される事項又は状況が生じる場合とその事項又は状況が生じない場合を含むことを意味する。 The terms "optionally" and "optionally" mean that the following event or circumstance is possible but not necessarily occurring, and that the description includes instances where the described event or circumstance occurs and instances where the event or circumstance does not occur.

用語「置換された」は特定の原子における任意の一つ又は複数の水素原子が置換基で置換されたことで、特定の原子価状態が正常でかつ置換後の化合物が安定していれば、置換基は重水素及び水素の変形体を含んでもよい。置換基がケトン基(即ち=O)である場合、2つの水素原子が置換されたことを意味する。ケトン基置換は、芳香族基で生じない。用語「任意に置換される」は、置換されてもよく、置換されなくてもよく、別途に定義しない限り、置換基の種類と数は化学的に現できれば任意である。 The term "substituted" means that any one or more hydrogen atoms at a particular atom have been replaced with a substituent, which may include variants of deuterium and hydrogen, provided that the particular valence state is correct and the compound is stable after substitution. When the substituent is a ketone group (i.e. =O), it means that two hydrogen atoms have been replaced. Ketone group substitution does not occur in aromatic groups. The term "optionally substituted" means that the group may or may not be substituted, and unless otherwise defined, the type and number of substituents are any that can be chemically expressed.

変量(例えばR)のいずれかが化合物の組成又は構造に1回以上現れた場合、その定義はいずれの場合においても独立である。そのため、例えば、1つの基が0~2個のRで置換された場合、上記基は任意選択で2個以下のRで置換され、且ついずれの場合においてもRは独立した選択肢を有する。また、置換基及び/又はその変形体の組み合わせは、このような組み合わせが安定した化合物になる場合のみ許容される。 When any variable (e.g., R) occurs more than one time in a composition or structure of a compound, its definition is independent at each occurrence. So, for example, if a group is substituted with 0-2 R, then said group is optionally substituted with up to 2 R, and each occurrence of R has an independent choice. Also, combinations of substituents and/or variants thereof are permissible only if such combinations result in stable compounds.

1つ連結基の数が0の場合、例えば、-(CRR)-は、当該連結基が単結合であることを意味する。
そのうち一つの変量が単結合の場合、それで連結される2つの基が直接連結されていることを指し、例えばA-L-ZにおけるLが単結合を表す場合、この構造は実際にA-Zになる。
When the number of linking groups is 0, for example, --(CRR) 0 -- means that the linking group is a single bond.
When one of the variables is a single bond, it indicates that the two groups connected by it are directly linked; for example, when L in ALZ represents a single bond, the structure actually becomes AZ.

1つ置換基が空である場合、当該置換基が存在しないことを意味し、例えば、A-XのXが空である場合、当該構造は実際にAであることを意味する。列挙された置換基がどの原子を介して置換された基に結合しているかを示していない場合、このような置換基はその任意の原子を介して結合することができ、例えば、置換基としてのピリジニルは、ピリジン環の任意の炭素原子を介して置換された基に結合してもよい。 If one substituent is empty, it means that the substituent is not present, for example, if X in A-X is empty, it means that the structure is actually A. If there is no indication of which atom a listed substituent is bonded to the substituted group through, such substituent may be bonded through any atom thereof, for example, pyridinyl as a substituent may be bonded to the substituted group through any carbon atom of the pyridine ring.

挙げられた連結基の連結方向を明示していない場合、その連結方向は任意であり、例えば、 When the linking direction of the listed linking groups is not specified, the linking direction is arbitrary, for example,

Figure 2024515985000038
における連結基Lは-M-W-である場合、-M-W-は左から右への読み取る順序と同じ方向に環Aと環Bを連結して
Figure 2024515985000038
When the linking group L in the formula (I) is -M-W-, -M-W- links ring A and ring B in the same direction as the order of reading from left to right.

Figure 2024515985000039
を構成することができ、また、左から右への読み取る順序と逆方向に環Aと環Bを連結して
Figure 2024515985000039
It is also possible to construct the following by concatenating rings A and B in the reverse order of reading from left to right:

Figure 2024515985000040
を構成することもできる。上記連結基、置換基及び/又はその変形体の組み合わせは、このような組み合わせが安定した化合物になる場合のみ許容される。
Figure 2024515985000040
Combinations of the above linking groups, substituents and/or variables are permissible only if such combinations result in stable compounds.

特に明記しない限り、ある基が1つ又は複数の結合可能な部位を有する場合、当該基の任意の一つ又は複数の部位は、化学結合によって他の基に結合することができる。当該化学結合の結合方式が非局在であり、且つ結合可能な部位にH原子が存在する場合、化学結合を結合する時、当該部位のH原子の個数は、結合された化学結合の個数に応じて相応の価数の基に減少する。前記部位が他の基と結合する化学結合は、直線実線結合( Unless otherwise specified, if a group has one or more bondable sites, any one or more of the sites of the group can be bonded to other groups by chemical bonds. If the bonding method of the chemical bond is delocalized and there is an H atom at the bondable site, when the chemical bond is bonded, the number of H atoms at the site is reduced to a group of the corresponding valence according to the number of bonded chemical bonds. The chemical bond by which the site is bonded to another group is represented by a straight solid bond (

Figure 2024515985000041
)、直線破線結合(
Figure 2024515985000041
), straight dashed bond (

Figure 2024515985000042
)、又は波線(
Figure 2024515985000042
), or wavy line (

Figure 2024515985000043
)で表すことができる。例えば、-OCHの直線実線結合は、基内の酸素原子を介して他の基に連結されていることを示し;
Figure 2024515985000043
For example, the straight solid bond in -OCH3 indicates that the group is connected to another group through the oxygen atom in the group;

Figure 2024515985000044
の直線破線結合は、基内の窒素原子の両端を介した他の基に連結されていることを示し;
Figure 2024515985000044
indicates that the nitrogen atom in the group is connected to another group through both ends;

Figure 2024515985000045
の波線は、フェニルの1つ及び2つの炭素原子を介した他の基に連結されていることを示す。
Figure 2024515985000045
The wavy lines indicate a link to another group via one and two carbon atoms of the phenyl.

Figure 2024515985000046
は、当該ピペリジニルの任意の結合可能な部位が1つの化学結合によって他の基に結合できることを意味し、少なくとも
Figure 2024515985000046
means that any available site on the piperidinyl can be bonded to another group by one chemical bond, and at least

Figure 2024515985000047
の四つの結合形態を含み、H原子が-N-に描かれていても、
Figure 2024515985000047
It includes the four bond forms, and even if the H atom is drawn as -N-,

Figure 2024515985000048
には
Figure 2024515985000048
for

Figure 2024515985000049
の結合形態の基が含まれるが、1つの化学結合が接続されるとき、その部位のHは1つ減少して対応する一価ピペリジンになる。
Figure 2024515985000049
However, when one chemical bond is connected, the H at that site is reduced by one to the corresponding monovalent piperidine.

別途に説明しない限り、環内の原子の数は一般に環員の数として定義され、例えば、「5~7員環」とは、その周囲に5~7個の原子配置された「環」を指す。
別途に説明しない限り、「3~12員環」は、3~12個の環原子からなるシクロアルキル、ヘテロシクロアルキル、シクロアルケニル又はヘテロシクロアルケニルを指す。前記環は、単環を含み、更にスピロ環、縮合環及び架橋環などの二環系又は多環系も含む。別途に説明しない限り、前記環は、任意選択でO、S及びNから独立して選択される1、2又は3個のヘテロ原子を含む。前記3~12員環は、3~10員、3~9員、3~8員、3~7員、3~6員、3~5員、4~10員、4~9員、4~8員、4~7員、4~6員、4~5員、5~10員、5~9員、5~8員、5~7員、5~6員、6~10員、6~9員、6~8員及び6~7員環などを含む。用語「5~7員ヘテロシクロアルキル」は、ピペリジニルなどを含むが、フェニルは含まない。用語「環」はまた、少なくとも1つの環を含む環系を含み、ここで、それぞれの「環」はいずれも独立して上記の定義に適合する。
Unless otherwise stated, the number of atoms in a ring is generally defined as the number of ring members, e.g., a "5- to 7-membered ring" refers to a "ring" having from 5 to 7 atoms arranged around it.
Unless otherwise stated, a "3- to 12-membered ring" refers to a cycloalkyl, heterocycloalkyl, cycloalkenyl, or heterocycloalkenyl consisting of 3 to 12 ring atoms. The ring includes monocyclic rings, as well as bicyclic or polycyclic ring systems such as spiro, fused, and bridged rings. Unless otherwise stated, the ring optionally includes 1, 2, or 3 heteroatoms independently selected from O, S, and N. The 3- to 12-membered ring includes 3-10 membered, 3-9 membered, 3-8 membered, 3-7 membered, 3-6 membered, 3-5 membered, 4-10 membered, 4-9 membered, 4-8 membered, 4-7 membered, 4-6 membered, 4-5 membered, 5-10 membered, 5-9 membered, 5-8 membered, 5-7 membered, 5-6 membered, 6-10 membered, 6-9 membered, 6-8 membered, and 6-7 membered rings, and the like. The term "5- to 7-membered heterocycloalkyl" includes piperidinyl and the like, but does not include phenyl. The term "ring" also includes ring systems containing at least one ring, where each "ring" independently meets the above definition.

別途に定義しない限り、Cn-n+m又はC-Cn+mはn~n+m個の炭素の任意の1つの具体的な様態を含み、例えば、C1-12はC、C、C、C、C、C、C、C、C、C10、C11、及びC12を含み、n~n+mのうちの任意の1つの範囲も含み、例えば、C1-12はC1-3、C1-6、C1-9、C3-6、C3-9、C3-12、C6-9、C6-12、及びC9-12等を含む。同様に、n員~n+m員は環における原子数がn~n+m個であることを表し、例えば、3~12員環は3員環、4員環、5員環、6員環、7員環、8員環、9員環、10員環、11員環、及び12員環を含み、n~n+mのうちの任意の1つの範囲も含み、例えば、3~12員環は3~6員環、3~9員環、5~6員環、5~7員環、6~7員環、6~8員環、及び6~10員環等を含む。 Unless otherwise defined, C n-n+m or C n -C n+m includes any one specific embodiment of n through n+m carbons, for example, C 1-12 includes C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 , C 11 , and C 12 , and also includes any one range from n through n+m, for example, C 1-12 includes C 1-3 , C 1-6 , C 1-9 , C 3-6 , C 3-9 , C 3-12, C 6-9 , C 6-12 , and C 9-12 , etc. Similarly, n-membered to n+m-membered rings indicate that the number of atoms in the ring is n to n+m. For example, a 3- to 12-membered ring includes a 3-membered ring, a 4-membered ring, a 5-membered ring, a 6-membered ring, a 7-membered ring, an 8-membered ring, a 9-membered ring, a 10-membered ring, an 11-membered ring, and a 12-membered ring, and also includes any one of the ranges of n to n+m. For example, a 3- to 12-membered ring includes a 3- to 6-membered ring, a 3- to 9-membered ring, a 5- to 6-membered ring, a 5- to 7-membered ring, a 6- to 7-membered ring, a 6- to 8-membered ring, and a 6- to 10-membered ring, etc.

別途に定義しない限り、用語「C1-6アルキル」は直鎖又は分枝鎖の1~6個の炭素原子で構成された飽和炭化水素基を表す。前記C1-6アルキルにはC1-5、C1-4、C1-3、C1-2、C2-6、C2-4、CとCアルキルなどが含まれ、それは1価(例えばメチル)、2価(例えばメチレン)及び多価(例えばメチン)であってもよい。C1-6アルキルの実例は、メチル(Me)、エチル(Et)、プロピル(n-プロピル及びイソプロピルを含む)、ブチル(n-ブチル、イソブチル、s-ブチル、t-ブチルを含む)、ペンチル(n-ペンチル、イソペンチル、ネオペンチルを含む)、ヘキシルなどなどを含むが、これらに限定されない。 Unless otherwise defined, the term "C 1-6 alkyl" refers to a saturated hydrocarbon group composed of 1 to 6 carbon atoms in a straight or branched chain. The C 1-6 alkyl includes C 1-5 , C 1-4 , C 1-3 , C 1-2 , C 2-6 , C 2-4 , C 6 and C 5 alkyl, which may be monovalent (e.g., methyl), divalent (e.g., methylene) and polyvalent (e.g., methine). Illustrative examples of C 1-6 alkyl include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), butyl (including n-butyl, isobutyl, s-butyl, t-butyl), pentyl (including n-pentyl, isopentyl, neopentyl), hexyl, and the like.

別途に定義しない限り、用語「C1-4アルキル」は直鎖又は分枝鎖の1~4個の炭素
原子で構成された飽和炭化水素基を表す。前記C1-4アルキルにはC1-2、C1-3とC2-3アルキルなどが含まれ、それは1価(例えばメチル)、2価(例えばメチレン)及び多価(例えばメチン)であってもよい。C1-4アルキルの実例は、メチル(Me)、エチル(Et)、プロピル(n-プロピル及びイソプロピルを含む)、ブチル(n-ブチル、イソブチル、s-ブチル、t-ブチルを含む)などを含むが、これらに限定されない。
Unless otherwise defined, the term "C 1-4 alkyl" refers to a saturated hydrocarbon group composed of 1 to 4 carbon atoms in a straight or branched chain. Said C 1-4 alkyl includes C 1-2 , C 1-3 and C 2-3 alkyl, which may be monovalent (e.g., methyl), divalent (e.g., methylene) and polyvalent (e.g., methine). Illustrative examples of C 1-4 alkyl include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), butyl (including n-butyl, isobutyl, s-butyl and t-butyl), and the like.

別途に定義しない限り、用語「C1-3アルキル」は直鎖又は分枝鎖の1~3個の炭素原子で構成された飽和炭化水素基を表す。前記C1-3アルキルにはC1-2とC2-3アルキルなどが含まれ、それは1価(例えばメチル)、2価(例えばメチレン)及び多価(例えばメチン)であってもよい。C1-3アルキルの実例には、メチル(Me)、エチル(Et)、プロピル(n-プロピル及びイソプロピルを含む)などが含まれるが、これらに限定されない。 Unless otherwise defined, the term "C 1-3 alkyl" refers to a saturated hydrocarbon group composed of 1 to 3 carbon atoms in a straight or branched chain. Said C 1-3 alkyl includes C 1-2 and C 2-3 alkyl, which may be monovalent (e.g., methyl), divalent (e.g., methylene) and polyvalent (e.g., methine). Illustrative examples of C 1-3 alkyl include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), and the like.

別途に定義しない限り、用語「C1-3アルコキシ」は1つの酸素原子を介して分子の残り部分に連結した1~3個の炭素原子を含むアルキル基を表す。前記C1-3アルコキシには、C1-2、C2-3、C及びCアルコキシなどが含まれる。C1-3アルコキシの実例には、メトキシ、エトキシ、プロポキシ(n―プロポキシ又はイソプロポキシを含む)などが含まれるが、これらに限定されない。 Unless otherwise defined, the term "C 1-3 alkoxy" refers to an alkyl group containing 1 to 3 carbon atoms linked to the remainder of the molecule via an oxygen atom. Said C 1-3 alkoxy includes C 1-2 , C 2-3 , C 3 and C 2 alkoxy, etc. Illustrative examples of C 1-3 alkoxy include, but are not limited to, methoxy, ethoxy, propoxy (including n-propoxy or isopropoxy), etc.

「脱離基」という用語は、別の官能基又は原子で置換反応(例えば、求核置換反応)によって置換されてもよい官能基又は原子を指す。例えば、代表的な脱離基は、トリフルオロメタンスルホネート;塩素、臭素、ヨウ素;メシレート、トシレート、p-ブロモベンゼンスルホネート、p-トルエンスルホネートなどのスルホン酸;アセトキシ、トリフルオロアセトキシなどのアシルオキシなどを含む。 The term "leaving group" refers to a functional group or atom that may be replaced by another functional group or atom through a substitution reaction (e.g., a nucleophilic substitution reaction). For example, representative leaving groups include trifluoromethanesulfonate; chlorine, bromine, iodine; sulfonic acids such as mesylate, tosylate, p-bromobenzenesulfonate, p-toluenesulfonate; acyloxy such as acetoxy, trifluoroacetoxy, and the like.

「保護基」という用語は、「アミノ保護基」、「ヒドロキシ保護基」又は「メルカプト保護基」を含むが、これらに限定されない。「アミノ保護基」という用語は、アミノの窒素上の副反応を防止するのに適した保護基を指す。代表的なアミノ酸保護基は、ホルミル;アルカノイル(例えばアセチル、トリクロロアセチル又はトリフルオロアセチル)などのアシル;tert-ブトキシカルボニル(Boc)などのアルコキシカルボニル;ベンジルオキシカルボニル(Cbz)及び9-フルオレニルメトキシカルボニル(Fmoc)などのアリールメトキシカルボニル;ベンジル(Bn)、トリチル(Tr)、1,1-ビス-(4’-メトキシフェニル)メチルなどのアリールメチル;トリメチルシリル(TMS)及びtert-ブチルジメチルシリル(TBS)などのシリルなどを含むが、これらに限定されない。「ヒドロキシル保護基」という用語は、ヒドロキシル上の副反応を防止するのに適した保護基を指す。代表的なヒドロキシル保護基は、メチル、エチル及びtert-ブチルなどのアルキル、アルカノイル(例えば、アセチル)などのアシル、ベンジル(Bn)、p-メトキシベンジル(PMB)、9-フルオレニルメチル(Fm)及びジフェニルメチル(ベンズヒドリル、DPM)などのアリールメチル、トリメチルシリル(TMS)及びtert-ブチルジメチルシリル(TBS)などのシリルなどを含むが、これらに限定されない。 The term "protecting group" includes, but is not limited to, "amino protecting group", "hydroxy protecting group" or "mercapto protecting group". The term "amino protecting group" refers to a protecting group suitable for preventing side reactions on the amino nitrogen. Representative amino acid protecting groups include, but are not limited to, formyl; acyl such as alkanoyl (e.g., acetyl, trichloroacetyl or trifluoroacetyl); alkoxycarbonyl such as tert-butoxycarbonyl (Boc); arylmethoxycarbonyl such as benzyloxycarbonyl (Cbz) and 9-fluorenylmethoxycarbonyl (Fmoc); arylmethyl such as benzyl (Bn), trityl (Tr), 1,1-bis-(4'-methoxyphenyl)methyl; silyl such as trimethylsilyl (TMS) and tert-butyldimethylsilyl (TBS). The term "hydroxyl protecting group" refers to a protecting group suitable for preventing side reactions on hydroxyl. Representative hydroxyl protecting groups include, but are not limited to, alkyl, such as methyl, ethyl, and tert-butyl; acyl, such as alkanoyl (e.g., acetyl); arylmethyl, such as benzyl (Bn), p-methoxybenzyl (PMB), 9-fluorenylmethyl (Fm), and diphenylmethyl (benzhydryl, DPM); silyl, such as trimethylsilyl (TMS) and tert-butyldimethylsilyl (TBS).

本発明の化合物は、以下に列挙する特定の実施形態、それらを他の化学合成法と組み合わせることによって形成される実施形態、及び当業者に周知の等価置換形態を含む、当業者に周知の様々な合成方法によって製造することができ、好ましい実施形態には、本発明の実施例が含まれるが、これらに限定されない。 The compounds of the present invention can be prepared by various synthetic methods known to those skilled in the art, including the specific embodiments listed below, embodiments formed by combining them with other chemical synthetic methods, and equivalent substitution forms known to those skilled in the art, and preferred embodiments include, but are not limited to, the examples of the present invention.

本発明の化合物の構造は、当業者に周知の従来の方法によって確認することができ、本発明が化合物の絶対配置に関する場合、この絶対配置は、当業者の従来の技術的手段によ
って確認することができる。例えば、単結晶X線回折(SXRD)の場合、培養した単結晶をBruker D8 venture回折計によって回折強度データを収集し、光源はCuKα放射線であり、走査方法:φ/ω走査、更に直接法(Shelxs97)で結晶構造解析して、絶対配置を確認できる。
The structure of the compound of the present invention can be confirmed by conventional methods known to those skilled in the art, and when the present invention relates to the absolute configuration of the compound, this absolute configuration can be confirmed by conventional technical means of those skilled in the art.For example, in the case of single crystal X-ray diffraction (SXRD), the diffraction intensity data of the cultured single crystal is collected by Bruker D8 venture diffractometer, the light source is CuKα radiation, the scanning method is φ/ω scanning, and the crystal structure is analyzed by direct method (Shelxs97) to confirm the absolute configuration.

本発明に使用されたすべての溶媒は市販品から得ることができる。
本発明は下記の略語を使用する。DMFはN,N-ジメチルホルムアミドを表し;KCOは炭酸カリウムを表し;MeIはヨードメタンを表し;EtOAcは酢酸エチルを表し;EAは酢酸エチルを表し;THFはテトラヒドロフランを表し;NaHMDSはヘキサメチルジシラザンナトリウムを表し;MeOHはメタノールを表し;DCMはジクロロメタンを表し;DMSOはジメチルスルホキシドを表し;PEは石油エーテルを表し;EtOHはエタノールを表し;ACNはアセトニトリルを表し;TFAはトリフルオロ酢酸を表し;FAはギ酸を表し;NH3・Oはアンモニア水を表し;TEAはトリエチルアミンを表し;DIPEAはN,N-ジイソプロピルエチルアミンを表し;BocOは二炭酸ジ-tert-ブチルを表し;Bocはtert-ブトキシカルボニルを表し、アミノの保護基であり;EDCIは1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩を表し;CDIはN,N’-カルボニルジイミダゾールを表し;DDQは2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノンを表し;LCMSは液体クロマトグラフィー-質量クロマトグラフィーを表し;HPLCは高速液体クロマトグラフィーを表し;TLCは薄層クロマトグラフィーを表し;MECは最小有効濃度を表し;LnCapは前立腺癌細胞を表し;sGCは可溶性グアニル酸シクラーゼを表し;cGMPは環状グアノシン一リン酸を表す。
All solvents used in this invention can be obtained commercially.
The present invention uses the following abbreviations: DMF stands for N,N-dimethylformamide; K 2 CO 3 stands for potassium carbonate; MeI stands for iodomethane; EtOAc stands for ethyl acetate; EA stands for ethyl acetate; THF stands for tetrahydrofuran; NaHMDS stands for sodium hexamethyldisilazane; MeOH stands for methanol; DCM stands for dichloromethane; DMSO stands for dimethylsulfoxide; PE stands for petroleum ether; EtOH stands for ethanol; ACN stands for acetonitrile; TFA stands for trifluoroacetic acid; FA stands for formic acid; NH 3.H 2 O stands for aqueous ammonia; TEA stands for triethylamine; DIPEA stands for N,N-diisopropylethylamine; Boc 2 O stands for di-tert-butyl dicarbonate; Boc stands for tert-butoxycarbonyl, an amino protecting group; EDCI stands for 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride; CDI stands for N,N'-carbonyldiimidazole; DDQ stands for 2,3-dichloro-5,6-dicyano-p-benzoquinone; LCMS stands for liquid chromatography-mass chromatography; HPLC stands for high performance liquid chromatography; TLC stands for thin layer chromatography; MEC stands for minimum effective concentration; LnCap stands for prostate cancer cells; sGC stands for soluble guanylate cyclase; cGMP stands for cyclic guanosine monophosphate.

化合物は、当分野の通常の命名原則に従って、又はChemDraw(登録商標)ソフトウェアを使用して命名され、市販の化合物はサプライヤーのカタログで命名される。 Compounds are named according to conventional naming principles in the art or using ChemDraw® software; commercially available compounds are named in the supplier's catalogue.

以下、実施例によって本発明を具体的に説明するが、本発明の不利な制限を意味するものではない。本発明は本明細書で詳細に説明されており、その特定の実施形態も開示されており、当業者にとって、本発明の精神および範囲から逸脱することなく、本発明の特定の実施形態において様々な変更及び修正を行うことができることは明らかである。 The present invention will be described in detail below with reference to examples, but this is not intended to impose any adverse restrictions on the present invention. The present invention has been described in detail herein, and specific embodiments thereof have been disclosed. It is clear to those skilled in the art that various changes and modifications can be made in the specific embodiments of the present invention without departing from the spirit and scope of the present invention.

実施例1
合成スキーム:
Example 1
Synthesis scheme:

Figure 2024515985000050
Figure 2024515985000050

ステップA:1-1(2g、12.61mmol、1eq)のトルエン(20mL)溶液に2-フルオロベンジルアミン(1.89g、15.14mmol、1.72mL、1.2eq)及び炭酸セシウム(6.17g、18.92mmol、1.5eq)を加えた。窒素ガスで置換し、窒素ガスの保護下で、80℃で12時間撹拌した。反応溶液に水(20mL)を加え、EtOAc(30mL)で抽出し、有機相を無水硫酸ナトリウムで乾燥させ、濾過した後濃縮し、残留物をカラムクロマトグラフィー(PE:EtOAc=50:1~20:1)により精製し、得られた粗生成物を石油エーテル(10mL)で撹拌し、濾過して乾燥させた後化合物1-aを得た。 Step A: 2-fluorobenzylamine (1.89 g, 15.14 mmol, 1.72 mL, 1.2 eq) and cesium carbonate (6.17 g, 18.92 mmol, 1.5 eq) were added to a solution of 1-1 (2 g, 12.61 mmol, 1 eq) in toluene (20 mL). The mixture was replaced with nitrogen gas and stirred at 80°C for 12 hours under nitrogen gas protection. Water (20 mL) was added to the reaction solution, extracted with EtOAc (30 mL), the organic phase was dried over anhydrous sodium sulfate, filtered and concentrated, and the residue was purified by column chromatography (PE: EtOAc = 50: 1 to 20: 1), and the resulting crude product was stirred with petroleum ether (10 mL), filtered and dried to obtain compound 1-a.

ステップB:1-a(2.5g、7.70mmol、1eq)のEtOH(20mL)及び水(5mL)の混合物に還元鉄粉末(3.44g、61.56mmol、8eq)及びNHCl(4.94g、92.35mmol、3.23mL、12eq)を加えた。窒素ガスで置換し、70℃で3時間撹拌し、反応溶液に水(20mL)及びEtOAc(50mL)を加え、濾過した後分離し、有機相を飽和食塩水(10mL)で洗浄し、無水硫酸ナトリウムで乾燥させ、濾過した後濃縮し、残留物をシリカゲルカラムクロマトグラフィー(PE:EtOAc=10:1~5:1)により精製して化合物1-bを得た。 Step B: Reduced iron powder (3.44 g, 61.56 mmol, 8 eq) and NH 4 Cl (4.94 g, 92.35 mmol, 3.23 mL, 12 eq) were added to a mixture of 1-a (2.5 g, 7.70 mmol, 1 eq) in EtOH (20 mL) and water (5 mL). The mixture was purged with nitrogen gas and stirred at 70° C. for 3 hours. Water (20 mL) and EtOAc (50 mL) were added to the reaction solution, which was then filtered and separated. The organic phase was washed with saturated saline (10 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by silica gel column chromatography (PE: EtOAc = 10: 1 to 5: 1) to obtain compound 1-b.

ステップC:1-b(1.1g、3.93mmol、1eq)のTHF(50.00mL)溶液にCDI(955.69mg、5.89mmol、1.5eq)をゆっくりと加えた。添加完了後、混合物を70℃で12時間撹拌した。反応溶液を濃縮し、残留物をシリカゲルカラムクロマトグラフィー(PE:EtOAc=4:1~2:1)により精製して化合物1-cを得た。 Step C: CDI (955.69 mg, 5.89 mmol, 1.5 eq) was slowly added to a solution of 1-b (1.1 g, 3.93 mmol, 1 eq) in THF (50.00 mL). After the addition was complete, the mixture was stirred at 70 °C for 12 h. The reaction solution was concentrated, and the residue was purified by silica gel column chromatography (PE: EtOAc = 4: 1 to 2: 1) to obtain compound 1-c.

ステップD:30℃で、1-2(5.0g、28.89mmol、1eq)のオキシ塩化リン(49.50g、322.83mmol、30.00mL、11.18eq)溶液に2,6-ルチジン(13.80g、128.79mmol、15.00mL、4.46
eq)をゆっくりと滴下し、滴下完了後、窒素ガスで3回置換し、反応溶液を80℃で12時間撹拌した。反応溶液を30℃に冷却させ、次に、減圧濃縮して過剰の溶媒を除去し、最後に0~5℃で反応溶液を氷水(100mL)にゆっくりと加え、次に、PE/EA(100mL、1/1)で抽出し、有機相を無水硫酸ナトリウムで乾燥させ、濾過して濃縮し、残留物をシリカゲルカラムクロマトグラフィー(PE/EA=1/0~20/1)により精製して化合物1-fを得た。
Step D: A solution of 1-2 (5.0 g, 28.89 mmol, 1 eq) in phosphorus oxychloride (49.50 g, 322.83 mmol, 30.00 mL, 11.18 eq) at 30 °C was added 2,6-lutidine (13.80 g, 128.79 mmol, 15.00 mL, 4.46
eq) was slowly added dropwise, and after completion of the addition, the atmosphere was replaced with nitrogen gas three times, and the reaction solution was stirred at 80° C. for 12 hours. The reaction solution was cooled to 30° C., then concentrated under reduced pressure to remove excess solvent, and finally the reaction solution was slowly added to ice water (100 mL) at 0-5° C., then extracted with PE/EA (100 mL, 1/1), the organic phase was dried over anhydrous sodium sulfate, filtered and concentrated, and the residue was purified by silica gel column chromatography (PE/EA=1/0-20/1) to obtain compound 1-f.

ステップE:-20℃で、化合物1-f(3.3g、14.45mmol、1eq)のエタノール(20mL)溶液にNHのエタノール溶液(20mL)を加え、反応溶液を-20℃で50分間撹拌し、反応溶液を濾過し、ケーキを収集し、次に、水(10mL)及びエタノール(10mL)で洗浄して、化合物1-gを得た。 Step E: At −20° C., a solution of NH3 in ethanol (20 mL) was added to a solution of compound 1-f (3.3 g, 14.45 mmol, 1 eq) in ethanol (20 mL), the reaction solution was stirred at −20° C. for 50 min, the reaction solution was filtered, the cake was collected, and then washed with water (10 mL) and ethanol (10 mL) to obtain compound 1-g.

ステップF:1-c(200mg、800.87μmol、1eq)のDMF(1.00mL)溶液に1-g(403.76mg、800.87μmol、1.0eq)、炭酸セシウム(521.88mg、1.60mmol、2eq)、ヨウ化第一銅(15.25mg、80.09μmol、0.10eq)及び1,10-フェナントロリン(28.86mg、160.17μmol、0.2eq)を加えた。窒素ガスで置換し、90℃で3時間撹拌し、反応溶液に水(20mL)を加え、EtOAc(50mL×2)で抽出し、合わせた有機相を無水硫酸ナトリウムで乾燥させ、濾過した後濃縮して化合物1-dを得た。 Step F: 1-g (403.76 mg, 800.87 μmol, 1.0 eq), cesium carbonate (521.88 mg, 1.60 mmol, 2 eq), cuprous iodide (15.25 mg, 80.09 μmol, 0.10 eq) and 1,10-phenanthroline (28.86 mg, 160.17 μmol, 0.2 eq) were added to a solution of 1-c (200 mg, 800.87 μmol, 1 eq) in DMF (1.00 mL). The mixture was replaced with nitrogen gas and stirred at 90°C for 3 hours. Water (20 mL) was added to the reaction solution, which was then extracted with EtOAc (50 mL x 2). The combined organic phase was dried over anhydrous sodium sulfate, filtered and concentrated to obtain compound 1-d.

ステップG:1-d(300mg、756.94μmol、1eq)のMeOH(9mL)及び水(3mL)の混合物に還元鉄粉末(845.42mg、15.14mmol、20eq)及びNHCl(809.79mg、15.14mmol、20eq)を加えた。窒素ガスで置換し、70℃で2時間撹拌し、反応溶液に水(10mL)を加え、EtOAc(25mL×2)で抽出し、合わせた有機相を飽和食塩水(10mL)で洗浄し、無水硫酸ナトリウムで乾燥させ、濾過した後濃縮し、残留物を薄層クロマトグラフィー(DCM:MeOH=10:1)により精製して化合物1-eを得た。 Step G: Reduced iron powder (845.42 mg, 15.14 mmol, 20 eq) and NH 4 Cl (809.79 mg, 15.14 mmol, 20 eq) were added to a mixture of 1-d (300 mg, 756.94 μmol, 1 eq) in MeOH (9 mL) and water (3 mL). The mixture was purged with nitrogen gas and stirred at 70° C. for 2 hours. Water (10 mL) was added to the reaction solution, which was then extracted with EtOAc (25 mL×2). The combined organic phase was washed with saturated saline (10 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by thin layer chromatography (DCM:MeOH=10:1) to obtain compound 1-e.

ステップH:0℃で、1-e(120mg、293.82μmol、1eq)のピリジン(1.5mL)溶液にクロロギ酸メチル(41.65mg、440.72μmol、34.14μL、1.5eq)を加え、0℃で30分間撹拌し、反応溶液に水(10mL)を加え、EtOAc(50mL)で抽出し、有機相を飽和食塩水(10mL)で洗浄し、無水硫酸ナトリウムで乾燥させ、濾過した後濃縮し、残留物にEtOAc(10mL)を加えて撹拌し、濾過して乾燥させた後化合物1を得た。H NMR (400MHz,
DMSO-d): δ ppm 8.08 - 8.01 (m, 2H), 7.95 (br s, 1H), 7.35 (m, 1H), 7.28 - 7.19
(m, 2H), 7.18 - 7.08 (m, 2H), 6.33 (br s, 4H), 5.15 (s, 2H), 3.62 (s, 3H);LCMS (ESI) m/z: 425.3 [M+1]
Step H: At 0° C., methyl chloroformate (41.65 mg, 440.72 μmol, 34.14 μL, 1.5 eq) was added to a pyridine (1.5 mL) solution of 1-e (120 mg, 293.82 μmol, 1 eq), and the mixture was stirred at 0° C. for 30 minutes. Water (10 mL) was added to the reaction solution, and the mixture was extracted with EtOAc (50 mL). The organic phase was washed with saturated saline (10 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. EtOAc (10 mL) was added to the residue, and the mixture was stirred. After filtering and drying, compound 1 was obtained. 1 H NMR (400 MHz,
DMSO- d6 ): δ ppm 8.08 - 8.01 (m, 2H), 7.95 (br s, 1H), 7.35 (m, 1H), 7.28 - 7.19
(m, 2H), 7.18 - 7.08 (m, 2H), 6.33 (br s, 4H), 5.15 (s, 2H), 3.62 (s, 3H); LCMS (ESI) m/z: 425.3 [M+1] + .

実施例2
合成スキーム:
Example 2
Synthesis scheme:

Figure 2024515985000051
Figure 2024515985000051

0℃で、化合物1(50mg、115.04μmol、1eq)のDMF(1mL)溶液にNaH(6.90mg、172.55μmol、60%の純度、1.5eq)を加え、0℃で10分間撹拌し、次に、ヨードメタン(24.49mg、172.55μmol、10.74μL、1.5eq)を加え、得られた混合物を0℃で30分間撹拌し、反応溶液に水(5mL)を加え、EtOAc(10mL×2)で抽出し、合わせた有機相を飽和食塩水(5mL)で洗浄し、無水硫酸ナトリウムで乾燥させ、濾過した後濃縮し、残留物を薄層クロマトグラフィー(EtOAc)により精製して化合物2を得た。H NMR (400MHz, DMSO-d): δ ppm 8.09 - 8.02 (m, 2H), 7.39 - 7.30 (m, 1H), 7.27 - 7.19
(m, 2H), 7.18 - 7.08 (m, 2H), 6.55 (br s, 4H), 5.15 (s, 2H), 3.66 (s, 1H), 3.55
(s, 2H), 3.00 (s, 3H);LCMS (ESI) m/z: 439.3 [M+1]
At 0° C., NaH (6.90 mg, 172.55 μmol, 60% purity, 1.5 eq) was added to a solution of compound 1 (50 mg, 115.04 μmol, 1 eq) in DMF (1 mL), and the mixture was stirred at 0° C. for 10 minutes. Then, iodomethane (24.49 mg, 172.55 μmol, 10.74 μL, 1.5 eq) was added, and the resulting mixture was stirred at 0° C. for 30 minutes. Water (5 mL) was added to the reaction solution, and the mixture was extracted with EtOAc (10 mL×2). The combined organic phase was washed with saturated brine (5 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by thin layer chromatography (EtOAc) to obtain compound 2. 1H NMR (400MHz, DMSO- d6 ): δ ppm 8.09 - 8.02 (m, 2H), 7.39 - 7.30 (m, 1H), 7.27 - 7.19
(m, 2H), 7.18 - 7.08 (m, 2H), 6.55 (br s, 4H), 5.15 (s, 2H), 3.66 (s, 1H), 3.55
(s, 2H), 3.00 (s, 3H); LCMS (ESI) m/z: 439.3 [M+1] <+ >.

実施例3
合成スキーム:
Example 3
Synthesis scheme:

Figure 2024515985000052
Figure 2024515985000052

ステップA:窒素ガスの保護下で、化合物3-1(2g、11.33mmol、1eq
)のトルエン(20.00mL)溶液に炭酸セシウム(5.54g、16.99mmol、1.5eq)及び2-フルオロベンジルアミン(1.70g、13.60mmol、1.55mL、1.2eq)を加えた。混合物を80℃に昇温させて12時間撹拌した。冷却させた後、水(40mL)を加え、EtOAc(40mL)で抽出し、有機相を塩水(40mL)で洗浄し、無水硫酸ナトリウムで乾燥させ、濾過した後濃縮し、残留物をカラムクロマトグラフィー(PE:EtOAc=50:1~5:1)により分離して化合物3-aを得た。
Step A: Under the protection of nitrogen gas, compound 3-1 (2 g, 11.33 mmol, 1 eq.) was added.
To a solution of 3-(2-fluorobenzylamine) in toluene (20.00 mL) were added cesium carbonate (5.54 g, 16.99 mmol, 1.5 eq) and 2-fluorobenzylamine (1.70 g, 13.60 mmol, 1.55 mL, 1.2 eq). The mixture was heated to 80° C. and stirred for 12 h. After cooling, water (40 mL) was added and extracted with EtOAc (40 mL). The organic phase was washed with brine (40 mL), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was separated by column chromatography (PE:EtOAc=50:1-5:1) to obtain compound 3-a.

ステップB:3-a(1.50g、5.66mmol、1eq)のTHF(20mL)及び水(10mL)の混合物に還元鉄粉末(1.26g、22.62mmol、4eq)及びNHCl(1.51g、53.49mmol、5eq)を加えた。窒素ガスで置換し、60℃で6時間撹拌し、反応溶液を濾過し、ケーキをEtOAc(40mL)で洗浄し、濾液に更に飽和食塩水(50mL)を加え、EtOAc(40mL)で抽出し、有機相を飽和食塩水(50mL)で洗浄し、無水硫酸ナトリウムで乾燥させ、濾過した後濃縮し、残留物をカラムクロマトグラフィー(PE:EtOAc=10:1~4:1)により精製して化合物3-bを得た。 Step B: Reduced iron powder (1.26 g, 22.62 mmol, 4 eq) and NH 4 Cl (1.51 g, 53.49 mmol, 5 eq) were added to a mixture of 3-a (1.50 g, 5.66 mmol, 1 eq) in THF (20 mL) and water (10 mL). The mixture was purged with nitrogen gas and stirred at 60° C. for 6 hours. The reaction solution was filtered, the cake was washed with EtOAc (40 mL), and saturated saline (50 mL) was added to the filtrate. The organic phase was washed with saturated saline (50 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by column chromatography (PE: EtOAc = 10: 1 to 4: 1) to obtain compound 3-b.

ステップC:3-b(1.00g、4.25mmol、1eq)のTHF(20.00mL)溶液にCDI(1.03g、6.38mmol、1.5eq)をゆっくりと加えた。添加完了後、混合物を70℃で12時間撹拌した。反応溶液を濃縮し、残留物をカラムクロマトグラフィー(PE:EtOAc=5:1~2:1)により精製して化合物3-cを得た。H NMR (400MHz, CDCl): δ ppm 9.99 (br s, 1H), 7.96 (t, J=2.1 Hz, 1H), 7.33 - 7.29 (m, 1H), 7.28 - 7.24 (m, 1H), 7.16 (dd, J=2.5, 8.0 Hz, 1H), 7.12 - 7.05 (m, 2H), 5.27 (s, 2H)。 Step C: To a solution of 3-b (1.00 g, 4.25 mmol, 1 eq) in THF (20.00 mL) was slowly added CDI (1.03 g, 6.38 mmol, 1.5 eq). After the addition was complete, the mixture was stirred at 70° C. for 12 h. The reaction solution was concentrated and the residue was purified by column chromatography (PE:EtOAc=5:1 to 2:1) to give compound 3-c. 1H NMR (400 MHz, CDCl3 ): δ ppm 9.99 (br s, 1H), 7.96 (t, J=2.1 Hz, 1H), 7.33 - 7.29 (m, 1H), 7.28 - 7.24 (m, 1H), 7.16 (dd, J=2.5, 8.0 Hz, 1H), 7.12 - 7.05 (m, 2H), 5.27 (s, 2H).

ステップD:3-c(113mg、432.57μmol、1eq)のDMF(4.00mL)溶液に1-g(261.70mg、519.09μmol、1.0eq)、炭酸セシウム(281.88mg、865.15μmol、2eq)、ヨウ化第一銅(8.24mg、43.26μmol、0.10eq)及び1,10-フェナントロリン(15.59mg、86.51μmol、0.2eq)を加えた。窒素ガスで置換し、100℃で3時間撹拌し、反応溶液を冷却させた後、反応溶液に飽和食塩水(20mL)を加え、EtOAc(20mL)で抽出し、有機相を飽和食塩水(20mL)で洗浄し、無水硫酸ナトリウムで乾燥させ、濾過した後濃縮し、残留物をカラムクロマトグラフィー(PE:EtOAc=5:1~2:1)により化合物3-dを得た。 Step D: To a solution of 3-c (113 mg, 432.57 μmol, 1 eq) in DMF (4.00 mL) was added 1-g (261.70 mg, 519.09 μmol, 1.0 eq), cesium carbonate (281.88 mg, 865.15 μmol, 2 eq), cuprous iodide (8.24 mg, 43.26 μmol, 0.10 eq) and 1,10-phenanthroline (15.59 mg, 86.51 μmol, 0.2 eq). The atmosphere was replaced with nitrogen gas, and the reaction solution was stirred at 100°C for 3 hours. After cooling, saturated saline (20 mL) was added to the reaction solution, which was then extracted with EtOAc (20 mL). The organic phase was washed with saturated saline (20 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. Compound 3-d was obtained from the residue by column chromatography (PE: EtOAc = 5: 1 to 2: 1).

ステップE:3-d(120mg、289.63μmol、1eq)のMeOH(6mL)及び水(2mL)の混合物に還元鉄粉末(64.70mg、1.16mmol、4eq)及びNHCl(77.46mg、1.45mmol、5eq)を加えた。窒素ガスで置換し、70℃で3時間撹拌し、反応溶液を濾過し、ケーキをメタノール(10mL)及びジクロロメタン(10mL)で洗浄し、濾液に飽和食塩水(10mL)を加え、DCM(10mL)で抽出し、有機相を飽和食塩水(10mL)で洗浄し、無水硫酸ナトリウムで乾燥させ、濾過した後濃縮し、残留物を薄層クロマトグラフィー(DCM:MeOH=10:1)により精製して化合物3-eを得た。 Step E: Reduced iron powder (64.70 mg, 1.16 mmol, 4 eq) and NH 4 Cl (77.46 mg, 1.45 mmol, 5 eq) were added to a mixture of 3-d (120 mg, 289.63 μmol, 1 eq) in MeOH (6 mL) and water (2 mL). The mixture was purged with nitrogen gas and stirred at 70° C. for 3 hours. The reaction solution was filtered, the cake was washed with methanol (10 mL) and dichloromethane (10 mL), saturated saline (10 mL) was added to the filtrate, and the mixture was extracted with DCM (10 mL). The organic phase was washed with saturated saline (10 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by thin layer chromatography (DCM:MeOH=10:1) to obtain compound 3-e.

ステップF:0℃で、3-e(42mg、91.06μmol、1eq)のピリジン(1.5mL)溶液にクロロギ酸メチル(12.91mg、136.60μmol、10.58μL、1.5eq)を加え、0℃で1時間撹拌し、反応溶液を氷水(20mL)に注ぎ、飽和食塩水(10mL)を加え、EtOAc(20mL)で抽出し、有機相を飽和食
塩水(10mL)で洗浄し、無水硫酸ナトリウムで乾燥させ、濾過した後濃縮し、残留物を分取HPLC[移動相:水(0.225%のFA)-ACN]により精製して化合物3を得た。H NMR (400MHz, DMSO-d): δ ppm 8.18
(dd, J=2.5, 9.4 Hz, 1H), 8.07 (s, 1H), 7.96 (br s, 1H), 7.41 - 7.31 (m, 1H), 7.30 - 7.11 (m, 3H), 6.37 (br s, 4H), 5.14
(s, 2H), 3.62 (s, 3H);LCMS (ESI) m/z: 443.1 [M+1]
Step F: At 0° C., methyl chloroformate (12.91 mg, 136.60 μmol, 10.58 μL, 1.5 eq) was added to a solution of 3-e (42 mg, 91.06 μmol, 1 eq) in pyridine (1.5 mL), and the mixture was stirred at 0° C. for 1 hour. The reaction solution was poured into ice water (20 mL), saturated saline (10 mL) was added, and the mixture was extracted with EtOAc (20 mL). The organic phase was washed with saturated saline (10 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by preparative HPLC [mobile phase: water (0.225% FA)-ACN] to obtain compound 3. 1 H NMR (400 MHz, DMSO-d 6 ): δ ppm 8.18
(dd, J=2.5, 9.4 Hz, 1H), 8.07 (s, 1H), 7.96 (br s, 1H), 7.41 - 7.31 (m, 1H), 7.30 - 7.11 (m, 3H), 6.37 (br s, 4H), 5.14
(s, 2H), 3.62 (s, 3H); LCMS (ESI) m/z: 443.1 [M+1] <+> .

実施例4
合成スキーム:
Example 4
Synthesis scheme:

Figure 2024515985000053
Figure 2024515985000053

ステップA:窒素ガスの保護下で、3-1(2g、11.33mmol、1eq)のトルエン(20.00mL)溶液に炭酸セシウム(5.54g、16.99mmol、1.5eq)及び2-トリフルオロメチルベンジルアミン(2.38g、13.60mmol、1.55mL、1.2eq)を加えた。混合物を80℃に昇温させて12時間撹拌した。冷却させた後、水(40mL)を加え、EtOAc(40mL)で抽出し、有機相を塩水(40mL)で洗浄し、無水硫酸ナトリウムで乾燥させ、濾過した後濃縮し、残留物をカラムクロマトグラフィー(PE:EtOAc=50:1~5:1)により分離して化合物4-aを得た。 Step A: Under the protection of nitrogen gas, cesium carbonate (5.54 g, 16.99 mmol, 1.5 eq) and 2-trifluoromethylbenzylamine (2.38 g, 13.60 mmol, 1.55 mL, 1.2 eq) were added to a solution of 3-1 (2 g, 11.33 mmol, 1 eq) in toluene (20.00 mL). The mixture was heated to 80°C and stirred for 12 hours. After cooling, water (40 mL) was added and extracted with EtOAc (40 mL). The organic phase was washed with brine (40 mL), dried over anhydrous sodium sulfate, filtered and concentrated, and the residue was separated by column chromatography (PE: EtOAc = 50: 1 to 5: 1) to obtain compound 4-a.

ステップB:4-a(1.70g、5.39mmol、1eq)のTHF(20mL)及び水(10mL)の混合物に還元鉄粉末(1.20g、21.57mmol、4eq)及びNHCl(1.44g、26.97mmol、5eq)を加えた。窒素ガスで置換し、60℃で3時間撹拌し、反応溶液を濾過し、ケーキをEtOAc(40mL)で洗浄し、濾液に更に飽和食塩水(60mL)を加え、EtOAc(50mL)で抽出し、有機相を飽和食塩水(60mL)で洗浄し、無水硫酸ナトリウムで乾燥させ、濾過した後濃縮し、残留物をカラムクロマトグラフィー(PE:EtOAc=10:1~4:1)により精製して化合物4-bを得た。 Step B: Reduced iron powder (1.20 g, 21.57 mmol, 4 eq) and NH 4 Cl (1.44 g, 26.97 mmol, 5 eq) were added to a mixture of 4-a (1.70 g, 5.39 mmol, 1 eq) in THF (20 mL) and water (10 mL). The mixture was purged with nitrogen gas and stirred at 60° C. for 3 hours. The reaction solution was filtered, the cake was washed with EtOAc (40 mL), and saturated saline (60 mL) was added to the filtrate. The mixture was extracted with EtOAc (50 mL). The organic phase was washed with saturated saline (60 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by column chromatography (PE: EtOAc = 10: 1 to 4: 1) to obtain compound 4-b.

ステップC:4-b(1.21g、4.25mmol、1eq)のTHF(20.00mL)溶液にCDI(1.03g、6.38mmol、1.5eq)をゆっくりと加えた
。添加完了後、混合物を70℃で12時間撹拌した。反応溶液を濃縮し、残留物をカラムクロマトグラフィー(PE:EtOAc=4:1~2:1)により精製して化合物4-cを得た。H NMR (400MHz, DMSO-d): δ ppm 11.60 (br s, 1H), 7.91 (t, J=2.0 Hz, 1H), 7.80 (d, J=7.7 Hz, 1H), 7.63 - 7.53 (m, 1H), 7.53 - 7.40 (m, 2H), 7.02 (d, J=7.7 Hz, 1H), 5.19 (s, 2H)。
Step C: To a solution of 4-b (1.21 g, 4.25 mmol, 1 eq) in THF (20.00 mL) was added CDI (1.03 g, 6.38 mmol, 1.5 eq) slowly. After the addition was complete, the mixture was stirred at 70° C. for 12 h. The reaction solution was concentrated and the residue was purified by column chromatography (PE:EtOAc=4:1 to 2:1) to give compound 4-c. 1H NMR (400 MHz, DMSO- d6 ): δ ppm 11.60 (br s, 1H), 7.91 (t, J=2.0 Hz, 1H), 7.80 (d, J=7.7 Hz, 1H), 7.63 - 7.53 (m, 1H), 7.53 - 7.40 (m, 2H), 7.02 (d, J=7.7 Hz, 1H), 5.19 (s, 2H).

ステップD:4-c(140mg、449.82μmol、1eq)のDMF(1.00mL)溶液に1-g(226.78mg、449.82μmol、1.0eq)、炭酸セシウム(293.12mg、899.64μmol、2eq)、ヨウ化第一銅(8.57mg、44.98μmol、0.10eq)及び1,10-フェナントロリン(16.21mg、89.96μmol、0.2eq)を加えた。窒素ガスで置換し、100℃で3時間撹拌し、反応溶液を冷却させた後濾過し、ケーキをMeOH(10mL)及びEtOAc(10mL)で洗浄し、更に濾液に飽和食塩水(20mL)を加え、EtOAc(30mL)で抽出し、有機相を飽和食塩水(20mL)で洗浄し、無水硫酸ナトリウムで乾燥させ、濾過した後濃縮して化合物4-dを得た。 Step D: To a solution of 4-c (140 mg, 449.82 μmol, 1 eq) in DMF (1.00 mL) was added 1-g (226.78 mg, 449.82 μmol, 1.0 eq), cesium carbonate (293.12 mg, 899.64 μmol, 2 eq), cuprous iodide (8.57 mg, 44.98 μmol, 0.10 eq) and 1,10-phenanthroline (16.21 mg, 89.96 μmol, 0.2 eq). The atmosphere was replaced with nitrogen gas, and the mixture was stirred at 100°C for 3 hours. The reaction solution was cooled and then filtered. The cake was washed with MeOH (10 mL) and EtOAc (10 mL). Saturated saline (20 mL) was added to the filtrate, which was then extracted with EtOAc (30 mL). The organic phase was washed with saturated saline (20 mL), dried over anhydrous sodium sulfate, filtered, and concentrated to obtain compound 4-d.

ステップE:4-d(150mg、323.04μmol、1eq)のMeOH(9mL)及び水(3mL)の混合物に還元鉄粉末(360.84mg、6.46mmol、20eq)及びNHCl(345.59mg、6.46mmol、20eq)を加えた。窒素ガスで置換し、70℃で3時間撹拌し、反応溶液を濾過し、ケーキをメタノール(10mL)及びEtOAc(10mL)で洗浄し、濾液を濃縮した後薄層クロマトグラフィー(DCM:MeOH=10:1)により精製して化合物4-eを得た。 Step E: Reduced iron powder (360.84 mg, 6.46 mmol, 20 eq) and NH 4 Cl (345.59 mg, 6.46 mmol, 20 eq) were added to a mixture of 4-d (150 mg, 323.04 μmol, 1 eq) in MeOH (9 mL) and water (3 mL). The mixture was purged with nitrogen gas and stirred at 70° C. for 3 hours. The reaction solution was filtered, the cake was washed with methanol (10 mL) and EtOAc (10 mL), and the filtrate was concentrated and then purified by thin layer chromatography (DCM:MeOH=10:1) to obtain compound 4-e.

ステップF:0℃で、4-e(39.55mg、91.06μmol、1eq)のピリジン(1.0mL)溶液にクロロギ酸メチル(12.91mg、136.60μmol、10.58μL、1.5eq)を加え、0℃で1時間撹拌し、反応溶液を氷水(10mL)に注ぎ、飽和食塩水(10mL)を加え、EtOAc(5mL×3)で抽出し、有機相を飽和食塩水(10mL)で洗浄し、無水硫酸ナトリウムで乾燥させ、濾過した後濃縮し、残留物を分取HPLC[移動相:水(0.225%のFA)-ACN]により精製して化合物4を得た。H NMR (400MHz, DMSO-d): δ ppm 8.18 (dd, J=2.5, 9.4 Hz, 1H), 8.07 (s, 1H), 7.96 (br s, 1H), 7.41 - 7.31 (m, 1H), 7.30 - 7.11 (m, 3H), 6.37 (br s, 4H), 5.14 (s, 2H), 3.62 (br s, 3H);LCMS (ESI)
m/z: 493.1 [M+1]
Step F: At 0° C., methyl chloroformate (12.91 mg, 136.60 μmol, 10.58 μL, 1.5 eq) was added to a solution of 4-e (39.55 mg, 91.06 μmol, 1 eq) in pyridine (1.0 mL), and the mixture was stirred at 0° C. for 1 hour. The reaction solution was poured into ice water (10 mL), saturated saline (10 mL) was added, and the mixture was extracted with EtOAc (5 mL×3). The organic phase was washed with saturated saline (10 mL), dried over anhydrous sodium sulfate, filtered, and then concentrated. The residue was purified by preparative HPLC [mobile phase: water (0.225% FA)-ACN] to obtain compound 4. 1H NMR (400MHz, DMSO- d6 ): δ ppm 8.18 (dd, J=2.5, 9.4 Hz, 1H), 8.07 (s, 1H), 7.96 (br s, 1H), 7.41 - 7.31 (m, 1H), 7.30 - 7.11 (m, 3H), 6.37 (br s, 4H), 5.14 (s, 2H), 3.62 (br s, 3H); LCMS (ESI)
m/z: 493.1 [M+1] + .

実施例5
合成スキーム:
Example 5
Synthesis scheme:

Figure 2024515985000054
Figure 2024515985000054

ステップA:-20℃で、1-f(1.3g、5.69mmol、1eq)のDCM(100.00mL)溶液にp-メトキシベンジルアミン(1.56g、11.38mmol、1.47mL、2eq)のDCM(100.00mL)溶液をゆっくりと加え、混合物を-20℃で1時間撹拌し、水(50.00mL)を加えて洗浄し、有機相を無水硫酸ナトリウムで乾燥させ、濾過した後濃縮し、残留物をEtOAc(15mL)で撹拌し、濾過して乾燥させた後化合物5-bを得た。 Step A: At -20°C, a solution of p-methoxybenzylamine (1.56 g, 11.38 mmol, 1.47 mL, 2 eq) in DCM (100.00 mL) was slowly added to a solution of 1-f (1.3 g, 5.69 mmol, 1 eq) in DCM (100.00 mL), the mixture was stirred at -20°C for 1 hour, washed with water (50.00 mL), the organic phase was dried over anhydrous sodium sulfate, filtered and concentrated, and the residue was stirred with EtOAc (15 mL), filtered and dried to give compound 5-b.

ステップB:CoCl・6HO(1.71g、7.19mmol、0.1eq)のTHF(200.00mL)及び水(100.00mL)溶液に5-2(10g、71.89mmol、8.00mL、1eq)を加え、次に、NaBH(13.60g、359.45mmol、5eq)をバッチで加え、反応溶液を30℃で12時間撹拌し、反応溶液にNH・HO(25%、20mL)をゆっくりと加え、更に水(100mL)を加え、EtOAc(100mL×2)で抽出し、合わせた有機相を無水硫酸ナトリウムで乾燥させ、濾過した後濃縮し、残留物をカラムクロマトグラフィー(PE:EtOAc=10:1~3:1)により分離して化合物5-cを得た。 Step B: To a solution of CoCl 2 ·6H 2 O (1.71 g, 7.19 mmol, 0.1 eq) in THF (200.00 mL) and water (100.00 mL), 5-2 (10 g, 71.89 mmol, 8.00 mL, 1 eq) was added, and then NaBH 4 (13.60 g, 359.45 mmol, 5 eq) was added in batches. The reaction solution was stirred at 30 ° C. for 12 hours, NH 3 ·H 2 O (25%, 20 mL) was slowly added to the reaction solution, and water (100 mL) was further added. Extraction was performed with EtOAc (100 mL × 2). The combined organic phase was dried over anhydrous sodium sulfate, filtered and concentrated, and the residue was separated by column chromatography (PE: EtOAc = 10: 1 to 3: 1) to obtain compound 5-c.

ステップC:5-c(3.65g、25.49mmol、2.99mL、1.5eq)のトルエン(30.00mL)溶液に炭酸セシウム(8.31g、25.49mmol、1.5eq)及び3-1(3.0g、16.99mmol、1eq)を加えた。混合物を80℃に昇温させて12時間撹拌し、濾過した後濃縮し、残留物をカラムクロマトグラフィー(PE:EtOAc=100:1~10:1)により分離して化合物5-dを得た。 Step C: To a solution of 5-c (3.65 g, 25.49 mmol, 2.99 mL, 1.5 eq) in toluene (30.00 mL) was added cesium carbonate (8.31 g, 25.49 mmol, 1.5 eq) and 3-1 (3.0 g, 16.99 mmol, 1 eq). The mixture was heated to 80°C and stirred for 12 hours, filtered and concentrated, and the residue was separated by column chromatography (PE: EtOAc = 100: 1 to 10: 1) to obtain compound 5-d.

ステップD:5-d(2.0g、7.06mmol、1eq)のEtOH(100mL)及び水(50mL)の混合物に還元鉄粉末(1.97g、35.30mmol、5eq)及びNHCl(1.89g、35.30mmol、1.23mL、5eq)を加え、70℃で1時間撹拌し、EtOAc(100mL×3)で抽出し、合わせた有機相を無水硫酸ナトリウムで乾燥させ、濾過した後濃縮し、残留物をカラムクロマトグラフィー(PE:EtOAc=10:1~3:1)により精製して化合物5-eを得た。 Step D: To a mixture of 5-d (2.0 g, 7.06 mmol, 1 eq) in EtOH (100 mL) and water (50 mL), reduced iron powder (1.97 g, 35.30 mmol, 5 eq) and NH 4 Cl (1.89 g, 35.30 mmol, 1.23 mL, 5 eq) were added, stirred at 70° C. for 1 h, extracted with EtOAc (100 mL×3), the combined organic phase was dried over anhydrous sodium sulfate, filtered and concentrated, and the residue was purified by column chromatography (PE:EtOAc=10:1-3:1) to give compound 5-e.

ステップE:5-e(1.0g、3.95mmol、1eq)のTHF(100.00mL)溶液にCDI(960.51mg、5.92mmol、1.5eq)をゆっくりと加えた。添加完了後、混合物を70℃で2時間撹拌した。反応溶液を濃縮し、残留物をカラムクロマトグラフィー(PE:EtOAc=20:1~3:1)により精製して化合物5-fを得た。 Step E: CDI (960.51 mg, 5.92 mmol, 1.5 eq) was slowly added to a solution of 5-e (1.0 g, 3.95 mmol, 1 eq) in THF (100.00 mL). After the addition was complete, the mixture was stirred at 70 °C for 2 h. The reaction solution was concentrated and the residue was purified by column chromatography (PE: EtOAc = 20: 1 to 3: 1) to obtain compound 5-f.

ステップF:5-f(450mg、1.61mmol、1eq)のDMF(10.00mL)溶液に5-b(1.04g、2.42mmol、1.5eq)、炭酸セシウム(630.13mg、1.93mmol、1.2eq)、ヨウ化第一銅(30.69mg、161.16μmol、0.1eq)及び8-ヒドロキシキノリン(23.39mg、161.16μmol、27.85μL、0.1eq)を加え、窒素ガスで置換し、100℃で3時間撹拌し、反応溶液に水(50mL)を加え、EtOAc(50mL×2)で抽出し、合わせた有機相を無水硫酸ナトリウムで乾燥させ、濾過した後濃縮し、残留物をカラムクロマトグラフィー(PE:EtOAc=10:1~3:1)により精製して化合物5-gを得た。 Step F: 5-b (1.04 g, 2.42 mmol, 1.5 eq), cesium carbonate (630.13 mg, 1.93 mmol, 1.2 eq), cuprous iodide (30.69 mg, 161.16 μmol, 0.1 eq) and 8-hydroxyquinoline (23.39 mg, 161.16 μmol, 27.85 μL, 0.1 eq) were added to a solution of 5-f (450 mg, 1.61 mmol, 1 eq) in DMF (10.00 mL), purged with nitrogen gas, stirred at 100°C for 3 hours, added water (50 mL) to the reaction solution, extracted with EtOAc (50 mL x 2), dried the combined organic phase over anhydrous sodium sulfate, filtered and concentrated, and the residue was purified by column chromatography (PE: EtOAc = 10: 1 to 3: 1) to obtain compound 5-g.

ステップG:5-g(900mg、1.34mmol、1eq)のDCM(50.00mL)及び水(5.00mL)溶液にDDQ(1.52g、6.69mmol、5eq)を加え、30℃で12時間撹拌し、反応溶液に飽和炭酸水素ナトリウム水溶液(20mL)を加え、DCM(50mL×2)で抽出し、合わせた有機相を水(50mL×2)で洗浄し、無水硫酸ナトリウムで乾燥させ、濾過した後濃縮し、残留物をEtOAc(10mL)と撹拌し、濾過して乾燥させた後化合物5-hを得た。 Step G: DDQ (1.52 g, 6.69 mmol, 5 eq) was added to a solution of 5-g (900 mg, 1.34 mmol, 1 eq) in DCM (50.00 mL) and water (5.00 mL), and the mixture was stirred at 30°C for 12 hours. Saturated aqueous sodium bicarbonate solution (20 mL) was added to the reaction solution, and the mixture was extracted with DCM (50 mL x 2). The combined organic phase was washed with water (50 mL x 2), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was stirred with EtOAc (10 mL), filtered, and dried to obtain compound 5-h.

ステップH:5-h(50mg、85.59μmol、1eq)のMeOH(3mL)及び水(1mL)の混合物に還元鉄粉末(95.59mg、1.71mmol、20eq)及びNHCl(91.56mg、1.71mmol、20eq)を加え、70℃で1時間撹拌し、冷却させた後反応溶液を濾過し、濾液に水(20mL)を加え、DCM(25mL×2)で抽出し、合わせた有機相を無水硫酸ナトリウムで乾燥させ、濾過した後濃縮して化合物5-iを得た。 Step H: Reduced iron powder (95.59 mg, 1.71 mmol, 20 eq) and NH 4 Cl (91.56 mg, 1.71 mmol, 20 eq) were added to a mixture of 5-h (50 mg, 85.59 μmol, 1 eq) in MeOH (3 mL) and water (1 mL), and the mixture was stirred at 70° C. for 1 hour. After cooling, the reaction solution was filtered, water (20 mL) was added to the filtrate, and the mixture was extracted with DCM (25 mL×2). The combined organic phase was dried over anhydrous sodium sulfate, filtered, and concentrated to give compound 5-i.

ステップI:0℃で、5-i(20mg、49.71μmol、1eq)のピリジン(1.0mL)溶液にクロロギ酸メチル(7.05mg、74.57μmol、5.78μL、1.5eq)を加え、0℃で30分間撹拌し、反応溶液に水(10mL)を加え、EtOAc(10mL×2)で抽出し、有機相を飽和食塩水(10mL)で洗浄し、無水硫酸ナトリウムで乾燥させ、濾過した後濃縮し、残留物を分取HPLC[移動相:水(0.225%のFA)-ACN]により精製して化合物5を得た。H NMR (400MHz, DMSO-d): δ ppm 8.20 (dd, J=2.6, 9.4
Hz, 1H), 8.07 (t, J=2.1 Hz, 1H), 7.98 (br s, 1H), 7.44 - 7.30 (m, 1H), 7.22 - 7.08 (m, 2H), 6.37 (br s, 4H), 5.17 (s, 2H), 3.62 (s, 3H);LCMS (ESI) m/z: 461.1 [M+1]
Step I: At 0° C., methyl chloroformate (7.05 mg, 74.57 μmol, 5.78 μL, 1.5 eq) was added to a solution of 5-i (20 mg, 49.71 μmol, 1 eq) in pyridine (1.0 mL), and the mixture was stirred at 0° C. for 30 minutes. Water (10 mL) was added to the reaction solution, and the mixture was extracted with EtOAc (10 mL×2). The organic phase was washed with saturated saline (10 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by preparative HPLC [mobile phase: water (0.225% FA)-ACN] to obtain compound 5. 1 H NMR (400 MHz, DMSO-d 6 ): δ ppm 8.20 (dd, J=2.6, 9.4
Hz, 1H), 8.07 (t, J=2.1 Hz, 1H), 7.98 (br s, 1H), 7.44-7.30 (m, 1H), 7.22-7.08 (m, 2H), 6.37 (br s, 4H), 5.17 (s, 2H), 3.62 (s, 3H); LCMS (ESI) m/z: 461.1 [M+1] + .

実施例6
合成スキーム:
Example 6
Synthesis scheme:

Figure 2024515985000055
Figure 2024515985000055

0℃で、化合物5(15mg、32.58μmol、1eq)のDMF(1.00mL)溶液にNaH(1.95mg、48.87μmol、60%の純度、1.5eq)を加え、0℃で30分間撹拌した後ヨードメタン(6.94mg、48.87μmol、3.04μL、1.5eq)を加え、0℃で30分間撹拌を続け、反応溶液を水(30mL)にゆっくりと注ぎ、次に、EtOAc(30mL×2)で抽出し、合わせた有機相を無水硫酸ナトリウムで乾燥させ、濾過した後濃縮し、残留物を分取HPLC[移動相:水(0.225%のFA)-ACN]により精製して化合物6を得た。H NMR (400MHz, DMSO-d): δ ppm 8.47 (br s, 1H), 8.22 (br dd, J=2.6, 9.4 Hz, 1H), 7.45 - 7.30 (m, 1H), 7.22 - 7.06 (m, 2H), 6.64 - 6.49 (m, 4H), 5.17 (s, 2H), 3.66 -3.55 (s, 3H), 3.00 (s, 3H)。LCMS (ESI) m/z: 475.1 [M+1] At 0° C., NaH (1.95 mg, 48.87 μmol, 60% purity, 1.5 eq) was added to a solution of compound 5 (15 mg, 32.58 μmol, 1 eq) in DMF (1.00 mL), and the mixture was stirred at 0° C. for 30 minutes, followed by the addition of iodomethane (6.94 mg, 48.87 μmol, 3.04 μL, 1.5 eq), and stirring was continued at 0° C. for 30 minutes. The reaction solution was slowly poured into water (30 mL), and then extracted with EtOAc (30 mL×2). The combined organic phase was dried over anhydrous sodium sulfate, filtered, and then concentrated. The residue was purified by preparative HPLC [mobile phase: water (0.225% FA)-ACN] to obtain compound 6. 1H NMR (400 MHz, DMSO- d6 ): δ ppm 8.47 (br s, 1H), 8.22 (br dd, J=2.6, 9.4 Hz, 1H), 7.45-7.30 (m, 1H), 7.22-7.06 (m, 2H), 6.64-6.49 (m, 4H), 5.17 (s, 2H), 3.66-3.55 (s, 3H), 3.00 (s, 3H). LCMS (ESI) m/z: 475.1 [M+1] <+> .

実施例7
合成スキーム:
Example 7
Synthesis scheme:

Figure 2024515985000056
Figure 2024515985000056

ステップA:窒素ガスの保護下で、3-1(2g、11.33mmol、1eq)のトルエン(20.00mL)溶液にDIPEA(2.20g、16.99mmol、2.96mL、1.5eq)及び2-クロロベンジルアミン(1.60g、11.33mmol、1.37mL、1eq)を加えた。混合物を80℃に昇温させて17時間撹拌した。冷却させた後、水(20mL)を加え、EtOAc(20mL×3)で抽出し、合わせた有機相を無水硫酸ナトリウムで乾燥させ、濾過した後濃縮し、残留物をカラムクロマトグラフィー(PE:EtOAc=100:1~50:1)により分離して化合物7-aを得た。H NMR (400 MHz, CDCl) δ ppm 4.94 (d, J=6.02 Hz, 2 H) 7.17 - 7.34 (m, 2 H) 7.37 - 7.47 (m, 2 H) 8.22 (dd, J=7.91, 2.89
Hz, 1 H) 8.40 (d, J=2.89 Hz, 1 H) 8.47 - 8.67 (m, 1 H)。
Step A: Under the protection of nitrogen gas, DIPEA (2.20 g, 16.99 mmol, 2.96 mL, 1.5 eq) and 2-chlorobenzylamine (1.60 g, 11.33 mmol, 1.37 mL, 1 eq) were added to a solution of 3-1 (2 g, 11.33 mmol, 1 eq) in toluene (20.00 mL). The mixture was heated to 80° C. and stirred for 17 hours. After cooling, water (20 mL) was added and extracted with EtOAc (20 mL×3). The combined organic phase was dried over anhydrous sodium sulfate, filtered, concentrated, and the residue was separated by column chromatography (PE: EtOAc = 100: 1 to 50: 1) to obtain compound 7-a. 1H NMR (400 MHz, CDCl3 ) δ ppm 4.94 (d, J=6.02 Hz, 2H) 7.17 - 7.34 (m, 2H) 7.37 - 7.47 (m, 2H) 8.22 (dd, J=7.91, 2.89
Hz, 1 H) 8.40 (d, J=2.89 Hz, 1 H) 8.47 - 8.67 (m, 1 H).

ステップB:7-a(3.13g、8.01mmol、1eq)のTHF(45mL)及び水(15mL)の混合物に還元鉄粉末(2.24g、40.03mmol、5eq)及びNHCl(1.71g、32.02mmol、1.12mL、4eq)を加えた。窒素ガスで置換し、80℃で17時間撹拌し、反応溶液を濾過し、濾液に更に水(80mL)を加え、EtOAc(80mL×3)で抽出し、合わせた有機相を飽和食塩水(100mL)で洗浄し、無水硫酸ナトリウムで乾燥させ、濾過した後濃縮し、残留物をカラムクロマトグラフィー(PE:EtOAc=100:1~5:1)により精製して化合物7-bを得た。H NMR (400 MHz, DMSO-d): δ ppm 7.44 - 7.38 (m, 1H), 7.35 - 7.30 (m, 1H),
7.28 - 7.24 (m, 2H), 7.22 (d, J=2.6 Hz,
1H), 6.64 (dd, J=2.8, 10.4 Hz, 1H), 6.09 (t, J=5.6 Hz, 1H), 5.22 (s, 2H), 4.58 (d, J=5.6 Hz, 2H)。
Step B: Reduced iron powder (2.24 g, 40.03 mmol, 5 eq) and NH 4 Cl (1.71 g, 32.02 mmol, 1.12 mL, 4 eq) were added to a mixture of 7-a (3.13 g, 8.01 mmol, 1 eq) in THF (45 mL) and water (15 mL). The mixture was purged with nitrogen gas and stirred at 80° C. for 17 hours. The reaction solution was filtered, and water (80 mL) was added to the filtrate. The mixture was extracted with EtOAc (80 mL×3). The combined organic phase was washed with saturated saline (100 mL), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by column chromatography (PE: EtOAc = 100: 1 to 5: 1) to obtain compound 7-b. 1H NMR (400 MHz, DMSO- d6 ): δ ppm 7.44 - 7.38 (m, 1H), 7.35 - 7.30 (m, 1H),
7.28 - 7.24 (m, 2H), 7.22 (d, J=2.6 Hz,
1H), 6.64 (dd, J=2.8, 10.4 Hz, 1H), 6.09 (t, J=5.6 Hz, 1H), 5.22 (s, 2H), 4.58 (d, J=5.6 Hz, 2H).

ステップC:7-b(1.16g、3.75mmol、1eq)のTHF(30.00mL)溶液にCDI(911.37mg、5.62mmol、1.5eq)をゆっくりと加えた。添加完了後、混合物を75℃で4時間撹拌した。反応溶液を濃縮し、残留物をカラムクロマトグラフィー(PE:EtOAc=20:1~4:1)により精製して化合物
7-cを得た。
Step C: To a solution of 7-b (1.16 g, 3.75 mmol, 1 eq) in THF (30.00 mL) was slowly added CDI (911.37 mg, 5.62 mmol, 1.5 eq). After the addition was complete, the mixture was stirred at 75° C. for 4 h. The reaction solution was concentrated and the residue was purified by column chromatography (PE:EtOAc=20:1 to 4:1) to give compound 7-c.

ステップD:7-c(0.3g、1.08mmol、1eq)のDMF(5.00mL)溶液に1-g(245.76mg、1.30mmol、1.2eq)、炭酸セシウム(704.01mg、2.16mmol、2.0eq)、ヨウ化第一銅(20.58mg、108.04μmol、0.1eq)及び1,10-フェナントロリン(38.94mg、216.08μmol、0.2eq)を加えた。窒素ガスで置換し、90℃で3時間撹拌し、反応溶液を冷却させた後濾過し、濾液に水(10mL)を加え、DCM:MeOH=5:1(10mL×4)で抽出し、合わせた有機相を飽和食塩水(10mL×3)で洗浄し、無水硫酸ナトリウムで乾燥させ、濾過した後濃縮して化合物7-dを得た。 Step D: 1-g (245.76 mg, 1.30 mmol, 1.2 eq), cesium carbonate (704.01 mg, 2.16 mmol, 2.0 eq), cuprous iodide (20.58 mg, 108.04 μmol, 0.1 eq) and 1,10-phenanthroline (38.94 mg, 216.08 μmol, 0.2 eq) were added to a solution of 7-c (0.3 g, 1.08 mmol, 1 eq) in DMF (5.00 mL). The mixture was replaced with nitrogen gas and stirred at 90°C for 3 hours. The reaction solution was cooled and then filtered. Water (10 mL) was added to the filtrate, and the mixture was extracted with DCM:MeOH = 5:1 (10 mL x 4). The combined organic phase was washed with saturated saline (10 mL x 3), dried over anhydrous sodium sulfate, filtered, and concentrated to obtain compound 7-d.

ステップE:7-d(276.00mg、640.70μmol、1eq)のMeOH(8mL)及び水(2mL)の混合物に還元鉄粉末(715.60mg、12.81mmol、20eq)及びNHCl(685.44mg、12.81mmol、448.00μL、20eq)を加え、75℃で1.5時間撹拌し、冷却させた後反応溶液を濾過し、濾液を濃縮した後水(10mL)を加え、DCM:MeOH=10:1(10ml×3)で抽出し、合わせた有機相を飽和食塩水(10mL×2)で洗浄し、無水硫酸ナトリウムで乾燥させ、濾過し、濃縮した後残留物を薄層クロマトグラフィー(DCM:MeOH=10:1)により精製して化合物7-eを得た。 Step E: Reduced iron powder (715.60 mg, 12.81 mmol, 20 eq) and NH 4 Cl (685.44 mg, 12.81 mmol, 448.00 μL, 20 eq) were added to a mixture of 7-d (276.00 mg, 640.70 μmol, 1 eq) in MeOH (8 mL) and water (2 mL), and the mixture was stirred at 75° C. for 1.5 hours. After cooling, the reaction solution was filtered, the filtrate was concentrated, and then water (10 mL) was added. The mixture was extracted with DCM:MeOH=10:1 (10 ml×3). The combined organic phase was washed with saturated saline (10 mL×2), dried over anhydrous sodium sulfate, filtered, and concentrated. The residue was purified by thin layer chromatography (DCM:MeOH=10:1) to obtain compound 7-e.

ステップF:0℃で、7-e(20mg、49.90μmol、1eq)のピリジン(1.0mL)溶液にクロロギ酸メチル(4.72mg、49.95μmol、3.87μL、1.00eq)を加え、0℃で30分間撹拌し、反応溶液を水(1mL)に注ぎ、EtOAc(2mL×3)で抽出し、無水硫酸ナトリウムで乾燥させ、濾過した後濃縮し、残留物を分取HPLC[移動相:水(0.225%のFA)-ACN]により精製して化合物7を得た。H NMR (400 MHz, DMSO-d) δ ppm 8.23 (dd, J=9.47, 2.57 Hz, 1 H), 7.98 - 8.14 (m, 1 H), 7.96 (br s, 1 H), 7.51 (dd, J=7.84, 1.32 Hz, 1 H), 7.19 - 7.43 (m,
2 H), 7.08 (d, J=6.40 Hz, 1 H), 6.37 (br s, 4 H), 5.15 (s, 2 H), 3.62 (br s, 3 H) ;LCMS (ESI) m/z: 459.0 [M+1]
Step F: At 0° C., methyl chloroformate (4.72 mg, 49.95 μmol, 3.87 μL, 1.00 eq) was added to a solution of 7-e (20 mg, 49.90 μmol, 1 eq) in pyridine (1.0 mL), stirred at 0° C. for 30 minutes, poured into water (1 mL), extracted with EtOAc (2 mL×3), dried over anhydrous sodium sulfate, filtered and concentrated, and the residue was purified by preparative HPLC [mobile phase: water (0.225% FA)-ACN] to obtain compound 7. 1H NMR (400 MHz, DMSO- d6 ) δ ppm 8.23 (dd, J=9.47, 2.57 Hz, 1H), 7.98-8.14 (m, 1H), 7.96 (br s, 1H), 7.51 (dd, J=7.84, 1.32 Hz, 1H), 7.19-7.43 (m,
2H), 7.08 (d, J=6.40 Hz, 1H), 6.37 (br s, 4H), 5.15 (s, 2H), 3.62 (br s, 3H); LCMS (ESI) m/z: 459.0 [M+1] <+ >.

実施例8
合成スキーム:
Example 8
Synthesis scheme:

Figure 2024515985000057
Figure 2024515985000057

ステップA:3-e(40mg、104.06μmol、1eq)のDMF(1mL)溶液に順次にトリフルオロメタンスルホン酸トリフルオロエチル(48.31mg、208.15μmol、2.0eq)及びDIPEA(40.35mg、312.22μmol、54.38μL、3.0eq)を加えた。混合物を80℃で12時間撹拌した。冷却させた後水(20mL)を加え、EA(10mL×2)で抽出し、合わせた有機相を飽和食塩水(10mL)で洗浄し、有機相を無水硫酸ナトリウムで乾燥させ、濾過して濃縮し、残余物をカラムクロマトグラフィー(ジクロロメタン:メタノール=15:1)により精製して化合物8-aを得た。 Step A: To a solution of 3-e (40 mg, 104.06 μmol, 1 eq) in DMF (1 mL), trifluoroethyl trifluoromethanesulfonate (48.31 mg, 208.15 μmol, 2.0 eq) and DIPEA (40.35 mg, 312.22 μmol, 54.38 μL, 3.0 eq) were added in sequence. The mixture was stirred at 80°C for 12 hours. After cooling, water (20 mL) was added, extracted with EA (10 mL x 2), the combined organic phase was washed with saturated saline (10 mL), the organic phase was dried over anhydrous sodium sulfate, filtered and concentrated, and the residue was purified by column chromatography (dichloromethane:methanol = 15:1) to obtain compound 8-a.

ステップB:8-a(15mg、32.16μmol、1eq)のDMF(1mL)溶液にCDI(10.43mg、64.33μmol、2.0eq)を加え、混合物を90℃で6時間撹拌した。反応溶液に飽和食塩水(10mL)を加え、EA(8mL×2)で抽出し、塩水(10mL)で有機相を洗浄し、無水NaSOで乾燥させ、濾過して濃縮し、残余物を得た。残余物を分取HPLC[移動相:水(10mMのNHHCO)-ACN]により精製して化合物8を得た。H NMR (400MHz, DMSO-d): δ ppm 8.19 (dd, J=2.4, 9.3 Hz, 1H), 8.10 (d, J=1.9 Hz, 1H), 7.40 - 7.26 (m, 1H), 7.26 - 7.19 (m, 1H), 7.26 - 7.19 (m, 1H), 7.18 - 7.12 (m, 1H), 7.43 - 7.12 (m, 1H), 7.12 - 7.04 (m, 1H), 7.09 (br
s, 1H), 5.16 (s, 2H), 4.91 (q, J=9.0 Hz, 2H);LCMS (ESI) m/z: 493.1 [M+1]
Step B: To a solution of 8-a (15 mg, 32.16 μmol, 1 eq) in DMF (1 mL) was added CDI (10.43 mg, 64.33 μmol, 2.0 eq), and the mixture was stirred at 90° C. for 6 h. Saturated brine (10 mL) was added to the reaction solution, which was extracted with EA (8 mL×2), and the organic phase was washed with brine (10 mL), dried over anhydrous Na 2 SO 4 , filtered, and concentrated to give the residue. The residue was purified by preparative HPLC [mobile phase: water (10 mM NH 4 HCO 3 )-ACN] to give compound 8. 1H NMR (400MHz, DMSO- d6 ): δ ppm 8.19 (dd, J=2.4, 9.3 Hz, 1H), 8.10 (d, J=1.9 Hz, 1H), 7.40 - 7.26 (m, 1H), 7.26 - 7.19 (m, 1H), 7.26 - 7.19 (m, 1H), 7.18 - 7.12 (m, 1H), 7.43 - 7.12 (m, 1H), 7.12 - 7.04 (m, 1H), 7.09 (br
s, 1H), 5.16 (s, 2H), 4.91 (q, J=9.0 Hz, 2H); LCMS (ESI) m/z: 493.1 [M+1] <+> .

実施例9
合成スキーム:
Example 9
Synthesis scheme:

Figure 2024515985000058
Figure 2024515985000058

ステップA:アンモニア水(3.64g、103.86mmol、4.00mL、4.03eq)及びジイソプロピルエチルアミン(5.00g、38.66mmol、6.73mL、1.5eq)をジクロロメタン(80mL)に溶解させて溶液1を得、9-1(5g、25.78mmol、1eq)をジクロロメタン(15mL)溶液に溶解させて溶液2を得、0℃の条件下で、溶液1を溶液2にゆっくりと滴下し、0℃で1時間撹拌し、反応溶液を濾過して化合物9-aを得た。H NMR (400 MHz, DMSO-d): δ ppm 8.57 (br s, 1 H) 9.01 (s, 1 H) 9.19 (br s, 1 H)。 Step A: Ammonia water (3.64 g, 103.86 mmol, 4.00 mL, 4.03 eq) and diisopropylethylamine (5.00 g, 38.66 mmol, 6.73 mL, 1.5 eq) were dissolved in dichloromethane (80 mL) to obtain solution 1, 9-1 (5 g, 25.78 mmol, 1 eq) was dissolved in dichloromethane (15 mL) to obtain solution 2, and solution 1 was slowly added dropwise to solution 2 under the condition of 0° C., and the mixture was stirred at 0° C. for 1 hour, and the reaction solution was filtered to obtain compound 9-a. 1 H NMR (400 MHz, DMSO-d 6 ): δ ppm 8.57 (br s, 1 H) 9.01 (s, 1 H) 9.19 (br s, 1 H).

ステップB:9-a(0.2g、1.15mmol、1.2eq)、化合物3-c(2
49.44mg、954.86μmol、1eq)及び無水炭酸カリウム(263.94mg、1.91mmol、2eq)をDMF(5mL)に溶解させ、窒素ガスで3回置換し、25℃で2時間撹拌した。反応溶液を40mLの水に滴下し、15分間撹拌し、次に、濾過して化合物9-bを得た。
Step B: 9-a (0.2 g, 1.15 mmol, 1.2 eq), compound 3-c (2
Compound 9-b (49.44 mg, 954.86 μmol, 1 eq) and anhydrous potassium carbonate (263.94 mg, 1.91 mmol, 2 eq) were dissolved in DMF (5 mL), purged with nitrogen gas three times, and stirred for 2 hours at 25° C. The reaction solution was added dropwise to 40 mL of water, stirred for 15 minutes, and then filtered to obtain compound 9-b.

ステップC:化合物9-b(400mg、879.52μmol、1eq)をMeOH(9mL)及びHO(3mL)に溶解させ、当該溶液にFe(982.33mg、17.59mmol、20eq)及びNHCl(940.93mg、17.59mmol、614.99μL、20eq)を加え、75℃で1時間撹拌した。反応溶液を25℃に冷却させ、珪藻土で濾過し、濾液を濃縮した後、薄層クロマトグラフィー(DCM:MeOH=10:1)により精製して化合物9-cを得た。 Step C: Compound 9-b (400 mg, 879.52 μmol, 1 eq) was dissolved in MeOH (9 mL) and H 2 O (3 mL), and Fe (982.33 mg, 17.59 mmol, 20 eq) and NH 4 Cl (940.93 mg, 17.59 mmol, 614.99 μL, 20 eq) were added to the solution and stirred at 75° C. for 1 hour. The reaction solution was cooled to 25° C. and filtered through diatomaceous earth. The filtrate was concentrated and then purified by thin layer chromatography (DCM:MeOH=10:1) to obtain compound 9-c.

ステップD:化合物9-c(45mg、121.84μmol、1eq)をピリジン(2mL)に溶解させ、0℃でクロロギ酸メチル(17.27mg、182.76μmol、14.16μL、1.5eq)を滴下し、当該温度で30分間撹拌し、反応溶液を2mLの水に滴下し、EA(3mL×3)で抽出し、合わせた有機相を無水硫酸ナトリウムで乾燥させ、濾過し、濾液を減圧濃縮した。残留物を分取HPLC[移動相:水(0.225%のFA)-ACN]により精製して化合物9を得た。H NMR (400 MHz, DMSO-d) δ ppm 3.68 (s, 3 H) 5.15 (s,
2 H) 7.09 - 7.43 (m, 6 H) 8.09 (d, J=1.88 Hz, 1 H) 8.16 (dd, J=9.35, 2.45 Hz, 1
H) 8.28 (br s, 1 H) 8.85 (br s, 1 H);LCMS (ESI) m/z: 428.0 [M+1]
実施例10
合成スキーム:
Step D: Compound 9-c (45 mg, 121.84 μmol, 1 eq) was dissolved in pyridine (2 mL), and methyl chloroformate (17.27 mg, 182.76 μmol, 14.16 μL, 1.5 eq) was added dropwise at 0° C. and stirred at the temperature for 30 minutes. The reaction solution was added dropwise to 2 mL of water, extracted with EA (3 mL×3), the combined organic phase was dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by preparative HPLC [mobile phase: water (0.225% FA)-ACN] to obtain compound 9. 1 H NMR (400 MHz, DMSO-d 6 ) δ ppm 3.68 (s, 3 H) 5.15 (s,
2H) 7.09 - 7.43 (m, 6H) 8.09 (d, J = 1.88 Hz, 1H) 8.16 (dd, J = 9.35, 2.45 Hz, 1
1H) 8.28 (br s, 1H) 8.85 (br s, 1H); LCMS (ESI) m/z: 428.0 [M+1] <+> .
Example 10
Synthesis scheme:

Figure 2024515985000059
Figure 2024515985000059

ステップA:0℃及び窒素ガスの保護下で、化合物3-e(203mg、512.33μmol、1eq)のピリジン(2.0mL)溶液に化合物10-1(219.74mg、1.54mmol、158.09μL、3eq)を一回で加え、混合物を0℃で1時間撹拌して反応させ、得られた反応溶液を水(20mL)に一滴ずつ加え、次に、酢酸エチル(10mL×3)で抽出した。合わせた有機相を飽和食塩水(20mL)で洗浄し、無水NaSOで乾燥させ、濾過し、濾液を減圧濃縮した後、残留物を薄層クロマトグラフィー(SiO、DCM/MeOH=15/1)により精製して化合物10-aの粗生成物を得、当該粗生成物を更に精製せずに次のステップの反応に直接に使用した。LCMS (ESI) m/z: 491.0 [M+1] Step A: At 0° C. and under the protection of nitrogen gas, compound 10-1 (219.74 mg, 1.54 mmol, 158.09 μL, 3 eq) was added in one portion to a solution of compound 3-e (203 mg, 512.33 μmol, 1 eq) in pyridine (2.0 mL), and the mixture was stirred and reacted at 0° C. for 1 hour. The resulting reaction solution was added dropwise to water (20 mL), and then extracted with ethyl acetate (10 mL×3). The combined organic phase was washed with saturated brine (20 mL), dried over anhydrous Na 2 SO 4 , filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by thin layer chromatography (SiO 2 , DCM/MeOH=15/1) to obtain the crude product of compound 10-a, which was directly used in the next step reaction without further purification. LCMS (ESI) m/z: 491.0 [M+1] + .

ステップB:0℃及び窒素ガスの保護下で、化合物10-a(65mg、132.42μmol、1eq)のTHF(4.0mL)溶液にNaHMDS(1M、264.85μL、2eq)を一回で加え、混合物を0℃で1時間反応させた。次に、氷浴(10mL)に一滴ずつ加えた後、酢酸エチル(10mL×3)で抽出し、合わせた有機相を飽和食塩水(20mL)で洗浄し、無水NaSOで乾燥させ、吸引濾過し、濾液を減圧濃縮した後の残留物を分取HPLC[移動相:水(0.04%のNH・HO+10mMのNHHCO)-ACN]により精製して化合物10を得た。H NMR (400MHz, DMSO-d): δ ppm 11.77 (br s, 1H), 8.17 - 8.05 (m, 2H), 7.40 - 7.26 (m, 2H), 7.26 - 7.12 (m, 2H), 6.95 (br s, 2H), 5.35 (t, J=4.9 Hz, 1H), 5.15 (s, 2H), 3.97
(t, J=4.8 Hz, 2H), 3.68 - 3.56 (m, 2H);LCMS (ESI) m/z: 455.2 [M+1]
Step B: At 0° C. and under the protection of nitrogen gas, NaHMDS (1M, 264.85 μL, 2 eq) was added in one portion to a solution of compound 10-a (65 mg, 132.42 μmol, 1 eq) in THF (4.0 mL), and the mixture was reacted at 0° C. for 1 hour. Then, it was added dropwise to an ice bath (10 mL), and extracted with ethyl acetate (10 mL×3). The combined organic phase was washed with saturated saline (20 mL), dried over anhydrous Na 2 SO 4 , and filtered under suction. The residue after the filtrate was concentrated under reduced pressure was purified by preparative HPLC [mobile phase: water (0.04% NH 3 ·H 2 O + 10 mM NH 4 HCO 3 )-ACN] to obtain compound 10. 1H NMR (400MHz, DMSO- d6 ): δ ppm 11.77 (br s, 1H), 8.17 - 8.05 (m, 2H), 7.40 - 7.26 (m, 2H), 7.26 - 7.12 (m, 2H), 6.95 (br s, 2H), 5.35 (t, J = 4.9 Hz, 1H), 5.15 (s, 2H), 3.97
(t, J=4.8 Hz, 2H), 3.68-3.56 (m, 2H); LCMS (ESI) m/z: 455.2 [M+1] + .

実施例11
合成スキーム:
Example 11
Synthesis scheme:

Figure 2024515985000060
Figure 2024515985000060

化合物9-c(200mg、349.28μmol、1eq)をピリジン(2mL)に溶解させ、0℃で11-1(55.82mg、523.92μmol、1.5eq)を滴下し、当該温度で30分間撹拌した。反応完了後、反応溶液を2mLの水に滴下し、EA(4mL×3)で抽出し、有機相を減圧濃縮した。残留物を分取HPLC[移動相:水(0.225%のFA)-ACN]により精製して化合物11を得た。H NMR (400 MHz, DMSO-d) δ ppm 1.13 (d, J=6.78 Hz, 6 H) 2.67 (quin, J=6.78 Hz, 1 H) 5.15
(s, 2 H) 7.10 - 7.18 (m, 1 H) 7.17 - 7.39 (m, 5 H) 8.09 (s, 1 H) 8.16 (dd, J=9.29, 2.38 Hz, 1 H) 8.37 (s, 1 H) 9.33 (s,
1 H)。LCMS (ESI) m/z: 440.1 [M+1]
Compound 9-c (200 mg, 349.28 μmol, 1 eq) was dissolved in pyridine (2 mL), and 11-1 (55.82 mg, 523.92 μmol, 1.5 eq) was added dropwise at 0° C., and the mixture was stirred at the same temperature for 30 minutes. After completion of the reaction, the reaction solution was added dropwise to 2 mL of water, extracted with EA (4 mL×3), and the organic phase was concentrated under reduced pressure. The residue was purified by preparative HPLC [mobile phase: water (0.225% FA)-ACN] to obtain compound 11. 1 H NMR (400 MHz, DMSO-d 6 ) δ ppm 1.13 (d, J=6.78 Hz, 6 H) 2.67 (quin, J=6.78 Hz, 1 H) 5.15
(s, 2H) 7.10 - 7.18 (m, 1H) 7.17 - 7.39 (m, 5H) 8.09 (s, 1H) 8.16 (dd, J=9.29, 2.38 Hz, 1H) 8.37 (s, 1H) 9.33 (s,
1H). LCMS (ESI) m/z: 440.1 [M+1] <+> .

実施例12
合成スキーム:
Example 12
Synthesis scheme:

Figure 2024515985000061
Figure 2024515985000061

化合物9-c(200mg、349.28μmol、1eq)をピリジン(2mL)に溶解させ、0℃で12-1(76.81mg、523.92μmol、69.83μL、1.5eq)を滴下し、当該温度で30分間撹拌した。反応溶液を2mLの水に滴下し、EA(4mL×3)で抽出し、有機相を無水硫酸ナトリウムで乾燥させ、濾過し、濾液を減圧濃縮し、残留物を分取HPLC[移動相:水(10mMのNHHCO)-ACN]により精製して化合物12を得た。H NMR (400 MHz, DMSO-d): δ ppm 1.15 - 1.56 (m, 3 H) 1.40 (q, J=12.05 Hz, 2 H) 1.66 (br d, J=11.67 Hz,
1 H) 1.76 (br d, J=12.67 Hz, 2 H) 1.88 (br d, J=11.17 Hz, 2 H) 2.31 - 2.43 (m, 1 H) 5.14 (s, 2 H) 7.06 - 7.43 (m, 6 H) 8.09 (t, J=2.07 Hz, 1 H) 8.15 (dd, J=9.22, 2.45 Hz, 1 H) 8.36 (s, 1 H) 9.15 (br s, 1 H)。LCMS (ESI) m/z: 480.0 [M+1]
Compound 9-c (200 mg, 349.28 μmol, 1 eq) was dissolved in pyridine (2 mL), and 12-1 (76.81 mg, 523.92 μmol, 69.83 μL, 1.5 eq) was added dropwise at 0° C., followed by stirring at the same temperature for 30 minutes. The reaction solution was added dropwise to 2 mL of water, extracted with EA (4 mL×3), the organic phase was dried over anhydrous sodium sulfate, filtered, the filtrate was concentrated under reduced pressure, and the residue was purified by preparative HPLC [mobile phase: water (10 mM NH 4 HCO 3 )-ACN] to obtain compound 12. 1H NMR (400 MHz, DMSO- d6 ): δ ppm 1.15 - 1.56 (m, 3H) 1.40 (q, J = 12.05 Hz, 2H) 1.66 (br d, J = 11.67 Hz,
1H) 1.76 (br d, J = 12.67 Hz, 2H) 1.88 (br d, J = 11.17 Hz, 2H) 2.31 - 2.43 (m, 1H) 5.14 (s, 2H) 7.06 - 7.43 (m, 6H) 8.09 (t, J = 2.07 Hz, 1H) 8.15 (dd, J = 9.22, 2.45 Hz, 1H) 8.36 (s, 1H) 9.15 (br s, 1H). LCMS (ESI) m/z: 480.0 [M+1] <+> .

実施例13
合成スキーム:
Example 13
Synthesis scheme:

Figure 2024515985000062
Figure 2024515985000062

化合物9-c(0.036g、94.06μmol、1eq)をDMF(1mL)に溶解させ、DIEA(48.63mg、376.25μmol、65.54μL、4eq)及び13-1(24.00mg、103.47μmol、12.97μL、1.1eq)
を加え、得られた混合物を130℃で2時間撹拌した。反応溶液を分取HPLC[移動相:水(0.05%のアンモニア水)-ACN]により精製して化合物13を得た。H NMR (400MHz, DMSO-d): δ ppm 8.19 - 8.06
(m, 2H), 7.99 (s, 1H), 7.39 - 7.32 (m, 1H), 7.31 - 7.19 (m, 2H), 7.18 - 7.12 (m, 1H), 5.15 (s, 2H), 3.83 - 3.71 (m, 4H), 2.95 - 2.80 (m, 4H);LCMS (ESI) m/z: 440.2 [M+1]
Compound 9-c (0.036 g, 94.06 μmol, 1 eq) was dissolved in DMF (1 mL) and mixed with DIEA (48.63 mg, 376.25 μmol, 65.54 μL, 4 eq) and 13-1 (24.00 mg, 103.47 μmol, 12.97 μL, 1.1 eq).
was added, and the resulting mixture was stirred at 130° C. for 2 hours. The reaction solution was purified by preparative HPLC [mobile phase: water (0.05% aqueous ammonia)-ACN] to obtain compound 13. 1 H NMR (400 MHz, DMSO-d 6 ): δ ppm 8.19 - 8.06
(m, 2H), 7.99 (s, 1H), 7.39-7.32 (m, 1H), 7.31-7.19 (m, 2H), 7.18-7.12 (m, 1H), 5.15 (s, 2H), 3.83-3.71 (m, 4H), 2.95-2.80 (m, 4H); LCMS (ESI) m/z: 440.2 [M+1] + .

実施例14
合成スキーム:
Example 14
Synthesis scheme:

Figure 2024515985000063
Figure 2024515985000063

25℃で、14-1(0.159g、1.03mmol、1eq)をDCM(1mL)に溶解させ、塩化オキサリル(117.88mg、928.70μmol、81.29μL、0.9eq)及びDMF(7.54mg、103.19μmol、7.94μL、0.1eq)を加え、ガスが放出されなくなるまで撹拌し、当該反応溶液を化合物9-c(119.09mg、206.38μmol、0.2eq)のDCM(1mL)及びピリジン(1mL)の溶液に滴下し、25℃で2時間撹拌した。反応溶液に2mLの水を加え、DCM(4mL×3)で抽出し、有機相を無水硫酸ナトリウムで乾燥させ、濾過し、濾液を濃縮した。残留物を分取HPLC[移動相:水(0.04%のNHO)-ACN]により精製して化合物14を得た。H NMR (400 MHz, DMSO-d) δ ppm 1.31 - 1.38 (m, 2 H) 1.68 (br s, 2 H) 5.15 (s, 2 H) 7.11 - 7.18 (m, 2 H)7.17 - 7.40 (m, 4 H) 8.05 - 8.12 (m, 2 H) 8.22 (dd, J=9.35, 2.57 Hz, 1 H) 9.10 (br s, 1 H);LCMS (ESI) m/z: 506.0 [M+1] At 25° C., 14-1 (0.159 g, 1.03 mmol, 1 eq) was dissolved in DCM (1 mL), oxalyl chloride (117.88 mg, 928.70 μmol, 81.29 μL, 0.9 eq) and DMF (7.54 mg, 103.19 μmol, 7.94 μL, 0.1 eq) were added, and the mixture was stirred until gas was no longer released. The reaction solution was added dropwise to a solution of compound 9-c (119.09 mg, 206.38 μmol, 0.2 eq) in DCM (1 mL) and pyridine (1 mL), and the mixture was stirred for 2 hours at 25° C. 2 mL of water was added to the reaction solution, which was then extracted with DCM (4 mL×3), the organic phase was dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated. The residue was purified by preparative HPLC [mobile phase: water (0.04% NH 3 H 2 O)-ACN] to give compound 14. 1H NMR (400 MHz, DMSO- d6 ) δ ppm 1.31 - 1.38 (m, 2H) 1.68 (br s, 2H) 5.15 (s, 2H) 7.11 - 7.18 (m, 2H) 7.17 - 7.40 (m, 4H) 8.05 - 8.12 (m, 2H) 8.22 (dd, J=9.35, 2.57 Hz, 1H) 9.10 (br s, 1H); LCMS (ESI) m/z: 506.0 [M+1] + .

実施例15
合成スキーム:
Example 15
Synthesis scheme:

Figure 2024515985000064
Figure 2024515985000064

ステップA:ピリジニウムトリブロミド(pyridinium tribromide)(12.50g、7.81mmol、4eq)を化合物15-1(1.50g、9.77mmol、1eq)のtert-ブタノール(54mL)溶液に加え、25℃で6時間撹拌した。反応溶液を濾過し、EA(20mL)でケーキを洗浄し、濾液に水(30mL)を加え、酢酸エチル(50mL)で抽出した。有機相を収集し、飽和食塩水(50mL×2)で洗浄し、無水硫酸ナトリウムで乾燥させ、濾過し、濃縮し、残留物をカラムクロマトグラフィー(SiO、PE:EA=5:1~3:1)により精製・分離して化合物15-aを得た。 Step A: Pyridinium tribromide (12.50 g, 7.81 mmol, 4 eq) was added to a solution of compound 15-1 (1.50 g, 9.77 mmol, 1 eq) in tert-butanol (54 mL), and the mixture was stirred at 25° C. for 6 hours. The reaction solution was filtered, the cake was washed with EA (20 mL), water (30 mL) was added to the filtrate, and the mixture was extracted with ethyl acetate (50 mL). The organic phase was collected, washed with saturated saline (50 mL×2), dried over anhydrous sodium sulfate, filtered, concentrated, and the residue was purified and separated by column chromatography (SiO 2 , PE:EA=5:1-3:1) to obtain compound 15-a.

ステップB:化合物15-a(1.5g、4.58mmol、1eq)及び塩化アンモニウム(1.23g、22.91mmol、5eq)をテトラヒドロフラン(16mL)及び水(8mL)に溶解させ、次に、上記混合溶液に亜鉛粉末(1.50g、22.91mmol、5eq)を加え、当該反応系を25℃で1時間撹拌した。反応溶液を濾過し、濾液を酢酸エチル(20mL×2)で抽出し、有機相を収集し、飽和食塩水(20mL×2)で洗浄し、無水硫酸ナトリウムで乾燥させ、濾過して濃縮し、残留物をカラムクロマトグラフィー(SiO、PE:EA=5:1~1:1)により分離・精製して化合物15-bを得た。 Step B: Compound 15-a (1.5 g, 4.58 mmol, 1 eq) and ammonium chloride (1.23 g, 22.91 mmol, 5 eq) were dissolved in tetrahydrofuran (16 mL) and water (8 mL), then zinc powder (1.50 g, 22.91 mmol, 5 eq) was added to the above mixture, and the reaction system was stirred at 25° C. for 1 hour. The reaction solution was filtered, and the filtrate was extracted with ethyl acetate (20 mL×2), and the organic phase was collected, washed with saturated saline (20 mL×2), dried over anhydrous sodium sulfate, filtered and concentrated, and the residue was separated and purified by column chromatography (SiO 2 , PE:EA=5:1-1:1) to obtain compound 15-b.

ステップC:化合物15-b(150mg、0.885mmol、1eq)を無水DMF(15mL)に溶解させ、窒素ガスで置換し、0℃でNaH(35.38mg、0.885mmol、60%の純度、1eq)を当該反応溶液に加え、25℃で30分間撹拌した。次に、2-(トリメチルシリル)エトキシメチルクロリド(147.5mg、0.885mmol、156.6μL、1eq)を一滴ずつ滴下し、25℃で1時間撹拌した。0℃に冷却させ、窒素ガスの保護下でNaH(70.76mg、1.77mmol、60%の純度、2eq)を上記反応系に加え、30分間撹拌した後、ヨードメタン(263.67mg、1.86mmol、115.65μL、2.1eq)を一滴ずつ加え、反応系を25℃で1時間撹拌した。反応溶液をHO(45mL)に注ぎ、酢酸エチル(40mL×2)で抽出した。合わせた有機相を飽和食塩水(40mL×2)で洗浄し、無水硫酸ナトリウムで乾燥させ、濾過し、濾液を減圧濃縮し、残留物をカラムクロマトグラフィー(PE:EA=5:1)により分離・精製して化合物15-cを得た。 Step C: Compound 15-b (150 mg, 0.885 mmol, 1 eq) was dissolved in anhydrous DMF (15 mL), and the mixture was replaced with nitrogen gas. NaH (35.38 mg, 0.885 mmol, 60% purity, 1 eq) was added to the reaction solution at 0° C., and the mixture was stirred at 25° C. for 30 minutes. Then, 2-(trimethylsilyl)ethoxymethyl chloride (147.5 mg, 0.885 mmol, 156.6 μL, 1 eq) was added dropwise, and the mixture was stirred at 25° C. for 1 hour. The mixture was cooled to 0° C., and NaH (70.76 mg, 1.77 mmol, 60% purity, 2 eq) was added to the reaction system under the protection of nitrogen gas, and the mixture was stirred for 30 minutes. After that, iodomethane (263.67 mg, 1.86 mmol, 115.65 μL, 2.1 eq) was added dropwise, and the reaction system was stirred at 25° C. for 1 hour. The reaction solution was poured into H 2 O (45 mL) and extracted with ethyl acetate (40 mL×2). The combined organic phase was washed with saturated saline (40 mL×2), dried over anhydrous sodium sulfate, filtered, the filtrate was concentrated under reduced pressure, and the residue was separated and purified by column chromatography (PE:EA=5:1) to obtain compound 15-c.

ステップD:化合物15-c(70mg、213.49μmol、1eq)及び化合物3-c(66.92mg、256.19μmol、1.2eq)のDMF(5.0mL)溶液に炭酸セシウム(139.12mg、426.98μmol、2.0eq)を加え、窒素ガスで置換した。窒素ガスの雰囲気下で、当該反応系を100℃で15時間撹拌した。反応系にHO(20mL)を加え、酢酸エチル(20mL×2)で抽出した。合わせた有機相を飽和食塩水(20mL×2)で洗浄し、無水硫酸ナトリウムで乾燥させ、濾過し、減圧濃縮し、残留物をカラムクロマトグラフィー(PE:EA=5:1)により分離・精製して化合物15-dを得た。H NMR (400 MHz, CDCl):
δ ppm 8.43 (s, 1H), 8.15 (dd, J=8.85, 2.57 Hz, 1 H), 8.04 (dd, J=2.45, 1.57 Hz,
1 H), 7.38-7.42 (m, 1H), 7.23-7.25 (m, 1H), 7.04-7.09 (m, 2H), 5.31 (s, 2H), 5.28 (s, 2H), 3.70 (t, J=8.4 Hz, 2H), 1.52
(s, 6H), 0.99 (t, J=8.0 Hz, 2H), 0.02 (s, 9H)。
Step D: Cesium carbonate (139.12 mg, 426.98 μmol, 2.0 eq) was added to a solution of compound 15-c (70 mg, 213.49 μmol, 1 eq) and compound 3-c (66.92 mg, 256.19 μmol, 1.2 eq) in DMF (5.0 mL), and the mixture was replaced with nitrogen gas. Under a nitrogen gas atmosphere, the reaction system was stirred at 100° C. for 15 hours. H 2 O (20 mL) was added to the reaction system, and the mixture was extracted with ethyl acetate (20 mL×2). The combined organic phase was washed with saturated saline (20 mL×2), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure, and the residue was separated and purified by column chromatography (PE:EA=5:1) to obtain compound 15-d. 1 H NMR (400 MHz, CDCl 3 ):
δ ppm 8.43 (s, 1H), 8.15 (dd, J=8.85, 2.57 Hz, 1H), 8.04 (dd, J=2.45, 1.57 Hz,
1H), 7.38-7.42 (m, 1H), 7.23-7.25 (m, 1H), 7.04-7.09 (m, 2H), 5.31 (s, 2H), 5.28 (s, 2H), 3.70 (t, J=8.4 Hz, 2H), 1.52
(s, 6H), 0.99 (t, J=8.0 Hz, 2H), 0.02 (s, 9H).

ステップE:トリフルオロ酢酸(154mg、1.35mmol、18.66eq)を化合物15-d(40mg、72.38μmol、1eq)の無水ジクロロメタン(5.0mL)溶液に加え、25℃で48時間撹拌した。反応溶液を減圧濃縮し、残留物を分取HPLC[移動相:水(0.04%のNH・HO)-ACN]により精製して化合物15を得た。H NMR (400MHz, CDCl): δ ppm 8.35
(s, 1H), 8.17 (d, J=2.8 Hz, 1H), 8.15 (d, J=2.8 Hz, 1H), 8.05-8.04 (m, 1H), 7.27 - 7.24 (m, 1H), 7.07 - 7.03 (m, 2H), 5.29 (s, 2H), 1.51 (s, 6 H);LCMS (ESI) m/z: 423.2 [M+1]
Step E: Trifluoroacetic acid (154 mg, 1.35 mmol, 18.66 eq) was added to a solution of compound 15-d (40 mg, 72.38 μmol, 1 eq) in anhydrous dichloromethane (5.0 mL) and stirred at 25° C. for 48 hours. The reaction solution was concentrated under reduced pressure, and the residue was purified by preparative HPLC [mobile phase: water (0.04% NH 3 ·H 2 O)-ACN] to obtain compound 15. 1 H NMR (400 MHz, CDCl 3 ): δ ppm 8.35
(s, 1H), 8.17 (d, J=2.8 Hz, 1H), 8.15 (d, J=2.8 Hz, 1H), 8.05-8.04 (m, 1H), 7.27-7.24 (m, 1H), 7.07-7.03 (m, 2H), 5.29 (s, 2H), 1.51 (s, 6H); LCMS (ESI) m/z: 423.2 [M+1] + .

実施例16
合成スキーム:
Example 16
Synthesis scheme:

Figure 2024515985000065
Figure 2024515985000065

25℃で、p-フルオロ安息香酸(245.45mg、1.75mmol、1eq)をDCM(1mL)に溶解させ、DMF(7.54mg、103.19μmol、7.94μL、0.1eq)及び塩化オキサリル(200.12mg、1.58mmol、138
.01μL、0.9eq)を加え、ガスが放出されなくなるまで撹拌し、当該反応溶液を化合物9-c(0.2g、350.37μmol、0.2eq)のDCM(1mL)及びピリジン(1mL)溶液に滴下し、25℃で2時間撹拌した。反応溶液に2mLの水を加え、DCM(4mL×3)で抽出し、有機相を無水硫酸ナトリウムで乾燥させ、濾過し、濾液を濃縮した。残留物を分取HPLC[移動相:水(0.04%のNH3・O)-ACN]により精製して化合物16を得た。H NMR (400 MHz, DMSO-d) δ ppm 5.16 (s, 2 H) 7.12 - 7.18 (m, 1 H) 7.19 - 7.26 (m, 1 H) 7.27 - 7.43 (m, 6 H) 8.04 - 8.18 (m, 3 H) 8.18 - 8.34 (m, 2 H) 9.82 (s, 1 H)。LCMS (ESI) m/z:
492.2 [M+1]
At 25° C., p-fluorobenzoic acid (245.45 mg, 1.75 mmol, 1 eq) was dissolved in DCM (1 mL) and mixed with DMF (7.54 mg, 103.19 μmol, 7.94 μL, 0.1 eq) and oxalyl chloride (200.12 mg, 1.58 mmol, 138
0.01 μL, 0.9 eq) was added and stirred until gas was no longer released, and the reaction solution was added dropwise to a solution of compound 9-c (0.2 g, 350.37 μmol, 0.2 eq) in DCM (1 mL) and pyridine (1 mL) and stirred at 25° C. for 2 hours. 2 mL of water was added to the reaction solution, extracted with DCM (4 mL×3), the organic phase was dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated. The residue was purified by preparative HPLC [mobile phase: water (0.04% NH 3 H 2 O)-ACN] to obtain compound 16. 1H NMR (400 MHz, DMSO- d6 ) δ ppm 5.16 (s, 2H) 7.12 - 7.18 (m, 1H) 7.19 - 7.26 (m, 1H) 7.27 - 7.43 (m, 6H) 8.04 - 8.18 (m, 3H) 8.18 - 8.34 (m, 2H) 9.82 (s, 1H). LCMS (ESI) m/z:
492.2 [M+1] + .

実施例17
合成スキーム:
Example 17
Synthesis scheme:

Figure 2024515985000066
Figure 2024515985000066

ステップA:0℃で、17-1(3g、25.84mmol、1eq)のDMF(30mL)溶液にNaH(2.07g、51.67mmol、60%の純度、2eq)を注意深くゆっくりと加え、0℃で0.5時間撹拌し、更に溶液にヨードメタン(4.40g、31.00mmol、1.93mL、1.2eq)を加え、室温にゆっくりと戻せ、0.5時間撹拌し、45℃で3時間撹拌し、室温に冷却させた後、飽和塩化アンモニウム溶液(60mL)を加えて反応をクエンチングさせ、水(10mL)を加えて希釈し、DCM(30mL×3)で抽出し、合わせた有機相を水(30mL×3)で洗浄し、無水硫酸ナトリウムで乾燥させ、濾過した後10℃以下で濃縮して化合物17-aを得た。HNMR (400MHz, DMSO-d): δ 3.65 (s, 3H), 3.30 (s, 3H), 1.31-1.27 (dd,J=4.8Hz, 8.4 Hz, 2H), 1.17-1.14 (dd, J=4 Hz, 7.2 Hz, 2H)。 Step A: At 0° C., NaH (2.07 g, 51.67 mmol, 60% purity, 2 eq) was carefully and slowly added to a solution of 17-1 (3 g, 25.84 mmol, 1 eq) in DMF (30 mL), and the mixture was stirred at 0° C. for 0.5 hours. Further, iodomethane (4.40 g, 31.00 mmol, 1.93 mL, 1.2 eq) was added to the solution, and the mixture was slowly warmed to room temperature and stirred for 0.5 hours. The mixture was then stirred at 45° C. for 3 hours. After cooling to room temperature, the reaction was quenched by adding saturated ammonium chloride solution (60 mL), diluted with water (10 mL), and extracted with DCM (30 mL×3). The combined organic phase was washed with water (30 mL×3), dried over anhydrous sodium sulfate, filtered, and concentrated at 10° C. or less to obtain compound 17-a. 1H NMR (400 MHz, DMSO- d6 ): δ 3.65 (s, 3H), 3.30 (s, 3H), 1.31-1.27 (dd, J=4.8 Hz, 8.4 Hz, 2H), 1.17-1.14 (dd, J=4 Hz, 7.2 Hz, 2H).

ステップB:17-a(0.56g、4.30mmol、1eq)のMeOH(5mL)溶液にKOH(483.19mg、8.61mmol、2eq)の水(2.5mL)溶液をゆっくりと加えた。添加完了後、混合物を20℃で15時間撹拌した。反応溶液を40℃未満で濃縮し、濃縮溶液を石油エーテル(15mL)で洗浄し、次に、水相を氷水(15mL)に注ぎ、溶液を3Mの塩酸水溶液でpHを5~6に調節し、DCM(12mL)で抽出し、有機相を無水硫酸ナトリウムで乾燥させて濾過し、濃縮して化合物17-b
を得た。H NMR(400MHz,DMSO-d): δ 12.55 (s, 1H), 3.29 (s,3H), 1.14-1.12 (dd,J=6Hz,8.8 Hz, 2H),1.07-1.04(dd,J=3.2Hz, 6.4 Hz, 2H)。
Step B: To a solution of 17-a (0.56 g, 4.30 mmol, 1 eq) in MeOH (5 mL) was slowly added a solution of KOH (483.19 mg, 8.61 mmol, 2 eq) in water (2.5 mL). After the addition was complete, the mixture was stirred at 20° C. for 15 h. The reaction solution was concentrated below 40° C., the concentrated solution was washed with petroleum ether (15 mL), and then the aqueous phase was poured into ice water (15 mL), the solution was adjusted to pH 5-6 with 3M aqueous hydrochloric acid, extracted with DCM (12 mL), and the organic phase was dried over anhydrous sodium sulfate, filtered, and concentrated to give compound 17-b.
1 H NMR (400 MHz, DMSO-d 6 ): δ 12.55 (s, 1H), 3.29 (s, 3H), 1.14-1.12 (dd, J=6 Hz, 8.8 Hz, 2H), 1.07-1.04 (dd, J=3.2 Hz, 6.4 Hz, 2H).

ステップC:0℃で、17-b(350mg、3.01mmol、1eq)のDCM(2.00mL)及びDMF(22.03mg、301.43μmol、23.19μL、0.1eq)溶液に塩化オキサリル(344.33mg、2.71mmol、237.47μL、0.9eq)を加え、窒素ガスで置換し、0℃で0.5時間撹拌し、溶液に9-c(261.94mg、602.85μmol、0.2eq)のDCM(3mL)溶液を一滴ずつ加え、更にピリジン(476.85mg、6.03mmol、486.59μL、2eq)を加え、混合溶液を20℃で5時間撹拌し、反応溶液を水(20mL)でクエンチングさせ、EtOAc(15mL×3)で抽出し、有機相を飽和食塩水(15mL×3)で洗浄し、合わせた有機相を無水硫酸ナトリウムで乾燥させ、濾過した後濃縮し、残留物をカラムクロマトグラフィー(PE:EtOAc=10:1~0.1:1)により精製して得られた粗生成物を更に分取HPLC[移動相:水(0.05%のアンモニア水)-ACN]により精製して化合物17を得た。H NMR (400MHz, CDOD): δ ppm 1.23-1.25(dd, J=2.8Hz, 7.2 Hz, 2H), 1.32-1.35 (dd, J=4Hz, 6.8 Hz, 2H), 2.03 (s, 1H), 3.50(s, 3H), 5.28(s, 2H), 7.09-7.14(t,J=6Hz, 2H), 7.29-7.36(dd, J=7.2Hz, 14.8Hz, 2H), 8.01(s, 1H), 8.19(s, 1H), 8.35-8.37(d,J=2.4Hz, 1H);LCMS (ESI) m/z: 468.0 [M+1] Step C: At 0° C., oxalyl chloride (344.33 mg, 2.71 mmol, 237.47 μL, 0.9 eq) was added to a solution of 17-b (350 mg, 3.01 mmol, 1 eq) in DCM (2.00 mL) and DMF (22.03 mg, 301.43 μmol, 23.19 μL, 0.1 eq), purged with nitrogen gas, and stirred at 0° C. for 0.5 hours. To the solution was added a solution of 9-c (261.94 mg, 602.85 μmol, 0.2 eq) in DCM (3 mL) dropwise, and further pyridine (476.85 mg, 6.03 mmol) , 486.59 μL, 2 eq) was added, and the mixture was stirred at 20° C. for 5 hours. The reaction solution was quenched with water (20 mL), extracted with EtOAc (15 mL×3), the organic phase was washed with saturated saline (15 mL×3), the combined organic phase was dried over anhydrous sodium sulfate, filtered, and then concentrated. The residue was purified by column chromatography (PE: EtOAc = 10: 1 to 0.1: 1), and the obtained crude product was further purified by preparative HPLC [mobile phase: water (0.05% aqueous ammonia) -ACN] to obtain compound 17. 1H NMR (400MHz, CD3OD ): δ ppm 1.23-1.25 (dd, J=2.8Hz, 7.2Hz, 2H), 1.32-1.35 (dd, J=4Hz, 6.8Hz, 2H), 2.03 (s, 1H), 3.50 (s, 3H), 5.28 (s, 2H), 7.09-7.14 (t, J=6Hz, 2H), 7.29-7.36 (dd, J=7.2Hz, 14.8Hz, 2H), 8.01 (s, 1H), 8.19 (s, 1H), 8.35-8.37 (d, J=2.4Hz, 1H); LCMS (ESI) m/z: 468.0 [M+1] <+> .

実施例18
合成スキーム:
Example 18
Synthesis scheme:

Figure 2024515985000067
Figure 2024515985000067

3-e(100mg、260.18μmol、1eq)を溶解させたピリジン(4mL)溶液にEDCI(399.02mg、2.08mmol、8eq)及び14-1(80.18mg、520.37μmol、2eq)を加え、反応混合物を30℃で2時間撹拌した。反応溶液を水(50mL)で希釈した後、酢酸エチル(50mL×2)で抽出し、有機相を無水硫酸ナトリウムで乾燥させた後減圧濃縮し、残留物を分取HPLC[移動相:水(0.225%のFA)-ACN]により精製して化合物18を得た。H NMR
(400MHz, DMSO-d): δ ppm 8.60 (br s, 1H
), 8.22 (dd, J=2.3, 9.4 Hz, 1H), 8.08 (s, 1H), 7.39 - 7.31 (m, 1H), 7.31 - 7.19 (m, 2H), 7.18 - 7.12 (m, 1H), 6.26 (br s, 4H), 5.14 (s, 2H), 1.74 (br s, 2H), 1.32 - 1.15 (m, 2H);LCMS (ESI) m/z: 521.2 [M+1]
EDCI (399.02 mg, 2.08 mmol, 8 eq) and 14-1 (80.18 mg, 520.37 μmol, 2 eq) were added to a pyridine (4 mL) solution of 3-e (100 mg, 260.18 μmol, 1 eq), and the reaction mixture was stirred at 30° C. for 2 hours. The reaction solution was diluted with water (50 mL) and then extracted with ethyl acetate (50 mL×2). The organic phase was dried over anhydrous sodium sulfate and then concentrated under reduced pressure. The residue was purified by preparative HPLC [mobile phase: water (0.225% FA)-ACN] to obtain compound 18. 1 H NMR
(400MHz, DMSO- d6 ): δ ppm 8.60 (br s, 1H
), 8.22 (dd, J=2.3, 9.4 Hz, 1H), 8.08 (s, 1H), 7.39-7.31 (m, 1H), 7.31-7.19 (m, 2H), 7.18-7.12 (m, 1H), 6.26 (br s, 4H), 5.14 (s, 2H), 1.74 (br s, 2H), 1.32-1.15 (m, 2H); LCMS (ESI) m/z: 521.2 [M+1] + .

実施例19
合成スキーム:
Example 19
Synthesis scheme:

Figure 2024515985000068
Figure 2024515985000068

1-e(100mg、272.96μmol、1eq)を溶解させたピリジン(3mL)溶液にEDCI(418.62mg、2.18mmol、8eq)及び14-1(84.12mg、545.92μmol、2eq)を加え、反応混合物を30℃で2時間撹拌した。反応溶液を水(50mL)で希釈した後、酢酸エチル(50mL×3)で抽出し、有機相を無水硫酸ナトリウムで乾燥させた後減圧濃縮し、残留物を分取HPLC[移動相:水(0.225%のFA)-ACN]により精製して化合物19を得た。H NMR
(400MHz, DMSO-d): δ ppm 8.58 (br s, 1H), 8.14 - 8.01 (m, 2H), 7.38 - 7.32 (m, 1H), 7.29 - 7.20 (m, 2H), 7.18 - 7.11 (m, 2H), 6.22 (br s, 4H), 5.16 (s, 2H), 1.77 - 1.69 (m, 2H), 1.31 - 1.20 (m, 2H);LCMS (ESI) m/z: 503.2 [M+1]
EDCI (418.62 mg, 2.18 mmol, 8 eq) and 14-1 (84.12 mg, 545.92 μmol, 2 eq) were added to a pyridine (3 mL) solution of 1-e (100 mg, 272.96 μmol, 1 eq), and the reaction mixture was stirred at 30° C. for 2 hours. The reaction solution was diluted with water (50 mL) and then extracted with ethyl acetate (50 mL×3). The organic phase was dried over anhydrous sodium sulfate and then concentrated under reduced pressure. The residue was purified by preparative HPLC [mobile phase: water (0.225% FA)-ACN] to obtain compound 19. 1 H NMR
(400 MHz, DMSO- d6 ): δ ppm 8.58 (br s, 1H), 8.14 - 8.01 (m, 2H), 7.38 - 7.32 (m, 1H), 7.29 - 7.20 (m, 2H), 7.18 - 7.11 (m, 2H), 6.22 (br s, 4H), 5.16 (s, 2H), 1.77 - 1.69 (m, 2H), 1.31 - 1.20 (m, 2H); LCMS (ESI) m/z: 503.2 [M+1] + .

実施例20
合成スキーム:
Example 20
Synthesis scheme:

Figure 2024515985000069
Figure 2024515985000069

0℃で、化合物9(169mg、395.45μmol、1eq)をTHF(2mL)に溶解させ、次に、得られた溶液にNaH(20.56mg、514.08μmol、60%の純度、1.3eq)を加え、90分間撹拌し、次に、2,2,2-トリフルオロエチルトリフルオロメタンスルホネート(110.14mg、474.54μmol、1.2eq)を加え、20℃に昇温させ、36時間撹拌した。反応溶液に2mLの水を加え、1Mの塩酸水溶液でそのpHを6~7に調節し、次に、EA(4mL×3)で抽出し、有機相を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させ、濾過し、濃縮し、残留物を分取HPLC[移動相:水(0.04%のNHO+10mMのNHHCO)-ACN]により精製して化合物20を得た。H NMR (400 MHz, DMSO-d): δ ppm 4.85 (q, J=9.03 Hz, 2 H) 5.18 (s, 2 H) 7.14 - 7.19 (m, 1 H) 7.21 - 7.27 (m, 1 H) 7.30 - 7.40 (m, 2 H) 7.99 (dd, J=9.10, 2.45 Hz, 1 H) 8.12 (t, J=2.13 Hz, 1 H) 8.52 (s, 1 H);LCMS (ESI) m/z: 478.2 [M+1] Compound 9 (169 mg, 395.45 μmol, 1 eq) was dissolved in THF (2 mL) at 0° C., then NaH (20.56 mg, 514.08 μmol, 60% purity, 1.3 eq) was added to the resulting solution and stirred for 90 minutes, then 2,2,2-trifluoroethyl trifluoromethanesulfonate (110.14 mg, 474.54 μmol, 1.2 eq) was added, the temperature was raised to 20° C., and the mixture was stirred for 36 hours. 2 mL of water was added to the reaction solution, and its pH was adjusted to 6-7 with 1 M aqueous hydrochloric acid, then extracted with EA (4 mL x 3), the organic phase was washed with saturated brine, dried over anhydrous sodium sulfate, filtered, concentrated, and the residue was purified by preparative HPLC [mobile phase: water (0.04% NH 3 H 2 O + 10 mM NH 4 HCO 3 )-ACN] to obtain compound 20. 1H NMR (400 MHz, DMSO- d6 ): δ ppm 4.85 (q, J=9.03 Hz, 2H), 5.18 (s, 2H), 7.14-7.19 (m, 1H), 7.21-7.27 (m, 1H), 7.30-7.40 (m, 2H), 7.99 (dd, J=9.10, 2.45 Hz, 1H), 8.12 (t, J=2.13 Hz, 1H), 8.52 (s, 1H); LCMS (ESI) m/z: 478.2 [M+1] + .

実施例21
合成スキーム:
Example 21
Synthesis scheme:

Figure 2024515985000070
Figure 2024515985000070

25℃で、21-1(203mg、2.03mmol、1eq)をDCM(1mL)に溶解させ、塩化オキサリル(231.63mg、1.82mmol、159.74μL、
0.9eq)及びDMF(14.82mg、202.77μmol、15.60μL、0.1eq)を加え、ガスが放出されなくなるまで撹拌し、当該反応溶液を化合物9-c(176.20mg、405.53μmol、0.2eq)のDCM(1mL)及びピリジン(1mL)の溶液に滴下し、25℃で2時間撹拌した。反応溶液に2mLの水を加え、DCM(4mL×3)で抽出し、有機相を無水硫酸ナトリウムで乾燥させ、濾過し、濾液を濃縮した。残留物を分取HPLC(水(0.04%のNH・HO+10mMのNHHCO)-ACN];アセトニトリル:35%~62%、10分)により精製して化合物21を得た。H NMR (400 MHz, DMSO-d): δ ppm
0.53 - 0.75 (m, 2 H) 1.14 (br d, J=2.38
Hz, 2 H) 1.44 (s, 3 H) 5.16 (s, 2 H) 7.12 - 7.28 (m, 4 H) 7.27 - 7.40 (m, 2 H) 8.07 (s, 1 H) 8.11 (s, 1 H) 8.21 (dd, J=9.29, 2.38 Hz, 1 H) 8.85 (br s, 1 H);LCMS (ESI) m/z: 452.2 [M+1]
At 25° C., 21-1 (203 mg, 2.03 mmol, 1 eq) was dissolved in DCM (1 mL) and oxalyl chloride (231.63 mg, 1.82 mmol, 159.74 μL,
0.9 eq) and DMF (14.82 mg, 202.77 μmol, 15.60 μL, 0.1 eq) were added and stirred until gas was no longer released, and the reaction solution was added dropwise to a solution of compound 9-c (176.20 mg, 405.53 μmol, 0.2 eq) in DCM (1 mL) and pyridine (1 mL) and stirred at 25° C. for 2 hours. 2 mL of water was added to the reaction solution, extracted with DCM (4 mL×3), the organic phase was dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated. The residue was purified by preparative HPLC (water (0.04% NH 3 ·H 2 O + 10 mM NH 4 HCO 3 )-ACN]; acetonitrile: 35% to 62%, 10 min) to give compound 21. 1H NMR (400 MHz, DMSO- d6 ): δ ppm
0.53 - 0.75 (m, 2H) 1.14 (br d, J = 2.38
Hz, 2H) 1.44 (s, 3H) 5.16 (s, 2H) 7.12-7.28 (m, 4H) 7.27-7.40 (m, 2H) 8.07 (s, 1H) 8.11 (s, 1H) 8.21 (dd, J=9.29, 2.38 Hz, 1H) 8.85 (br s, 1H); LCMS (ESI) m/z: 452.2 [M+1] + .

実施例22
合成スキーム:
Example 22
Synthesis scheme:

Figure 2024515985000071
Figure 2024515985000071

化合物3-e(0.1g、260.18μmol、1eq)をピリジン(2mL)に溶解させ、0℃でクロロギ酸エチル(42.35mg、390.28μmol、37.15μL、1.5eq)を滴下し、当該温度下で30分間撹拌した。反応完了後、反応溶液を4mLの水に滴下し、酢酸エチル(5mL×3)で抽出し、有機相を飽和食塩水(5mL×2)で洗浄し、無水硫酸ナトリウムで乾燥させ、濾過し、濾液を減圧濃縮し、残留物を分取HPLC[移動相:水(0.225%のFA)-ACN]により精製して化合物22を得た。H NMR (400 MHz, DMSO-d): δ ppm 1.02 - 1.33 (m, 3 H) 4.06 (br d, J=6.78 Hz,
2 H) 5.13 (s, 2 H) 6.33 (br s, 4 H) 7.10 - 7.17 (m, 1 H) 7.18 - 7.29 (m, 2 H) 7.30 - 7.39 (m, 1 H) 7.92 (br s, 1 H) 8.06 (s, 1 H) 8.18 (br d, J=9.03 Hz, 1 H);LCMS (ESI) m/z: 457.0 [M+1]
Compound 3-e (0.1 g, 260.18 μmol, 1 eq) was dissolved in pyridine (2 mL), and ethyl chloroformate (42.35 mg, 390.28 μmol, 37.15 μL, 1.5 eq) was added dropwise at 0° C., followed by stirring at the same temperature for 30 minutes. After completion of the reaction, the reaction solution was added dropwise to 4 mL of water, extracted with ethyl acetate (5 mL×3), the organic phase was washed with saturated saline (5 mL×2), dried over anhydrous sodium sulfate, filtered, the filtrate was concentrated under reduced pressure, and the residue was purified by preparative HPLC [mobile phase: water (0.225% FA)-ACN] to obtain compound 22. 1H NMR (400 MHz, DMSO- d6 ): δ ppm 1.02-1.33 (m, 3H) 4.06 (br d, J=6.78 Hz,
2H) 5.13 (s, 2H) 6.33 (br s, 4H) 7.10-7.17 (m, 1H) 7.18-7.29 (m, 2H) 7.30-7.39 (m, 1H) 7.92 (br s, 1H) 8.06 (s, 1H) 8.18 (br d, J=9.03 Hz, 1H); LCMS (ESI) m/z: 457.0 [M+1] + .

実施例23
合成スキーム:
Example 23
Synthesis scheme:

Figure 2024515985000072
Figure 2024515985000072

化合物3-e(100mg、260.18μmol、1eq)及び23-1(57.81mg、520.37μmol、2eq)をピリジン(4mL)に溶解させ、その中にEDCI(399.02mg、2.08mmol、8eq)を加え、当該反応溶液を30℃で2時間反応させた。反応溶液をHO(4mL)に滴下し、次に、EA(5mL×3)で抽出し、有機相を飽和食塩水(5mL×2)で洗浄し、無水硫酸ナトリウムで乾燥させ、濾過し、濾液を減圧濃縮した。残留物を分取HPLC[移動相:水(0.225%のFA)-ACN]により精製して化合物23を得た。H NMR (400 MHz, DMSO-d): δ ppm 1.50 - 1.64 (m, 2 H) 1.64 - 1.87 (m, 2 H) 5.14 (s, 2 H) 6.47 (br
s, 4 H) 7.10 - 7.19 (m, 1 H) 7.18 - 7.30 (m, 2 H) 7.35 (q, J=6.48 Hz, 1 H) 8.07
(s, 1 H) 8.22 (dd, J=9.35, 2.20 Hz, 1 H) 8.60 (br s, 1 H);LCMS (ESI) m/z: 478.0
[M+1]
Compound 3-e (100 mg, 260.18 μmol, 1 eq) and 23-1 (57.81 mg, 520.37 μmol, 2 eq) were dissolved in pyridine (4 mL), EDCI (399.02 mg, 2.08 mmol, 8 eq) was added thereto, and the reaction solution was reacted at 30° C. for 2 hours. The reaction solution was added dropwise to H 2 O (4 mL), and then extracted with EA (5 mL×3), the organic phase was washed with saturated saline (5 mL×2), dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by preparative HPLC [mobile phase: water (0.225% FA)-ACN] to obtain compound 23. 1H NMR (400 MHz, DMSO- d6 ): δ ppm 1.50 - 1.64 (m, 2H) 1.64 - 1.87 (m, 2H) 5.14 (s, 2H) 6.47 (br
s, 4H) 7.10 - 7.19 (m, 1H) 7.18 - 7.30 (m, 2H) 7.35 (q, J=6.48 Hz, 1H) 8.07
(s, 1H) 8.22 (dd, J=9.35, 2.20 Hz, 1H) 8.60 (br s, 1H); LCMS (ESI) m/z: 478.0
[M+1] + .

実施例24
合成スキーム:
Example 24
Synthesis scheme:

Figure 2024515985000073
Figure 2024515985000073

3-e(100mg、260.18μmol、1eq)を溶解させたピリジン(5mL)溶液にEDCI(399.02mg、2.08mmol、8eq)及び17-b(90.63mg、780.55μmol、3eq)を加えた。反応溶液を20℃で1時間撹拌した。反応溶液を水(50mL)で希釈し、EtOAc(50mL×2)で抽出した。有
機相を無水NaSOで乾燥させ、濾過し、濃縮して粗生成物化合物を得、分取HPLC[移動相:水(10mMの炭酸水素アンモニウム)-アセトニトリル]により分離した後、更に薄層クロマトグラフィー(SiO2、DCM:MeOH=10:1)により精製して化合物24を得た。H NMR (400MHz, MeOH-d) δ=8.28 - 8.22 (m, 1H), 7.98 - 7.93 (m, 1H), 7.30 (t, J=7.5 Hz, 1H), 7.27 - 7.20 (m, 1H), 7.07 - 7.00 (m, 2H), 5.24 (s, 2H), 3.46 (s, 3H), 1.41 - 1.31 (m, 2H), 1.26 - 1.16 (m, 2H)。LCMS (ESI) m/z: 483.4 [M+1]
EDCI (399.02 mg, 2.08 mmol, 8 eq) and 17-b (90.63 mg, 780.55 μmol, 3 eq) were added to a solution of 3-e (100 mg, 260.18 μmol, 1 eq) in pyridine (5 mL). The reaction solution was stirred at 20° C. for 1 h. The reaction solution was diluted with water (50 mL) and extracted with EtOAc (50 mL×2). The organic phase was dried over anhydrous Na 2 SO 4 , filtered, and concentrated to give the crude product compound, which was separated by preparative HPLC [mobile phase: water (10 mM ammonium bicarbonate)-acetonitrile] and then further purified by thin layer chromatography (SiO 2 , DCM:MeOH=10:1) to give compound 24. 1H NMR (400MHz, MeOH- d4 ) δ=8.28-8.22 (m, 1H), 7.98-7.93 (m, 1H), 7.30 (t, J=7.5 Hz, 1H), 7.27-7.20 (m, 1H), 7.07-7.00 (m, 2H), 5.24 (s, 2H), 3.46 (s, 3H), 1.41-1.31 (m, 2H), 1.26-1.16 (m, 2H). LCMS (ESI) m/z: 483.4 [M+1] <+> .

実施例25
合成スキーム:
Example 25
Synthesis scheme:

Figure 2024515985000074
Figure 2024515985000074

3-e(150mg、390.28μmol、1eq)を溶解させたピリジン(5mL)溶液にEDCI(598.53mg、3.12mmol、8eq)及び1-メチルシクロプロパン-1-カルボン酸(117.22mg、1.17mmol、3eq)を加え、反応混合物を20℃で1時間撹拌した。反応溶液を水(50mL)で希釈した後、酢酸エチル(50mL×2)で抽出し、有機相を無水硫酸ナトリウムで乾燥させた後減圧濃縮し、残留物を分取HPLC[移動相:水(0.225%のFA)-ACN]により精製して化合物25を得た。H NMR (400MHz, DMSO-d) δ=8.29
(s, 1H), 8.20 (dd, J=2.4, 9.3 Hz, 1H), 8.08 (d, J=1.7 Hz, 1H), 7.35 (q, J=7.3 Hz, 1H), 7.31 - 7.19 (m, 2H), 7.18 - 7.12
(m, 1H), 6.21 (br s, 4H), 5.14 (s, 2H),
1.43 (s, 3H), 1.11 (br d, J=2.4 Hz, 2H), 0.63 - 0.46 (m, 2H)。LCMS (ESI) m/z: 467.4 [M+1]
EDCI (598.53 mg, 3.12 mmol, 8 eq) and 1-methylcyclopropane-1-carboxylic acid (117.22 mg, 1.17 mmol, 3 eq) were added to a pyridine (5 mL) solution of 3-e (150 mg, 390.28 μmol, 1 eq), and the reaction mixture was stirred at 20° C. for 1 hour. The reaction solution was diluted with water (50 mL) and then extracted with ethyl acetate (50 mL×2). The organic phase was dried over anhydrous sodium sulfate and then concentrated under reduced pressure. The residue was purified by preparative HPLC [mobile phase: water (0.225% FA)-ACN] to obtain compound 25. 1 H NMR (400 MHz, DMSO-d 6 ) δ=8.29
(s, 1H), 8.20 (dd, J=2.4, 9.3 Hz, 1H), 8.08 (d, J=1.7 Hz, 1H), 7.35 (q, J=7.3 Hz, 1H), 7.31 - 7.19 (m, 2H), 7.18 - 7.12
(m, 1H), 6.21 (br s, 4H), 5.14 (s, 2H),
1.43 (s, 3H), 1.11 (br d, J=2.4 Hz, 2H), 0.63-0.46 (m, 2H). LCMS (ESI) m/z: 467.4 [M+1] <+> .

実施例26
合成スキーム:
Example 26
Synthesis scheme:

Figure 2024515985000075
Figure 2024515985000075

ステップA:マロノニトリル(14.93g、225.98mmol、14.22mL、1eq)をTHF(100mL)に溶解させ、次に、カリウムtert-ブトキシド(27.89g、248.58mmol、1.1eq)を加え、反応溶液を50℃で0.5時間撹拌し、次に、化合物26-1(45g、248.58mmol、32.14mL、1.1eq)を加え、反応溶液を50℃で11.5時間撹拌を続け、反応完了後100mLの水を加えてクエンチングさせ、次に、EtOAc(100mL×2)で抽出し、有機相を無水硫酸ナトリウムで乾燥させ、濾過した後濾液を濃縮し、残留物をカラムクロマトグラフィー(PE/EtOAc=10/1~5/1)により精製して化合物26-aを得た。 Step A: Malononitrile (14.93 g, 225.98 mmol, 14.22 mL, 1 eq) was dissolved in THF (100 mL), then potassium tert-butoxide (27.89 g, 248.58 mmol, 1.1 eq) was added, and the reaction solution was stirred at 50°C for 0.5 hours, then compound 26-1 (45 g, 248.58 mmol, 32.14 mL, 1.1 eq) was added, and the reaction solution was continued to be stirred at 50°C for 11.5 hours, and after the reaction was completed, 100 mL of water was added to quench, and then extracted with EtOAc (100 mL x 2), the organic phase was dried over anhydrous sodium sulfate, and the filtrate was concentrated after filtration, and the residue was purified by column chromatography (PE/EtOAc = 10/1 to 5/1) to obtain compound 26-a.

ステップB:化合物26-a(20g、120.35mmol、1eq)、S-メチルチオ尿素(27.04g、144.42mmol、1.2eq、HSO)及びトリエチルアミン(24.36g、240.71mmol、33.50mL、2eq)をDMF(60mL)に溶解させ、窒素ガスで3回置換した後、100℃で12時間撹拌し、反応完了後、反応溶液を濾過し、濾液を濃縮し、残留物をカラムクロマトグラフィー(PE/EtOAc=10/1~1/1)により精製して化合物26-bを得た。 Step B: Compound 26-a (20 g, 120.35 mmol, 1 eq), S-methylthiourea (27.04 g, 144.42 mmol, 1.2 eq, HSO 4 ) and triethylamine (24.36 g, 240.71 mmol, 33.50 mL, 2 eq) were dissolved in DMF (60 mL), purged with nitrogen gas three times, and then stirred at 100° C. for 12 hours. After the reaction was completed, the reaction solution was filtered, the filtrate was concentrated, and the residue was purified by column chromatography (PE/EtOAc = 10/1 to 1/1) to obtain compound 26-b.

ステップC:化合物26-b(3.8g、16.94mmol、1eq)をDCM(50mL)に溶解させ、次に、m-クロロペルオキシ安息香酸(6.88g、33.89mmol、85%の純度、2eq)を加えた。反応溶液を20℃で12時間撹拌した。反応完了後、濾過し、ケーキを収集し、ジクロロメタン(100mL)で撹拌し、濾過し、乾燥させて化合物26-cを得た。LCMS (ESI) m/z: 257.2 [M+1] Step C: Compound 26-b (3.8 g, 16.94 mmol, 1 eq) was dissolved in DCM (50 mL) and then m-chloroperoxybenzoic acid (6.88 g, 33.89 mmol, 85% purity, 2 eq) was added. The reaction solution was stirred at 20° C. for 12 h. After completion of the reaction, it was filtered, the cake was collected, stirred with dichloromethane (100 mL), filtered and dried to give compound 26-c. LCMS (ESI) m/z: 257.2 [M+1] + .

ステップD:20℃で、3-c(5.74g、21.98mmol、1.1eq)のDMF(30mL)溶液に炭酸カリウム(8.28g、59.93mmol、3eq)及び26-c(5.12g、19.98mmol、1.0eq)を加え、反応溶液を120℃に昇温させて2時間温度させながら反応させた。反応完了後、反応溶液を室温に冷却させ、濾過し、メタノール(20mL)及びDMF(20mL)でケーキを洗浄し、濾液を合わせ、減圧濃縮してメタノールを除去し、残留液を分取HPLC[移動相:水(0.1%のFA)-ACN]により精製して化合物26を得た。H NMR (400MHz,
DMSO-d) δ=11.15 (s, 1H), 8.27 (dd, J=2.5, 9.4 Hz, 1H), 8.10 (t, J=2.0 Hz, 1H),
7.39 - 7.32 (m, 1H), 7.29 (t, J=7.6 Hz,
1H), 7.25 - 7.20 (m, 1H), 7.18 - 7.12 (m, 1H), 7.03 (br s, 2H), 5.15 (s, 2H), 1.35 (s, 6H)。LCMS (ESI) m/z: 428.4 [M+1]
Step D: At 20° C., potassium carbonate (8.28 g, 59.93 mmol, 3 eq) and 26-c (5.12 g, 19.98 mmol, 1.0 eq) were added to a solution of 3-c (5.74 g, 21.98 mmol, 1.1 eq) in DMF (30 mL), and the reaction solution was heated to 120° C. and reacted for 2 hours. After the reaction was completed, the reaction solution was cooled to room temperature, filtered, and the cake was washed with methanol (20 mL) and DMF (20 mL). The filtrate was combined and concentrated under reduced pressure to remove methanol, and the remaining liquid was purified by preparative HPLC [mobile phase: water (0.1% FA)-ACN] to obtain compound 26. 1 H NMR (400 MHz,
DMSO- d6 ) δ = 11.15 (s, 1H), 8.27 (dd, J = 2.5, 9.4 Hz, 1H), 8.10 (t, J = 2.0 Hz, 1H),
7.39 - 7.32 (m, 1H), 7.29 (t, J=7.6 Hz,
1H), 7.25 - 7.20 (m, 1H), 7.18 - 7.12 (m, 1H), 7.03 (br s, 2H), 5.15 (s, 2H), 1.35 (s, 6H). LCMS (ESI) m/z: 428.4 [M+1] <+> .

実施例27
合成スキーム:
Example 27
Synthesis scheme:

Figure 2024515985000076
Figure 2024515985000076

5-f(200mg、670.45μmol、1eq)のDMF(2mL)溶液に26-c(273mg、858.58μmol、1.28eq)及び炭酸カリウム(200mg、1.45mmol、2.16eq)を加えた。窒素ガスで置換し、120℃で12時間撹拌した。反応溶液を濾過し、ケーキを2mLのDMFで洗浄し、濾液を分取HPLC[移動相:水(0.225%のFA)-ACN]により精製して化合物27を得た。
NMR (400 MHz, DMSO- d) δ ppm 1.34 (s, 6 H) 5.18 (s, 2 H) 6.94 - 7.22 (m, 4 H) 7.37 (q, J=8.23 Hz, 1 H) 8.10 (t, J=2.14
Hz, 1 H) 8.27 (dd, J=9.48, 2.63 Hz, 1 H);LCMS (ESI) m/z: 456.1 [M+1]
To a solution of 5-f (200 mg, 670.45 μmol, 1 eq) in DMF (2 mL), 26-c (273 mg, 858.58 μmol, 1.28 eq) and potassium carbonate (200 mg, 1.45 mmol, 2.16 eq) were added. The mixture was purged with nitrogen gas and stirred at 120° C. for 12 hours. The reaction solution was filtered, the cake was washed with 2 mL of DMF, and the filtrate was purified by preparative HPLC [mobile phase: water (0.225% FA)-ACN] to obtain compound 27. 1 H
NMR (400 MHz, DMSO- d6 ) δ ppm 1.34 (s, 6H) 5.18 (s, 2H) 6.94 - 7.22 (m, 4H) 7.37 (q, J = 8.23 Hz, 1H) 8.10 (t, J = 2.14
Hz, 1H) 8.27 (dd, J=9.48, 2.63 Hz, 1H); LCMS (ESI) m/z: 456.1 [M+1] <+> .

実施例28
合成スキーム:
Example 28
Synthesis scheme:

Figure 2024515985000077
Figure 2024515985000077

ステップA:28-1(3.5g、31.79mmol、1eq)のジクロロメタン(100.00mL)及びトルエン(10mL)の混合物にジフェニルホスホリルアジド(17.49g、63.57mmol、13.78mL、2eq)及び1.8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(9.68g、63.57mmol、9.58mL、2eq)を加えた。反応溶液を20℃で2時間撹拌した。反応完了後、反応溶液を減圧濃縮し、残留物をカラムクロマトグラフィー(PE:EtOAc=5:1~1:1)により精製して化合物28-aを得た。 Step A: To a mixture of 28-1 (3.5 g, 31.79 mmol, 1 eq) in dichloromethane (100.00 mL) and toluene (10 mL), diphenylphosphoryl azide (17.49 g, 63.57 mmol, 13.78 mL, 2 eq) and 1,8-diazabicyclo[5.4.0]undec-7-ene (9.68 g, 63.57 mmol, 9.58 mL, 2 eq) were added. The reaction solution was stirred at 20°C for 2 hours. After completion of the reaction, the reaction solution was concentrated under reduced pressure, and the residue was purified by column chromatography (PE: EtOAc = 5: 1 to 1: 1) to obtain compound 28-a.

ステップB:窒素ガスの保護下で、28-a(3.0g、22.20mmol、1eq)のメタノール(10mL)溶液に湿式Pd/C(1.0g、10%の純度)を加え、反応溶液を水素ガスで3回置換した後、15psiの圧力で、20℃で2時間撹拌し、反応完了後、反応溶液を濾過し、次に、濾液を濃縮して化合物28-bを得た。 Step B: Under the protection of nitrogen gas, wet Pd/C (1.0 g, 10% purity) was added to a solution of 28-a (3.0 g, 22.20 mmol, 1 eq) in methanol (10 mL), and the reaction solution was replaced with hydrogen gas three times, then stirred at 15 psi pressure and 20°C for 2 hours. After the reaction was completed, the reaction solution was filtered, and the filtrate was then concentrated to obtain compound 28-b.

ステップC:3-1(2.5g、14.16mmol、1eq)及び28-b(1.85g、16.99mmol、1.2eq)をトルエン(100mL)に溶解させ、混合物を80℃に昇温させて12時間撹拌した。冷却させた後、反応溶液を減圧濃縮し、残留物をカラムクロマトグラフィー(PE:EtOAc=1:1)により精製して化合物28-cを得た。 Step C: 3-1 (2.5 g, 14.16 mmol, 1 eq) and 28-b (1.85 g, 16.99 mmol, 1.2 eq) were dissolved in toluene (100 mL), and the mixture was heated to 80°C and stirred for 12 hours. After cooling, the reaction solution was concentrated under reduced pressure, and the residue was purified by column chromatography (PE: EtOAc = 1:1) to obtain compound 28-c.

ステップD:窒素ガスの保護下で、28-c(2.4g、9.63mmol、1eq)のメタノール(10mL)にPd/C(1.0g、9.63mmol、10%の純度)を加えた。反応溶液を水素ガス3回置換した後、15psiの圧力で、30℃で2時間撹拌し、反応完了後、反応溶液を濾過し、濾液を濃縮して化合物28-dを得た。 Step D: Under the protection of nitrogen gas, Pd/C (1.0 g, 9.63 mmol, 10% purity) was added to 28-c (2.4 g, 9.63 mmol, 1 eq) in methanol (10 mL). The reaction solution was purged with hydrogen gas three times, and then stirred at 15 psi pressure and 30°C for 2 hours. After the reaction was completed, the reaction solution was filtered and the filtrate was concentrated to obtain compound 28-d.

ステップE:28-d(2.1g、9.58mmol、1eq)のTHF(100mL)溶液にCDI(3.11g、19.16mmol、2eq)を加えた。混合物を70℃で12時間撹拌した。反応溶液を濃縮し、残留物をカラムクロマトグラフィー(PE:EtOAc=1:1~0:1)により化合物28-eを得た。 Step E: CDI (3.11 g, 19.16 mmol, 2 eq) was added to a solution of 28-d (2.1 g, 9.58 mmol, 1 eq) in THF (100 mL). The mixture was stirred at 70 °C for 12 h. The reaction solution was concentrated, and the residue was purified by column chromatography (PE: EtOAc = 1: 1 to 0: 1) to obtain compound 28-e.

ステップF:28-e(200mg、815.62μmol、1eq)のDMF(3mL)溶液に26-c(519mg、1.63mmol、2eq)及び炭酸カリウム(338mg、2.45mmol、3eq)を加えた。窒素ガスで置換し、120℃で12時間撹拌した。反応溶液を濾過し、ケーキを2mLのDMFで洗浄し、濾液を分取HPLC[
移動相:水(0.225%のFA)-ACN]により精製して化合物28を得た。H NMR (400 MHz, DMSO- d) δ ppm 1.34 (s, 6
H) 5.16 (s, 2 H) 7.01 (br s, 2 H) 8.06 - 8.17 (m, 1 H) 8.29 (dd, J=9.48, 2.63 Hz, 1 H) 8.84 (s, 2 H) 9.12 (s, 1 H);LCMS
(ESI) m/z: 422.1 [M+1]
Step F: 26-c (519 mg, 1.63 mmol, 2 eq) and potassium carbonate (338 mg, 2.45 mmol, 3 eq) were added to a solution of 28-e (200 mg, 815.62 μmol, 1 eq) in DMF (3 mL). The mixture was purged with nitrogen gas and stirred at 120° C. for 12 hours. The reaction solution was filtered, the cake was washed with 2 mL of DMF, and the filtrate was analyzed by preparative HPLC [
The residue was purified by elution with a 1H NMR (400 MHz, DMSO- d6 ) δ ppm 1.34 (s, 6
1H) 5.16 (s, 2H) 7.01 (br s, 2H) 8.06 - 8.17 (m, 1H) 8.29 (dd, J=9.48, 2.63 Hz, 1H) 8.84 (s, 2H) 9.12 (s, 1H); LCMS
(ESI) m/z: 422.1 [M+1] <+> .

実施例29
合成スキーム:
Example 29
Synthesis scheme:

Figure 2024515985000078
Figure 2024515985000078

ステップA:窒素ガスの保護下で、3-1(720mg、4.08mmol、1eq)のトルエン(20.00mL)溶液にジイソプロピルエチルアミン(2.11g、16.31mmol、2.84mL、4eq)及び3-フルオロ-2-ピリジルメチルアミン塩酸塩(893mg、4.49mmol、1.1eq)を加えた。混合物を70℃に昇温させ12時間撹拌した。冷却させた後、水(100mL)を加え、EtOAc(200mL)で抽出し、有機相を無水硫酸ナトリウムで乾燥させ、濾過した後濃縮し、残留物をカラムクロマトグラフィー(石油エーテル:酢酸エチル=20:1~5:1)により分離・精製して化合物29-aを得た。 Step A: Under the protection of nitrogen gas, diisopropylethylamine (2.11 g, 16.31 mmol, 2.84 mL, 4 eq) and 3-fluoro-2-pyridylmethylamine hydrochloride (893 mg, 4.49 mmol, 1.1 eq) were added to a solution of 3-1 (720 mg, 4.08 mmol, 1 eq) in toluene (20.00 mL). The mixture was heated to 70°C and stirred for 12 hours. After cooling, water (100 mL) was added and extracted with EtOAc (200 mL). The organic phase was dried over anhydrous sodium sulfate, filtered and concentrated, and the residue was separated and purified by column chromatography (petroleum ether: ethyl acetate = 20: 1 to 5: 1) to obtain compound 29-a.

ステップB:29-a(650mg、2.44mmol、1eq)のテトラヒドロフラン(15mL)及び水(5mL)に還元亜鉛粉末(638mg、9.77mmol、4eq)及び塩化アンモニウム(653mg、12.21mmol、5eq)を加えた。反応溶液を70℃で12時間撹拌し、反応溶液を濾過した後濃縮し、残留物をカラムクロマトグラフィー(石油エーテル:酢酸エチル=4:1~2:1)により分離・精製して化合物29-bを得た。 Step B: Reduced zinc powder (638 mg, 9.77 mmol, 4 eq) and ammonium chloride (653 mg, 12.21 mmol, 5 eq) were added to 29-a (650 mg, 2.44 mmol, 1 eq) in tetrahydrofuran (15 mL) and water (5 mL). The reaction solution was stirred at 70°C for 12 hours, filtered and concentrated, and the residue was separated and purified by column chromatography (petroleum ether: ethyl acetate = 4:1 to 2:1) to obtain compound 29-b.

ステップC:29-b(430mg、1.82mmol、1eq)のTHF(20.00mL)溶液にCDI(442mg、2.73mmol、1.5eq)を加えた。窒素ガスで3回置換し、混合物を70℃で12.5時間撹拌した。反応溶液を濃縮し、残留物を直接にカラムクロマトグラフィー(石油エーテル:酢酸エチル=4:1~1:1)により化合物29-cを得た。 Step C: CDI (442 mg, 2.73 mmol, 1.5 eq) was added to a solution of 29-b (430 mg, 1.82 mmol, 1 eq) in THF (20.00 mL). The atmosphere was purged with nitrogen gas three times, and the mixture was stirred at 70°C for 12.5 hours. The reaction solution was concentrated, and the residue was directly subjected to column chromatography (petroleum ether:ethyl acetate = 4:1 to 1:1) to obtain compound 29-c.

ステップD:29-c(200mg、762.73μmol、1eq)のDMF(3mL)溶液に炭酸カリウム(316mg、2.29mmol、3eq)及び26-c(485mg、1.53mmol、2eq)を加え、次に、120℃で12時間反応させた。反応溶液を濾過し、ケーキをDMF(2mL)で洗浄し、濾液を分取HPLC[移動相:水(0.225%のFA)-アセトニトリル]により精製して化合物29を得た。H NMR (400 MHz, DMSO-d) δ ppm 1.22 - 1.48 (m, 6 H) 5.30 (s, 2 H) 7.02 (br s, 2 H) 7.26 - 7.52 (m, 1 H) 7.76 (ddd, J=10.06,
8.53, 1.10 Hz, 1 H) 7.94 - 8.13 (m, 1 H) 8.15 - 8.36 (m, 2 H) 11.12 (br s, 1 H)。LCMS (ESI) m/z: 439.1 [M+1]
Step D: Potassium carbonate (316 mg, 2.29 mmol, 3 eq) and 26-c (485 mg, 1.53 mmol, 2 eq) were added to a solution of 29-c (200 mg, 762.73 μmol, 1 eq) in DMF (3 mL), and then reacted at 120° C. for 12 h. The reaction solution was filtered, the cake was washed with DMF (2 mL), and the filtrate was purified by preparative HPLC [mobile phase: water (0.225% FA)-acetonitrile] to obtain compound 29. 1H NMR (400 MHz, DMSO- d6 ) δ ppm 1.22 - 1.48 (m, 6H) 5.30 (s, 2H) 7.02 (br s, 2H) 7.26 - 7.52 (m, 1H) 7.76 (ddd, J = 10.06,
8.53, 1.10 Hz, 1H) 7.94 - 8.13 (m, 1H) 8.15 - 8.36 (m, 2H) 11.12 (br s, 1H). LCMS (ESI) m/z: 439.1 [M+1] <+> .

実施例30
合成スキーム:
Example 30
Synthesis scheme:

Figure 2024515985000079
Figure 2024515985000079

ステップA:3-c(250mg、957.02μmol、1eq)を溶解させたDMF(2.00mL)溶液に2-クロロ-4-アミノ-5-ブロモピリミジン(199.49mg、957.02μmol、1eq)及び炭酸カリウム(264.53mg、1.91mmol、2eq)を加えた。反応系を120℃で12時間撹拌し、反応溶液を冷却させた後、水(50mL)で希釈し、酢酸エチル(50mL×2)で抽出し、合わせた有機相を無水硫酸ナトリウムで乾燥させた後減圧濃縮し、残留物を薄層クロマトグラフィー(SiO、PE:EtOAc=2:1)により精製して化合物30-aを得た。 Step A: 2-chloro-4-amino-5-bromopyrimidine (199.49 mg, 957.02 μmol, 1 eq) and potassium carbonate (264.53 mg, 1.91 mmol, 2 eq) were added to a solution of 3-c (250 mg, 957.02 μmol, 1 eq) in DMF (2.00 mL). The reaction was stirred at 120° C. for 12 hours, cooled, diluted with water (50 mL), and extracted with ethyl acetate (50 mL×2). The combined organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by thin layer chromatography (SiO 2 , PE:EtOAc=2:1) to give compound 30-a.

ステップB:30-a(200mg、461.67μmol、1eq)、シクロプロピルボロン酸(118.97mg、1.39mmol、3eq)、炭酸カリウム(191.42mg、1.39mmol、3eq)及びビス(トリフェニルホスフィン)パラジウム(II)ジクロリド(162.02mg、230.84μmol、0.5eq)を1,4-ジオキサン(5mL)に溶解させ、窒素ガスで3回置換した後、100℃で2時間撹拌した。反応溶液を水(20mL)で希釈し、酢酸エチル(50mL×2)で抽出し、合わせた有機相を無水硫酸ナトリウムで乾燥させた後減圧濃縮し、残留物を分取HPLC[移動相:水(0.1%のTFA)-ACN]により精製して化合物30を得た。H NMR (400MHz, DMSO-d) δ=8.55 (br d, J=9.3 Hz, 1H), 8.22 (d, J=1.7 Hz, 1H), 7.85 (s, 1H), 7.41 - 7.33 (m, 2H), 7.24 (m, 1H), 7.20 - 7.11 (m, 1H), 5.19 (s, 2H), 1.67(m, 1 H), 0.96 (dd, J=1.9, 8.3 Hz, 2H),
0.63 (dd, J=1.7, 5.3 Hz, 2H)。LCMS (ESI)
m/z: 395.3 [M+1]
Step B: 30-a (200 mg, 461.67 μmol, 1 eq), cyclopropylboronic acid (118.97 mg, 1.39 mmol, 3 eq), potassium carbonate (191.42 mg, 1.39 mmol, 3 eq) and bis(triphenylphosphine)palladium(II) dichloride (162.02 mg, 230.84 μmol, 0.5 eq) were dissolved in 1,4-dioxane (5 mL), purged with nitrogen gas three times, and then stirred at 100° C. for 2 hours. The reaction solution was diluted with water (20 mL) and extracted with ethyl acetate (50 mL×2). The combined organic phase was dried over anhydrous sodium sulfate and then concentrated under reduced pressure. The residue was purified by preparative HPLC [mobile phase: water (0.1% TFA)-ACN] to obtain compound 30. 1H NMR (400MHz, DMSO- d6 ) δ=8.55 (br d, J=9.3 Hz, 1H), 8.22 (d, J=1.7 Hz, 1H), 7.85 (s, 1H), 7.41-7.33 (m, 2H), 7.24 (m, 1H), 7.20-7.11 (m, 1H), 5.19 (s, 2H), 1.67 (m, 1H), 0.96 (dd, J=1.9, 8.3 Hz, 2H),
0.63 (dd, J=1.7, 5.3 Hz, 2H). LCMS (ESI)
m/z: 395.3 [M+1] + .

実施例31
合成スキーム:
Example 31
Synthesis scheme:

Figure 2024515985000080
Figure 2024515985000080

ステップA:3-1(2g、11.33mmol、1eq)のトルエン(20mL)溶液にm-フルオロベンジルアミン(1.56g、12.46mmol、1.42mL、1.1eq)及びN,N-ジイソプロピルエチルアミン(4.39g、33.99mmol、5.92mL、3eq)を加えた。添加完了後、混合物を100℃で2時間撹拌した。反応溶液を濃縮し、残留物をカラムクロマトグラフィー(PE:EtOAc=100:1~30:1)により精製して化合物31-aを得た。 Step A: To a solution of 3-1 (2 g, 11.33 mmol, 1 eq) in toluene (20 mL) was added m-fluorobenzylamine (1.56 g, 12.46 mmol, 1.42 mL, 1.1 eq) and N,N-diisopropylethylamine (4.39 g, 33.99 mmol, 5.92 mL, 3 eq). After the addition was complete, the mixture was stirred at 100°C for 2 h. The reaction solution was concentrated and the residue was purified by column chromatography (PE: EtOAc = 100: 1 to 30: 1) to obtain compound 31-a.

ステップB:窒素ガスの保護下で、31-a(1.62g、6.52mmol、1eq)のメタノール(30mL)溶液に湿式パラジウム炭素(300mg)を加え、添加完了後、真空にして水素ガスで3回置換し、反応溶液を水素ガス(15psi)の雰囲気下で、45℃で12時間撹拌した。反応溶液を珪藻土で濾過し、ケーキをメタノール(10mL×3)で洗浄し、濾液を濃縮して化合物31-bを得た。 Step B: Under nitrogen gas protection, wet palladium on carbon (300 mg) was added to a solution of 31-a (1.62 g, 6.52 mmol, 1 eq) in methanol (30 mL). After the addition was complete, the mixture was evacuated and replaced with hydrogen gas three times, and the reaction solution was stirred under an atmosphere of hydrogen gas (15 psi) at 45°C for 12 hours. The reaction solution was filtered through diatomaceous earth, the cake was washed with methanol (10 mL x 3), and the filtrate was concentrated to obtain compound 31-b.

ステップC:化合物31-b(2g、8.50mmol、1eq)のテトラヒドロフラン(20mL)溶液にCDI(2.76g、17.00mmol、2eq)を加え、反応溶液を70℃に昇温させて2時間撹拌した。反応溶液を濃縮して残留物を得、残留物をカラムクロマトグラフィー(PE/EA=5/1-1/1)により精製して化合物31-cを得た。LCMS (ESI) m/z: 262.5 [M+1] Step C: To a solution of compound 31-b (2 g, 8.50 mmol, 1 eq) in tetrahydrofuran (20 mL) was added CDI (2.76 g, 17.00 mmol, 2 eq), and the reaction solution was heated to 70° C. and stirred for 2 hours. The reaction solution was concentrated to obtain a residue, which was purified by column chromatography (PE/EA=5/1-1/1) to obtain compound 31-c. LCMS (ESI) m/z: 262.5 [M+1] + .

ステップF:窒素ガスの保護下で、31-c(260mg、995.30μmol、1eq)のDMF(3mL)溶液に26-c(510mg、1.99mmol、2eq)及び炭酸カリウム(413mg、2.99mmol、3eq)を加えた。反応溶液を120℃で12時間撹拌した。反応溶液を濾過し、濾液を分取HPLC[移動相:水(0.225%のFA)-アセトニトリル]により精製して化合物31を得た。H NMR (4
00 MHz, DMSO-d) δ ppm 1.35 (s, 6 H) 5.10 (s, 2 H) 7.00 (br s, 2 H) 7.07 - 7.14 (m, 1 H) 7.15 - 7.23 (m, 2 H) 7.38 (td, J=8.01, 6.24 Hz, 1 H) 8.10 (t, J=2.08 Hz, 1 H) 8.26 (dd, J=9.35, 2.51 Hz, 1 H) 11.12 (br s, 1 H);LCMS (ESI) m/z: 438.1 [M+1]
Step F: Under the protection of nitrogen gas, 26-c (510 mg, 1.99 mmol, 2 eq) and potassium carbonate (413 mg, 2.99 mmol, 3 eq) were added to a solution of 31-c (260 mg, 995.30 μmol, 1 eq) in DMF (3 mL). The reaction solution was stirred at 120° C. for 12 hours. The reaction solution was filtered, and the filtrate was purified by preparative HPLC [mobile phase: water (0.225% FA)-acetonitrile] to obtain compound 31. 1 H NMR (4
00 MHz, DMSO- d6 ) δ ppm 1.35 (s, 6H) 5.10 (s, 2H) 7.00 (br s, 2H) 7.07-7.14 (m, 1H) 7.15-7.23 (m, 2H) 7.38 (td, J=8.01, 6.24 Hz, 1H) 8.10 (t, J=2.08 Hz, 1H) 8.26 (dd, J=9.35, 2.51 Hz, 1H) 11.12 (br s, 1H); LCMS (ESI) m/z: 438.1 [M+1] + .

実施例32
合成スキーム:
Example 32
Synthesis scheme:

Figure 2024515985000081
Figure 2024515985000081

ステップA:窒素ガスの保護下で、3-1(1.4g、7.93mmol、1eq)のトルエン(40mL)溶液に2,4-ジメトキシベンジルアミン(1.33g、7.93mmol、1.19mL、1eq)及びトリエチルアミン(1.60g、15.86mmol、2.21mL、2eq)を加え、反応溶液を100℃で4時間撹拌した。反応溶液を冷却させた後水(40mL)で洗浄し、分離させ、有機相を減圧濃縮した後メタノールを加えて1時間撹拌し、濾過し、ケーキを真空で乾燥させて化合物32-aを得た。 Step A: Under the protection of nitrogen gas, 2,4-dimethoxybenzylamine (1.33 g, 7.93 mmol, 1.19 mL, 1 eq) and triethylamine (1.60 g, 15.86 mmol, 2.21 mL, 2 eq) were added to a solution of 3-1 (1.4 g, 7.93 mmol, 1 eq) in toluene (40 mL), and the reaction solution was stirred at 100°C for 4 hours. After cooling the reaction solution, it was washed with water (40 mL) and separated. The organic phase was concentrated under reduced pressure, and then methanol was added and stirred for 1 hour. It was filtered, and the cake was dried in vacuum to obtain compound 32-a.

ステップB:32-a(2g、6.51mmol、1eq)のテトラヒドロフラン(60mL)及び水(20mL)の溶液に亜鉛粉末(2.13g、32.54mmol、5e
q)及び塩化アンモニウム(1.74g、32.54mmol、5eq)を加え、反応溶液を60℃で1時間撹拌した。反応溶液を水(50mL)で希釈し、酢酸エチル(50mL)で抽出し、有機相を減圧濃縮した後カラムクロマトグラフィー(石油エーテル:酢酸エチル=3:1~1:1)により分離して化合物32-bを得た。
Step B: To a solution of 32-a (2 g, 6.51 mmol, 1 eq) in tetrahydrofuran (60 mL) and water (20 mL) was added zinc powder (2.13 g, 32.54 mmol, 5eq).
q) and ammonium chloride (1.74 g, 32.54 mmol, 5 eq) were added, and the reaction solution was stirred at 60° C. for 1 hour. The reaction solution was diluted with water (50 mL), extracted with ethyl acetate (50 mL), and the organic phase was concentrated under reduced pressure and then separated by column chromatography (petroleum ether:ethyl acetate=3:1 to 1:1) to obtain compound 32-b.

ステップC:窒素ガスの保護下で、32-b(1.6g、5.77mmol、1eq)のテトラヒドロフラン(30mL)溶液にCDI(1.87g、11.54mmol、2eq)を加えた。反応溶液を60℃で16時間撹拌した後水(2mL)を加えてクエンチングさせ、反応溶液を減圧濃縮し、残留物にメタノール(20mL)を加えて2時間撹拌し、濾過し、ケーキを真空で乾燥させ化合物32-cを得た。 Step C: Under nitrogen gas protection, CDI (1.87 g, 11.54 mmol, 2 eq) was added to a solution of 32-b (1.6 g, 5.77 mmol, 1 eq) in tetrahydrofuran (30 mL). The reaction solution was stirred at 60°C for 16 hours, then quenched by adding water (2 mL), concentrated under reduced pressure, methanol (20 mL) was added to the residue, stirred for 2 hours, filtered, and the cake was dried in vacuum to obtain compound 32-c.

ステップD:窒素ガスの保護下で、32-c(1.1g、3.63mmol、1eq)のDMF(10mL)溶液に26-c(1.73g、5.44mmol、1.5eq)及び炭酸カリウム(1.50g、10.88mmol、3eq)を加え、反応溶液を120℃で4時間撹拌し、反応溶液に水(40mL)を加えて希釈し、濾過し、ケーキを真空で乾燥させて化合物32-dを得た。 Step D: Under nitrogen gas protection, 26-c (1.73 g, 5.44 mmol, 1.5 eq) and potassium carbonate (1.50 g, 10.88 mmol, 3 eq) were added to a solution of 32-c (1.1 g, 3.63 mmol, 1 eq) in DMF (10 mL), and the reaction solution was stirred at 120°C for 4 hours. The reaction solution was diluted with water (40 mL), filtered, and the cake was dried in vacuum to obtain compound 32-d.

ステップE:32-d(1.6g、3.34mmol、1eq)のDMF(4mL)溶液に炭酸カリウム(922.41mg、6.67mmol、2eq)及びp-メトキシベンジルクロリド(731.66mg、4.67mmol、636.23μL、1.4eq)を加え、窒素ガスの保護下で50℃で2時間撹拌し、反応溶液に水(25mL)を加えて希釈し、濾過し、ケーキを真空で乾燥させた後化合物32-eを得た。 Step E: To a solution of 32-d (1.6 g, 3.34 mmol, 1 eq) in DMF (4 mL), potassium carbonate (922.41 mg, 6.67 mmol, 2 eq) and p-methoxybenzyl chloride (731.66 mg, 4.67 mmol, 636.23 μL, 1.4 eq) were added, and the mixture was stirred at 50°C for 2 hours under nitrogen gas protection. The reaction solution was diluted with water (25 mL), filtered, and the cake was dried in vacuum to obtain compound 32-e.

ステップF:32-e(1.8g、3.00mmol、1eq)のTFA(27.72g、243.11mmol、18.00mL、80.98eq)溶液を30℃で3時間撹拌し、反応溶液を濃縮し、残留物をカラムクロマトグラフィー(石油エーテル/酢酸エチル=1/1~0/1)により分離して化合物32-fを得た。 Step F: A solution of 32-e (1.8 g, 3.00 mmol, 1 eq) in TFA (27.72 g, 243.11 mmol, 18.00 mL, 80.98 eq) was stirred at 30°C for 3 hours, the reaction solution was concentrated, and the residue was separated by column chromatography (petroleum ether/ethyl acetate = 1/1 to 0/1) to obtain compound 32-f.

ステップG:32-f(0.6g、1.34mmol、1eq)のDMF(5mL)溶液に1,1,1,2,2-ペンタフルオロ-4-ヨードブタン(1.46g、5.34mmol、4eq)及び炭酸カリウム(922.55mg、6.68mmol、5eq)を加えた。反応溶液を窒素ガスの保護下で、50℃で1時間反応させた。反応溶液に希塩酸(30mL、1mol/L)を加えて中和させ、次に、酢酸エチルで抽出し、硫酸ナトリウムで乾燥させた後濃縮し、残留物をカラムクロマトグラフィー(石油エーテル/酢酸エチル=1/1~0/1)により分離して化合物32-gを得た。 Step G: 1,1,1,2,2-pentafluoro-4-iodobutane (1.46 g, 5.34 mmol, 4 eq) and potassium carbonate (922.55 mg, 6.68 mmol, 5 eq) were added to a solution of 32-f (0.6 g, 1.34 mmol, 1 eq) in DMF (5 mL). The reaction solution was reacted at 50°C for 1 hour under nitrogen gas protection. The reaction solution was neutralized by adding dilute hydrochloric acid (30 mL, 1 mol/L), then extracted with ethyl acetate, dried over sodium sulfate, and concentrated. The residue was separated by column chromatography (petroleum ether/ethyl acetate = 1/1 to 0/1) to obtain compound 32-g.

ステップH:窒素ガスの保護下で、32-g(0.2g、335.85μmol、1eq)のTFA(2mL)溶液にトリフルオロメタンスルホン酸(3.40g、22.66mmol、2mL、67.45eq)を加えた。反応溶液を50℃で16時間撹拌した。反応溶液を水酸化ナトリウム(80mL、1mol/L)の水溶液に注いで中和させ、酢酸エチル(60mL)で抽出し、有機相を減圧濃縮した後、分取HPLC[水(0.075%のTFA)-アセトニトリル]により精製して化合物32を得た。H NMR (400MHz, DMSO-d) δ=11.14 (s, 1H), 8.26 (dd, J=2.6, 9.4 Hz, 1H), 8.15 (t, J=2.1 Hz, 1H), 7.01 (br s, 2H), 4.22 (t, J=6.9 Hz, 2H), 2.90 - 2.72 (m, 2H), 1.35 (s, 6H). LCMS (ESI) m/z: 476.2 [M+1] Step H: Under the protection of nitrogen gas, trifluoromethanesulfonic acid (3.40 g, 22.66 mmol, 2 mL, 67.45 eq) was added to a solution of 32-g (0.2 g, 335.85 μmol, 1 eq) in TFA (2 mL). The reaction solution was stirred at 50° C. for 16 hours. The reaction solution was poured into an aqueous solution of sodium hydroxide (80 mL, 1 mol/L) to neutralize it, extracted with ethyl acetate (60 mL), and the organic phase was concentrated under reduced pressure, and then purified by preparative HPLC [water (0.075% TFA)-acetonitrile] to obtain compound 32. 1H NMR (400MHz, DMSO- d6 ) δ=11.14 (s, 1H), 8.26 (dd, J=2.6, 9.4 Hz, 1H), 8.15 (t, J=2.1 Hz, 1H), 7.01 (br s, 2H), 4.22 (t, J=6.9 Hz, 2H), 2.90-2.72 (m, 2H), 1.35 (s, 6H). LCMS (ESI) m/z: 476.2 [M+1] <+> .

生物学的試験
実験例1:体外活性試験
lnCap細胞に基づくcGMP発現試験
1.実験ステップ
1)溶液の製造
・10%のBSA(ウシ血清アルブミン)
10gのBSAを100mLの再蒸留水(ddHO)に溶解させて、10%のBSAを得た。
・5mMのDETA(ジエチレントリアミン)-NO
10mgのDETA-NOを秤量し、12.2mLの再蒸留水(ddHO)に溶解させて、5mMのDETA-NOを得、小分けして-20℃の冷蔵庫で凍結保存した。
Biological Test Experimental Example 1: In Vitro Activity Test cGMP Expression Test Based on lnCap Cells 1. Experimental Steps 1) Preparation of Solution 10% BSA (bovine serum albumin)
10 g of BSA was dissolved in 100 mL of double distilled water (ddH 2 O) to obtain 10% BSA.
5 mM DETA (diethylenetriamine)-NO
10 mg of DETA-NO was weighed out and dissolved in 12.2 mL of double distilled water (ddH 2 O) to obtain 5 mM DETA-NO, which was then aliquoted and stored frozen in a -20°C refrigerator.

・洗浄緩衝液(Washing Buffer、50mL) Washing Buffer (50mL)

Figure 2024515985000082
Figure 2024515985000082

・分析緩衝液(Assay Buffer、50mL) ・Assay Buffer (50mL)

Figure 2024515985000083
Figure 2024515985000083

・検出緩衝液(Detection Buffer)
a)50μLのcGMP-D2(D2標識環状グアノシン一リン酸)を1mLの溶解緩衝液(lysis buffer)に加え、均一に混合した。
Detection Buffer
a) 50 μL of cGMP-D2 (D2-labeled cyclic guanosine monophosphate) was added to 1 mL of lysis buffer and mixed uniformly.

b)50μLのanti-cGMP cryptate(Eu3+クリプテート標識抗環状グアノシン一リン酸抗体)を1mLの溶解緩衝液(lysis buffer)に加え、均一に混合した。 b) 50 μL of anti-cGMP cryptate (Eu 3+ cryptate-labeled anti-cyclic guanosine monophosphate antibody) was added to 1 mL of lysis buffer and mixed uniformly.

2)化合物の希釈
(1)化合物をDMSOで5mMに希釈した。10μLの化合物をEchoシャローウェルプレートに移した。
2) Compound dilution (1) Compounds were diluted to 5 mM in DMSO. 10 μL of compound was transferred to an Echo shallow well plate.

(2)Echoを使用して化合物の勾配希釈を実行し、各化合物を10の濃度勾配に希釈し、それぞれ50nLを384マイクロウェルプレートに加えた。
3)LNCap細胞の準備
(1)LNCap培地:RPMI1640+10%のウシ胎児血清+1%の二重抗体
(2)細胞の継代に使用されたリン酸緩衝液、トリプシン、培地を37℃のウォーターバスで予熱した。
(2) A gradient dilution of the compounds was performed using Echo, where each compound was diluted into a concentration gradient of 10 and 50 nL of each was added to a 384 microwell plate.
3) Preparation of LNCap cells (1) LNCap medium: RPMI1640 + 10% fetal bovine serum + 1% double antibody (2) Phosphate buffer, trypsin, and medium used for cell passage were preheated in a 37°C water bath.

(3)37℃、5%のCOインキュベーターから細胞(継代14代)を取り出し、ピペットを使用して培養フラスコ内の古い培地を除去した。
(4)5mLのリン酸緩衝液を吸引して培養フラスコに加えて細胞を洗浄し、液体を除去した。
(3) Cells (passage 14) were removed from the 37° C., 5% CO 2 incubator, and the old medium in the culture flask was removed using a pipette.
(4) 5 mL of phosphate buffer was aspirated and added to the culture flask to wash the cells, and the liquid was removed.

(5)3mLのトリプシンを吸引して培養フラスコに加え、振とうしてから液体を除去し、培養フラスコをインキュベーターに入れた。
(6)約2分後培養フラスコを取り出し、細胞が分離されたことを確認した後、培養フラスコに9mLの培地を加え、数回ピペッティングを繰り返し、細胞懸濁液を50mLの遠沈チューブに移した。
(5) 3 mL of trypsin was aspirated and added to the culture flask, shaken, the liquid was removed, and the culture flask was placed in the incubator.
(6) After about 2 minutes, the culture flask was removed, and after confirming that the cells had been separated, 9 mL of medium was added to the culture flask, and the cell suspension was transferred to a 50 mL centrifuge tube after repeated pipetting several times.

(7)0.7mLの細胞懸濁液をピペットで計数カップに移し、ViCell XRで計数した。残りの細胞については、1000rpmで5分間遠心分離して、上清を除去した。 (7) 0.7 mL of the cell suspension was pipetted into a counting cup and counted using a ViCell XR. The remaining cells were centrifuged at 1000 rpm for 5 minutes and the supernatant was removed.

(8)10mLの洗浄緩衝液(washing buffer)を加えて細胞を洗浄し、1000rpmで5分間遠心分離して、上清を除去した。
(9)分析緩衝液(assay buffer)を加え、細胞濃度を1.25×10/mLに調節した。8μL/ウェルでマイクロプレートに加えた。
(8) The cells were washed by adding 10 mL of washing buffer, centrifuged at 1000 rpm for 5 minutes, and the supernatant was removed.
(9) An assay buffer was added to adjust the cell concentration to 1.25×10 6 /mL, and 8 μL/well of the solution was added to the microplate.

4)DETA-NOの製造及び添加
(1)10μL 5mMのDETA-NOをそれぞれ1240μL及び1657μLの分析緩衝液(assay buffer)に加えて、40μM及び30μMのDETA-NOを得た。
4) Preparation and Addition of DETA-NO (1) 10 μL 5 mM DETA-NO was added to 1240 μL and 1657 μL of assay buffer, respectively, to obtain 40 μM and 30 μM DETA-NO.

(2)Bravoを使用して、2μL/ウェルのDETA-NOを384マイクロウェルプレートに移した。
(3)1500rpmで5分間遠心分離した。マイクロプレートを37℃で30分間培養した。
(2) Using a Bravo, 2 μL/well of DETA-NO was transferred to a 384 microwell plate.
(3) Centrifuge at 1500 rpm for 5 minutes. The microplate was incubated at 37° C. for 30 minutes.

5)cGMP標準曲線の作成
(1)1mMのcGMPストック溶液を試験緩衝液(assay buffer)で10μMに希釈した。次に、11の濃度勾配で4倍に勾配希釈した。
5) Preparation of cGMP standard curve (1) 1 mM cGMP stock solution was diluted to 10 μM with assay buffer, then diluted 4-fold with 11 concentration gradients.

(2)希釈したcGMPを10μL/ウェルでマイクロウェルプレートに加えた。
6)検出試薬を加え、プレートを読み取った
(1)Bravoを使用して、5μL/ウェルのcGMP-D2を384マイクロウェルプレートに移した。1500rpmで1分間遠心分離した。
(2) The diluted cGMP was added to the microwell plate at 10 μL/well.
6) Detection reagent was added and the plate was read (1) Using the Bravo, 5 μL/well of cGMP-D2 was transferred to a 384 microwell plate. Centrifuge at 1500 rpm for 1 minute.

(2)Bravoを使用して、5μL/ウェルのanti-cGMP cryptateを384マイクロウェルプレートに移した。1500rpmで1分間遠心分離した。
(3)室温で1時間培養した。
(2) Using a Bravo, 5 μL/well of the anti-cGMP cryptate was transferred to a 384-microwell plate, followed by centrifugation at 1500 rpm for 1 minute.
(3) The mixture was incubated at room temperature for 1 hour.

(4)envisageで65/615を読み取った。
7)データ分析
(1)cGMP標準曲線:Graphpad prismを使用して、cGMP濃度と665/615の比率に基づいて標準曲線を作成した。
(4) 65/615 was read on envisage.
7) Data Analysis (1) cGMP standard curve: A standard curve was prepared based on cGMP concentration and the 665/615 ratio using Graphpad prism.

(2)HTRF(均一時間分解蛍光技術)比率(665/615)をcGMP濃度に変換した:Graphpad prismにおいて、HTRF比率(665/615)をcGMP標準曲線の比列にコピーし、「Log inhibitor vs response-variable slope」を実行して分析し、「interpolate」を選択し、HTRF比率(665/615)をcGMP濃度に変換した。 (2) The HTRF (homogeneous time-resolved fluorescence technique) ratio (665/615) was converted to cGMP concentration: In Graphpad Prism, the HTRF ratio (665/615) was copied to the ratio column of the cGMP standard curve, analyzed by running "Log inhibitor vs response-variable slope," and selected "interpolate" to convert the HTRF ratio (665/615) to cGMP concentration.

(3)化合物活性化曲線:変換したcGMP濃度と化合物濃度をGraphpad prismの「Log agonist vs response-variable slope」分析方法を使用して曲線を作成した。 (3) Compound activation curve: A curve was created using the "Log agonist vs response-variable slope" analysis method in Graphpad Prism for the converted cGMP concentration and compound concentration.

Figure 2024515985000084
Figure 2024515985000084

実験結果により、本発明の化合物がsGCに対して良好な刺激活性を有することを示し
た。
実験例2:ラット体内における薬物動態評価
実験目的:
ラット体内における本発明の化合物の薬物動態パラメータを検出するためである。
The experimental results show that the compounds of the present invention have good stimulating activity on sGC.
Experimental Example 2: Evaluation of pharmacokinetics in rats Experimental objective:
The purpose is to detect the pharmacokinetic parameters of the compound of the present invention in the rat body.

実験スキーム:
1)実験動物:7~9週齢のオスSDラット6匹を選択し、各群に3匹ずつ、無作為に2つの群に分けた。
Experimental scheme:
1) Experimental animals: Six male SD rats aged 7-9 weeks were selected and randomly divided into two groups, with three rats in each group.

2)薬物の製造:適量の薬物を秤量し、10%のDMSO+50%のPEG400+40%のHOの混合溶媒に溶解させて、0.2mg/mLに製造した;適量の薬物を秤量し、10%のEtOH+40%のPEG400+50%のHOの混合溶媒に溶解させて、0.3mg/mLに製造した。 2) Preparation of drugs: An appropriate amount of drug was weighed and dissolved in a mixed solvent of 10% DMSO + 50% PEG400 + 40% H2O to prepare a concentration of 0.2 mg/mL; an appropriate amount of drug was weighed and dissolved in a mixed solvent of 10% EtOH + 40% PEG400 + 50% H2O to prepare a concentration of 0.3 mg/mL.

実験的操作:
群1の動物には、単回尾静脈注射により、1.0mg/kgの投与量、0.2mg/mLの濃度の薬物を投与し、群2の動物には、胃内投与により、3mg/kgの投与量、0.3mg/mLの濃度の化合物を投与した。投与後の0.0833時間(尾静脈注射群のみ)、0.25時間、0.5時間、1時間、2時間、4時間、8時間及び24時間後に動物から血漿試料を採取した。
データ分析:
LC-MS/MS方法を使用して血漿試料における薬物濃度を測定し、試験薬物の薬物動態パラメータを得、表2に示した。
Experimental procedure:
Animals in group 1 were administered the drug at a dose of 1.0 mg/kg and a concentration of 0.2 mg/mL by a single tail vein injection, and animals in group 2 were administered the compound at a dose of 3 mg/kg and a concentration of 0.3 mg/mL by intragastric administration. Plasma samples were taken from the animals at 0.0833 hours (tail vein injection group only), 0.25 hours, 0.5 hours, 1 hour, 2 hours, 4 hours, 8 hours and 24 hours after administration.
Data Analysis:
Drug concentrations in plasma samples were measured using an LC-MS/MS method, and the pharmacokinetic parameters of the test drugs were obtained and shown in Table 2.

Figure 2024515985000085
Figure 2024515985000085

結論:本発明の化合物はラットの体内において、良好な薬物動態特性を示した。
実験例3:ヒト肝ミクロソームCYP阻害実験
研究プロジェクトの目的は、CYPアイソザイムの5-in-1プローブ基質を使用して、ヒト肝臓ミクロソームシトクロムP450アイソザイム(CYP1A2、CYP2C9、CYP2C19、CYP2D6、CYP3A4)に対する試験物質の阻害効果を評価することである。
Conclusion: The compounds of the present invention exhibited good pharmacokinetic properties in rats.
Experimental Example 3: Human liver microsomal CYP inhibition experiment The purpose of the research project is to evaluate the inhibitory effect of test substances on human liver microsomal cytochrome P450 isoenzymes (CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4) using 5-in-1 probe substrates for CYP isoenzymes.

混合ヒト肝ミクロソーム(HLM)は、Corning Inc.(Steuben、New York、USA)又はその他のサプライヤーから購入し、いずれも使用するまで-70℃未満の条件で保存した。 Mixed human liver microsomes (HLM) were purchased from Corning Inc. (Steuben, New York, USA) or other suppliers and were stored at <-70°C until use.

一連の濃度に希釈した試験物質の作業溶液を、ヒト肝臓ミクロソーム、プローブ基質及
び循環系の補助因子を含むインキュベーションシステムに添加し、溶媒を含むが試験物質を含まない対照は、酵素活性対照(100%)として機能した。試料中のプローブ基質によって生成された代謝産物の濃度は、液体クロマトグラフィー-タンデム質量分析法(LC-MS/MS)を使用して測定した。試験物質の濃度に対する活性の平均百分率の非線形回帰分析は、SigmaPlot(V.11)を使用して実施した。IC50値は、3パラメーター又は4パラメーターの逆対数方程式を使用して計算した。試験結果は表3に示された通りである。
A working solution of the test substance diluted to a series of concentrations was added to an incubation system containing human liver microsomes, probe substrates and circulatory cofactors, and a control containing solvent but no test substance served as an enzyme activity control (100%). The concentrations of metabolites generated by the probe substrate in the samples were measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Nonlinear regression analysis of the mean percentage of activity versus the concentration of the test substance was performed using SigmaPlot (V.11). IC50 values were calculated using a three-parameter or four-parameter antilogarithmic equation. The test results are shown in Table 3.

Figure 2024515985000086
Figure 2024515985000086

結論:本発明の化合物は、5つのCYPアイソザイムに対していずれも弱い阻害効果を示した。 Conclusion: The compounds of the present invention showed weak inhibitory effects against all five CYP isoenzymes.

Claims (24)

式(I)で表される化合物又はその薬学的に許容される塩。
Figure 2024515985000087
(ただし、Rは、H、F又はClであり、
は、C1-6アルキル、-CH-フェニル、-CH-ピリジル又は-CH-ピリミジニルであり、ここで、前記C1-6アルキル、-CH-フェニル、-CH-ピリジル又は-CH-ピリミジニルは、それぞれ独立して任意選択で1、2、3、4又は5つのRにより置換され、
各Rは、独立してH、F、Cl、Br、I、-OH、-CN、-NH、-NO、-C(=O)OH、C1-3アルコキシ又は任意選択で1、2又は3つの独立してF、Cl、Br、I、-OH、-CN、-NH及び-OCHから選択される置換基により置換されたC1-3アルキルであり、
及びRは、それぞれ独立してH、F、Cl、Br、I、-OH、-CN又は-NHであり、
は、-L-Rであり、
Lは、単結合、-NRC(=O)O-又は-NRC(=O)-であり、
は、C1-6アルキル、
Figure 2024515985000088
であり、ここで、前記C1-6アルキル、
Figure 2024515985000089
は、それぞれ独立して任意選択で1、2又は3つのRにより置換され、
は、H、-CH又は-CHCHであり、
各Rは、独立してF、Cl、Br、I、-OH、-CN、-NH、-NO、C1-3アルコキシ又は任意選択で1、2又は3つの独立してF、Cl、Br、I、-OH、-CN、-NH及び-OCHから選択される置換基により置換されたC1-3アルキルであり、
或いは、R及びRは、それらと連結された炭素原子と連結されて、構造単位
Figure 2024515985000090

Figure 2024515985000091
から選択されるようにさせ、
、R及びRは、それぞれ独立してF、Cl、Br、I、-OH、-CN、-NH、-NO又は任意選択で1、2又は3つの独立してF、Cl、Br、I、-OH、-CN、-NH及び-OCHから選択される置換基により置換されたC1-3アルキルである。)
A compound represented by formula (I) or a pharma- ceutically acceptable salt thereof.
Figure 2024515985000087
(wherein R 1 is H, F or Cl;
R 2 is C 1-6 alkyl, —CH 2 -phenyl, —CH 2 -pyridyl or —CH 2 -pyrimidinyl, wherein said C 1-6 alkyl, —CH 2 -phenyl, —CH 2 -pyridyl or —CH 2 -pyrimidinyl is each independently optionally substituted by 1, 2, 3, 4 or 5 R a ;
each R a is independently H, F, Cl, Br, I, -OH, -CN, -NH 2 , -NO 2 , -C(═O)OH, C 1-3 alkoxy or C 1-3 alkyl optionally substituted with 1 , 2 or 3 substituents independently selected from F, Cl, Br, I, -OH, -CN, -NH 2 and -OCH 3 ;
R3 and R4 are each independently H, F, Cl, Br, I, -OH, -CN, or -NH2 ;
R5 is -L- Rb ;
L is a single bond, -NR c C(=O)O- or -NR c C(=O)-;
R b is C 1-6 alkyl,
Figure 2024515985000088
wherein said C 1-6 alkyl,
Figure 2024515985000089
are each independently optionally substituted by 1, 2 or 3 R;
R c is H, -CH3 or -CH2CH3 ;
each R is independently F, Cl, Br, I, -OH, -CN, -NH2 , -NO2 , C1-3alkoxy or C1-3alkyl optionally substituted with 1, 2 or 3 substituents independently selected from F, Cl, Br, I, -OH, -CN, -NH2 and -OCH3 ;
Alternatively, R 3 and R 5 may be joined with the carbon atom to which they are attached to form a structural unit
Figure 2024515985000090
but
Figure 2024515985000091
to be selected from
R 6 , R 7 and R 8 are each independently F, Cl, Br, I, -OH, -CN, -NH 2 , -NO 2 or C 1-3 alkyl optionally substituted with 1, 2 or 3 substituents independently selected from F, Cl, Br, I, -OH, -CN, -NH 2 and -OCH 3 .
前記Lは、単結合、-NH-C(=O)O-、-NH-C(=O)-、-N(CH)-C(=O)O-又は-N(CH)-C(=O)-である、請求項1に記載の化合物又はその薬学的に許容される塩。 The compound according to claim 1, or a pharma- ceutically acceptable salt thereof, wherein L is a single bond, -NH-C(=O)O-, -NH-C(=O)-, -N( CH3 )-C(=O)O- or -N( CH3 )-C(=O)-. 式(I-1)~(I-4)で表される構造を有する、請求項1に記載の化合物又はその薬学的に許容される塩。
Figure 2024515985000092
(ただし、R、R、R及びRは、請求項1で定義された通りである。)
The compound of claim 1, having a structure represented by any one of formulas (I-1) to (I-4), or a pharma- ceutically acceptable salt thereof.
Figure 2024515985000092
(wherein R 1 , R 2 , R 4 and R b are as defined in claim 1 ).
前記各Rは、独立してF、Cl、Br、-OH、-CN、-NH、-NO、-CH、-CHCH、-OCH、-OCHCH、-CF、-CHCF、-CHCHCF、-CHOH又は-CHCHOHである、請求項1に記載の化合物又はその薬学的に許容される塩。 The compound of claim 1, or a pharma- ceutically acceptable salt thereof, wherein each R is independently F, Cl, Br , -OH, -CN , -NH2 , -NO2 , -CH3 , -CH2CH3 , -OCH3 , -OCH2CH3, -CF3 , -CH2CF3, -CH2CH2CF3, -CH2OH or -CH2CH2OH . 前記Rは、C1-4アルキル、
Figure 2024515985000093
であり、ここで、前記C1-4アルキル、
Figure 2024515985000094
は、それぞれ独立して任意選択で1、2又は3つのRにより置換される、請求項1~4のいずれか一項に記載の化合物又はその薬学的に許容される塩。
The R b is C 1-4 alkyl,
Figure 2024515985000093
wherein said C 1-4 alkyl,
Figure 2024515985000094
is each independently optionally substituted by 1, 2 or 3 R, or a pharma- ceutically acceptable salt thereof.
前記Rは、-CH、-CHCH、-CHCHCH、-CH(CH、-CHCHCHCH、-CH(CH)CHCH、-CHCH(CH、-C(CH
Figure 2024515985000095
である、請求項5に記載の化合物又はその薬学的に許容される塩。
The R b is -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -CH(CH 3 ) 2 , -CH 2 CH 2 CH 2 CH 3 , -CH(CH 3 ) CH 2 CH 3 , -CH 2 CH(CH 3 ) 2 , -C(CH 3 ) 3 ,
Figure 2024515985000095
6. The compound of claim 5, which is: or a pharma- ceutically acceptable salt thereof.
前記Rは、-CH、-CHCH、-CHCHCH、-CH(CH、-CHCHCHCH、-CH(CH)CHCH、-CHCH(CH、-C(CH
Figure 2024515985000096
である、請求項4又は6に記載の化合物又はその薬学的に許容される塩。
The R b is -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -CH(CH 3 ) 2 , -CH 2 CH 2 CH 2 CH 3 , -CH(CH 3 ) CH 2 CH 3 , -CH 2 CH(CH 3 ) 2 , -C(CH 3 ) 3 ,
Figure 2024515985000096
7. The compound according to claim 4 or 6, which is: or a pharma- ceutically acceptable salt thereof.
前記Rは、-NH-C(=O)O-C1-4アルキル、-NHC(=O)-C1-4アルキル、-N(CH)-C(=O)O-C1-4アルキル、-NH-C(=O)-(C3-6シクロアルキル)、-N(CH)C(=O)-(C3-6シクロアルキル)、-NH-C(=O)-フェニル、-N(CH)-C(=O)-フェニル又は5~6員ヘテロシクロアルキルであり、ここで、前記NH-C(=O)O-C1-4アルキル、-NHC(=O)-C1-4アルキル、-N(CH)-C(=O)O-C1-4アルキル、-NH-C(=O)-(C3-6シクロアルキル)、-N(CH)C(=O)-(C3-6シクロアルキル)、-NH-C(=O)-フェニル、-N(CH)-C(=O)-フェニル及び5~6員ヘテロシクロアルキルは、それぞれ独立して任意選択で1、2又は3つのRにより置換される、請求項1に記載の化合物又はその薬学的に許容される塩。 said R 5 is -NH-C(=O)O-C 1-4 alkyl, -NHC(=O)-C 1-4 alkyl, -N(CH 3 )-C(=O)O-C 1-4 alkyl, -NH-C(=O)-(C 3-6 cycloalkyl), -N(CH 3 )C(=O)-(C 3-6 cycloalkyl), -NH-C(=O)-phenyl, -N(CH 3 )-C(=O)-phenyl or 5-6 membered heterocycloalkyl, wherein said NH-C(=O)O-C 1-4 alkyl, -NHC(=O)-C 1-4 alkyl, -N(CH 3 )-C(=O)O-C 1-4 alkyl, -NH-C(=O)-(C 3-6 cycloalkyl), -N(CH 3 )C(=O)-(C 3-6 membered cycloalkyl), -NH-C(=O)-phenyl, -N(CH 3 )-C(=O)-phenyl and 5-6 membered heterocycloalkyl are each independently optionally substituted by 1, 2 or 3 R, or a pharma- ceutically acceptable salt thereof. 前記Rは、-NH-C(=O)O-CH、-NH-C(=O)O-CHCH、-NH-C(=O)O-CHCHCH、-NH-C(=O)O-CH(CH、-NH-C(=O)-CH、-NH-C(=O)-CHCH、-NH-C(=O)-CHCHCH、-NH-C(=O)-CH(CH、-N(CH)-C(=O)O-CH、-N(CH)-C(=O)O-CHCH、-N(CH)-
C(=O)O-CHCHCH、-N(CH)-C(=O)O-CH(CH
Figure 2024515985000097
である、請求項8に記載の化合物又はその薬学的に許容される塩。
Said R 5 is -NH-C(=O)O-CH 3 , -NH-C(=O)O-CH 2 CH 3 , -NH-C(=O)O-CH 2 CH 2 CH 3 , -NH-C(=O)O-CH(CH 3 ) 2 , -NH-C(=O)-CH 3 , -NH-C(=O)-CH 2 CH 3 , -NH-C(=O)-CH 2 CH 2 CH 3 , -NH-C(=O)-CH(CH 3 ) 2 , -N(CH 3 )-C(=O)O-CH 3 , -N(CH 3 )-C(=O)O-CH 2 CH 3 , -N(CH 3 )-
C(=O)O - CH2CH2CH3 , -N( CH3 )-C( = O)O-CH( CH3 ) 2 ,
Figure 2024515985000097
9. The compound of claim 8, which is: or a pharma- ceutically acceptable salt thereof.
前記Rは、-NH-C(=O)O-CH、-NH-C(=O)O-CHCH、-NH-C(=O)O-CHCHCH、-NH-C(=O)O-CH(CH、-NH-C(=O)-CH、-NH-C(=O)-CHCH、-NH-C(=O)-CHCHCH、-NH-C(=O)-CH(CH、-N(CH)-C(=O)O-CH、-N(CH)-C(=O)O-CHCH、-N(CH)-C(=O)O-CHCHCH、-N(CH)-C(=O)O-CH(CH
Figure 2024515985000098
である、請求項9に記載の化合物又はその薬学的に許容される塩。
Said R 5 is -NH-C(=O)O-CH 3 , -NH-C(=O)O-CH 2 CH 3 , -NH-C(=O)O-CH 2 CH 2 CH 3 , -NH-C(=O)O-CH(CH 3 ) 2 , -NH-C(=O)-CH 3 , -NH-C(=O)-CH 2 CH 3 , -NH-C(=O)-CH 2 CH 2 CH 3 , -NH-C(=O)-CH(CH 3 ) 2 , -N(CH 3 )-C(=O)O-CH 3 , -N(CH 3 )-C(=O)O-CH 2 CH 3 , -N(CH 3 )-C(=O)O-CH 2 CH 2 CH 3 , -N(CH 3 )-C(=O)O-CH( CH3 ) 2 ,
Figure 2024515985000098
10. The compound of claim 9, which is: or a pharma- ceutically acceptable salt thereof.
式(I-5)~(I-13)で表される構造を有する、請求項1に記載の化合物又はその薬学的に許容される塩。
Figure 2024515985000099
(ただし、pは、0、1又は2であり、Rは、H又は-NHであり、Rは、請求項1で定義された通りであり、Rは、請求項1又は4で定義された通りである。)
The compound of claim 1, having a structure represented by any one of formulas (I-5) to (I-13), or a pharma- ceutically acceptable salt thereof.
Figure 2024515985000099
wherein p is 0, 1 or 2, R4 is H or -NH2 , R2 is as defined in claim 1, and R is as defined in claim 1 or 4.
式(I-14)~(I-15)で表される構造を有する、請求項1に記載の化合物又はその薬学的に許容される塩。
Figure 2024515985000100
(ただし、R、R、R、R、R及びRは、請求項1で定義された通りである。)
The compound according to claim 1, having a structure represented by formula (I-14) to (I-15), or a pharma- ceutically acceptable salt thereof.
Figure 2024515985000100
(wherein R 1 , R 2 , R 4 , R 6 , R 7 and R 8 are as defined in claim 1 ).
式(I-16)~(I-19)で表される構造を有する、請求項12に記載の化合物又はその薬学的に許容される塩。
Figure 2024515985000101
(ただし、R、R、R及びRは、請求項12で定義された通りである。)
The compound according to claim 12, having a structure represented by any one of formulas (I-16) to (I-19), or a pharma- ceutically acceptable salt thereof.
Figure 2024515985000101
(wherein R 2 , R 6 , R 7 and R 8 are as defined in claim 12).
前記構造単位
Figure 2024515985000102
は、
Figure 2024515985000103
である、請求項1又は12に記載の化合物又はその薬学的に許容される塩。
The structural unit
Figure 2024515985000102
teeth,
Figure 2024515985000103
13. The compound of claim 1 or 12, which is: or a pharma- ceutically acceptable salt thereof.
前記構造単位
Figure 2024515985000104
は、
Figure 2024515985000105
である、請求項1又は12に記載の化合物又はその薬学的に許容される塩。
The structural unit
Figure 2024515985000104
teeth,
Figure 2024515985000105
13. The compound of claim 1 or 12, which is: or a pharma- ceutically acceptable salt thereof.
前記R、R及びRは、それぞれ独立してF、Cl、Br、I、-OH、-CN、-NH、-NO、-CH、-CHCH、-CF、-CHCF又は-CHCHOHである、請求項1、12又は13のいずれか一項に記載の化合物又はその薬学的に許容される塩。 The compound or a pharma- ceutically acceptable salt thereof according to any one of claims 1 , 12 or 13, wherein R6 , R7 and R8 are each independently F, Cl, Br, I , -OH, -CN, -NH2 , -NO2 , -CH3 , -CH2CH3 , -CF3 , -CH2CF3 or -CH2CH2OH . 式(I-20)~(I-25)で表される構造を有する、請求項13に記載の化合物又はその薬学的に許容される塩。
Figure 2024515985000106
(ただし、Rは、請求項13で定義された通りである。)
The compound of claim 13, having a structure represented by any one of formulas (I-20) to (I-25), or a pharma- ceutically acceptable salt thereof.
Figure 2024515985000106
(wherein R2 is as defined in claim 13).
前記各Rは、独立してH、F、Cl、Br、I、-OH、-CN、-NH、-NO、-C(=O)OH、-CH、-CHCH、-CHCHCH、-CH(CH、-OCH、-OCHCH、-CF、-CHCF、-CFCF、-CHCHCF、-CHOH又は-CHCHOHである、請求項1に記載の化合物又はその薬学的に許容される塩。 The compound of claim 1, or a pharma- ceutically acceptable salt thereof, wherein each R a is independently H, F, Cl, Br , I, -OH, -CN, -NH2 , -NO2 , -C (=O)OH, -CH3 , -CH2CH3 , -CH2CH2CH3 , -CH( CH3 ) 2 , -OCH3 , -OCH2CH3 , -CF3 , -CH2CF3 , -CF2CF3 , -CH2CH2CF3 , -CH2OH or -CH2CH2OH . 各Rは、独立してH、F、Cl又は-CFである、請求項18に記載の化合物又はその薬学的に許容される塩。 19. The compound of claim 18, or a pharma- ceutically acceptable salt thereof, wherein each R a is independently H, F, Cl, or -CF3 . 前記Rは、
Figure 2024515985000107
である、請求項1に記載の化合物又はその薬学的に許容される塩。
The R2 is
Figure 2024515985000107
2. The compound of claim 1, wherein:
前記Rは、
Figure 2024515985000108
である、請求項18又は20に記載の化合物又はその薬学的に許容される塩。
The R2 is
Figure 2024515985000108
21. The compound of claim 18 or 20, which is: or a pharma- ceutically acceptable salt thereof.
下記式で表される化合物又はその薬学的に許容される塩。

Figure 2024515985000109
Figure 2024515985000110
A compound represented by the following formula or a pharma- ceutically acceptable salt thereof:

Figure 2024515985000109
Figure 2024515985000110
糖尿病性腎症又は高血圧性腎症を治療するための医薬の製造における、請求項1~22のいずれか一項に記載の化合物又はその薬学的に許容される塩の使用。 Use of a compound according to any one of claims 1 to 22 or a pharma- ceutically acceptable salt thereof in the manufacture of a medicament for treating diabetic nephropathy or hypertensive nephropathy. 対象に有効量の請求項1~22のいずれか一項に記載の化合物又はその薬学的に許容される塩を提供することを含む、必要とする対象における糖尿病性腎症又は高血圧性腎症の治療方法。 A method for treating diabetic nephropathy or hypertensive nephropathy in a subject in need thereof, comprising providing to the subject an effective amount of a compound according to any one of claims 1 to 22 or a pharma- ceutically acceptable salt thereof.
JP2023566656A 2021-04-27 2022-04-25 Derivatives of six-membered aromatic heterourea rings and uses thereof Pending JP2024515985A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN202110462009.4 2021-04-27
CN202110462009 2021-04-27
CN202210307799.3 2022-03-25
CN202210307799 2022-03-25
PCT/CN2022/088918 WO2022228365A1 (en) 2021-04-27 2022-04-25 Derivative of six-membered heteroaromatic urea ring and application thereof

Publications (2)

Publication Number Publication Date
JP2024515985A true JP2024515985A (en) 2024-04-11
JPWO2022228365A5 JPWO2022228365A5 (en) 2024-05-02

Family

ID=83846697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023566656A Pending JP2024515985A (en) 2021-04-27 2022-04-25 Derivatives of six-membered aromatic heterourea rings and uses thereof

Country Status (3)

Country Link
JP (1) JP2024515985A (en)
CN (1) CN117279923A (en)
WO (1) WO2022228365A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002221827A1 (en) * 2000-11-22 2002-06-03 Bayer Aktiengesellschaft Novel lactame-substituted pyrazolopyridine derivatives
DE10220570A1 (en) * 2002-05-08 2003-11-20 Bayer Ag Carbamate-substituted pyrazolopyridines
CA2565803A1 (en) * 2004-05-28 2006-03-02 Weiguo Liu Benzoureas having anti-diabetic activity
BR112020020708A8 (en) * 2018-04-09 2022-10-18 Raqualia Pharma Inc FURNISHED CYCLIC UREA DERIVATIVES AS A CRHR2 ANTAGONIST
WO2022057836A1 (en) * 2020-09-16 2022-03-24 南京明德新药研发有限公司 Benzourea ring derivative, and preparation method therefor and use thereof

Also Published As

Publication number Publication date
CN117279923A (en) 2023-12-22
WO2022228365A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
JP6880127B2 (en) Synthesis of polycyclic carbamoylpyridone compounds
JP2022071072A (en) Crystalline form of (s)-7-(1-acryloylpiperidin-4-yl)-2-(4-phenoxyphenyl)-4,5,6,7-tetra-hydropyrazolo[1,5-a]pyrimidine-3-carboxamide, preparation thereof, and uses thereof
TWI721335B (en) Halogenated allylamine SSAO/VAP-1 inhibitor and its use
US8076345B2 (en) 2-cyanophenyl-7,8-dihydro-5H-pyrido[4,3-d]pyrimidine compounds, compositions and uses thereof
CN112424185B (en) Benzene ring-containing compound, preparation method and application thereof
US20210292340A1 (en) Cell necrosis inhibitor, preparation method therefor and use thereof
TW200913990A (en) Novel compounds 951
US10150766B2 (en) P2X7 modulators
JP2021518388A (en) Oxadiazole transient receptor potential channel inhibitor
JP2022522534A (en) Compounds that target PRMT5
TW201831477A (en) Oxadiazolone transient receptor potential channel inhibitors
JP2022504620A (en) Thyroid hormone receptor beta agonist compound
JP2021501179A (en) Aminoimidazopyridazine as a kinase inhibitor
JP2023505850A (en) Compounds and uses thereof as cyclin-dependent kinase 9 inhibitors
US20210253573A1 (en) Method for preparing 2-[(3r)-3-methylmorpholin-4-yl]-4-[1-methyl-1h-pyrazol-5-yl)-8-(1h-pyrazol-5-yl)-1,7-naphthyridine
WO2018001332A1 (en) Compound having inhibitory activity against mutant isocitrate dehydrogenase, preparation method therefor and use thereof
JP2021529157A (en) New compounds useful for medical treatment
JP7292588B2 (en) Heterocycloalkyl compounds as CCR2/CCR5 antagonists
JP2021525784A (en) Thieno [2,3-c] pyridazine-4 (1H) -one derivative and its use
JP2021530474A (en) 7-Amino-5-thio-thiazolo [4,5-D] Pyrimidine phosphate and phosphonate derivatives and their use in therapeutic conditions associated with elevated levels of CX3CR1 and / or CX3CL1
JP2024515985A (en) Derivatives of six-membered aromatic heterourea rings and uses thereof
EP4206197A1 (en) Preparation method for novel rho-related protein kinase inhibitor and intermediate in preparation method
KR20240008339A (en) Substituted Heterocyclic Compounds
TW202233591A (en) 2-pyridones and methods of use thereof
JP2021531331A (en) Its use as a thiadiazole derivative and a GLS1 inhibitor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240419

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20240419