JP2024512543A - レーザー光学素子用の覆われた阻止被膜 - Google Patents

レーザー光学素子用の覆われた阻止被膜 Download PDF

Info

Publication number
JP2024512543A
JP2024512543A JP2023558241A JP2023558241A JP2024512543A JP 2024512543 A JP2024512543 A JP 2024512543A JP 2023558241 A JP2023558241 A JP 2023558241A JP 2023558241 A JP2023558241 A JP 2023558241A JP 2024512543 A JP2024512543 A JP 2024512543A
Authority
JP
Japan
Prior art keywords
substrate
layer
coating
thickness
optically transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023558241A
Other languages
English (en)
Inventor
フィリップ コックス,ジェラルド
エドワード ジェボ,トーマス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of JP2024512543A publication Critical patent/JP2024512543A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/034Optical devices within, or forming part of, the tube, e.g. windows, mirrors
    • H01S3/0346Protection of windows or mirrors against deleterious effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/101Nanooptics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Lasers (AREA)

Abstract

方法、システム、及び装置が記述される。システムは第1表面上の保護被膜と前記第1表面と反対側の第2表面上の阻止被膜とを有する光学的透過基板を含んでよい。前記保護被膜は該光学的透過基板を少なくとも紫外線レーザーエネルギーから保護するように構成され、前記阻止被膜は約280ナノメートル未満の第1の厚みを有し前記第2表面の一部に付着される。本システムは前記第2表面の前記一部上の前記阻止被膜を覆い前記阻止被膜の前記第1の厚みより小さい第2の厚みを有する覆い層を更に含む。また、本システムは前記覆い層と前記光学的透過基板を支えるように構成された構造体の間に配置された封止部品を含む。

Description

関連出願
本出願は、2021年3月23日に出願された米国仮特許出願第63/164755号の米国特許法第119条の下の優先権の利益を主張するものであり、その内容全体を本明細書に援用する。
本開示は概ね光学システムに関し、より具体的にはレーザー光学素子用の覆われた阻止被膜に関する。
光学システムは研究、医療、並びに製造プロセス及び微細加工プロセス、例えばフォトリソグラフィーなどに様々な用途を有しうる。例えば、光学システムは1つ以上のレーザー光源、例えば紫外線(UV)又は深紫外線(DUV)光を生成するエキシマーレーザーを含み、レーザー光を基板などの材料に照射又は当てるのに使用されうる。エキシマーレーザーはUVスペクトル領域の又は近くの光であって相対的に高いピークパワー及び平均パワーと相対的に高いエネルギーを持った光を生成しうり、それにより、例えば改善された解像度のフォトリソグラフィー処置を可能にする。そのような光学システムによって生成されたレーザー光のエネルギーにより、光学システムの様々な部品は劣化し易い場合がある。
本開示の方法、装置、及びデバイスはそれぞれ幾つかの新しく革新的な態様を有する。この概要はこれらの新しく革新的な態様の幾つかの例を提供するが、本開示はこの概要に含まれない新しく革新的な態様を含みうる。
説明される手法はレーザー光学素子用の覆われた阻止被膜を支える改善された方法、システム、デバイス、又は装置に関する。光学システムは1つ以上のレーザー光源、例えばUV又はDUV光を生成するエキシマーレーザーを含んでよく、基板にレーザー光を照射又は当てるのに使用されてよい。しかし、このような光学システムによって生成されたレーザー光のエネルギーにより、システムの様々な部品は劣化し易い場合がある。例として、UV光はシステムの様々な光学素子(例えば、ミラー、レンズ、ウィンドウ)を通過しうる。そのような光学素子内及び周りでのUV光の反射又は屈折の一方又は両方により、UV光がシステムの他の部品(例えば、レーザー室を封止する部品又は他の部品)と相互作用する時、それらの部品は時間と共に劣化することがある。このことは劣化した部品の修理を必要とし、光学システムの動作不能、動作停止時間などを引き起こしうる。
一般的に、説明される手法は一表面上の保護被膜と別の表面上の阻止被膜とを有する光学的透過基板(例えば、UVスペクトルの光を少なくとも部分的に透過する基板)を含む光学システムを提供する。例えば、光学的透過基板はレーザー室ウィンドウ又はレンズを含むレーザー光学素子(例えば、フッ化カルシウム(CaF)レーザー光学素子)であってよい。光学的透過基板の第1表面は保護材料(例えば、反射防止被膜、保護被膜)で被覆されてよくUV光による損傷から基板を保護する。基板は前記第1表面と反対側の第2表面上に阻止被膜、例えば環状阻止被膜を更に含んでよい。阻止被膜は幾つかの例では厚みが約60と120ナノメートル(nm)の間であり、阻止被膜を損傷(例えば、摩耗損傷、衝撃損傷、環境暴露)から保護するケイ酸塩層(例えば、約10~20nmの厚みを有する)によって覆われてよい。幾つかの態様では、阻止被膜は基板の第2表面に、例えば金属性層(基板の第2表面への阻止被膜の付着を助ける)を含む接着性層によって付着されてよい。阻止被膜は光学システムの1つ以上の部品をUVレーザー光から保護しうる。例として、光学的透過基板(例えば、レーザー光学素子)は1つ以上の支持体(例えば、支持構造体)によって適所に固定され、封止部品(例えば、オーリング)が前記覆い層と支持体の間に配置されてよい。封止部品は加圧された(例えば、相対的により高い圧力)1つ以上のガスで満たされたレーザー室を封止し、光学的透過基板はレーザー室ウィンドウ(例えば、レーザー室の一端にある)であってよい。基板上の阻止被膜を含むことは、封止部品をUVレーザー光に曝されるのを防ぐ又は減らし、UVレーザー光による封止部品の劣化を減らす又は防ぎ、光学システムの動作寿命を向上させるなどする。
システムが説明される。このシステムは第1表面上の保護被膜と前記第1表面と反対側の第2表面上の阻止被膜とを含む光学的透過基板であって、前記保護被膜は該光学的透過基板を少なくとも紫外線レーザーエネルギーから保護するように構成され、前記阻止被膜は約280ナノメートル未満の第1の厚みを有し前記第2表面の一部に付着される、光学的透過基板を含みうる。幾つかの例では、このシステムは前記第2表面の前記一部上の前記阻止被膜を覆い前記阻止被膜の前記第1の厚みより小さい第2の厚みを有する覆い層を更に含みうる。幾つかの例では、このシステムは前記覆い層と前記光学的透過基板を支えるように構成された構造体の間に配置された封止部品を含みうる。
方法が説明される。この方法は光学的透過基板を少なくとも紫外線レーザーエネルギーから保護するための保護被膜を前記光学的透過基板の第1表面上に付けるステップと、前記光学的透過基板の前記第1表面と反対側の第2表面の少なくとも一部上に第1の厚みを有する接着性層を付けるステップと、前記接着性層上に阻止被膜を付けるステップであって、前記阻止被膜は前記接着性層の前記第1の厚みより大きく約280ナノメートル未満の第2の厚みを有する、ステップと、前記阻止被膜上に覆い層を付けるステップであって、前記覆い層は前記阻止被膜の前記第2の厚みより小さい第3の厚みを有する、ステップと
を含みうる。
装置が説明される。この装置は紫外線を光学的に透過する基板と、前記基板の第1表面上に付けられ少なくとも紫外線レーザーエネルギーから前記基板を保護するように構成された保護層と、前記基板の前記第1表面と反対側の第2表面の一部に付けられた金属性接着層とを含みうる。幾つかの例では、この装置は前記金属性接着層上に付けられ約60ナノメートルと約120ナノメートルの間の第1の厚みを有し紫外線を阻止するように構成された環状阻止層を含みうる。幾つかの例では、この装置は前記環状阻止層上に付けられ約60ナノメートル未満の第2の厚みを有する環状ケイ酸塩覆い層を含みうる。
本開示の態様に係わるレーザー光学素子用の覆われた阻止被膜を支持する光学システムの一例を示す。 本開示の態様に係るレーザー光学素子用の覆われた阻止被膜を支持する光学的透過基板の一例を示す。 本開示の態様に係るレーザー光学素子用の覆われた阻止被膜を支持する光学的透過基板の一例を示す。 本開示の態様に係るレーザー光学素子用の覆われた阻止被膜を支持する光学的透過基板の一例を示す。 本開示の態様に係るレーザー光学素子用の覆われた阻止被膜を支持する光学的透過基板の一例を示す。 本開示の態様に係るレーザー光学素子用の覆われた阻止被膜を支持する装置の一例を示す。 本開示の態様に係るレーザー光学素子用の覆われた阻止被膜を支持する方法を例示するフローチャートを示す。 本開示の態様に係るレーザー光学素子用の覆われた阻止被膜を支持する方法を例示するフローチャートを示す。
光学システムはレーザー光源、透過又は屈折素子(例えば、レンズ、ウィンドウ、プリズム、ビームスプリッター)を含む光学素子、及び他の構造素子(例えば、光学素子を支持する、保持する、又は位置付けるための)を含む様々な光学部品を含んでよい。一例として、光学システムは紫外線(UV)又は深紫外線(DUV)レーザー光を光学的に透過するウィンドウ(例えば、フッ化カルシウム(CaF)基板)を持つエキシマーレーザーを含んでよい。このような場合、ウィンドウは何か支持(例えば、支持部品)によって適正位置に固定されてよい。レーザー光源はレーザー室内の1つ以上の圧縮ガスを使って動作してよく、ガス分子の励起がエキシマーレーザー出力を生成しうる。従って、ウィンドウ(例えば、レーザー室のある部分に配置される)はオーリングなどの封止部品に当接して配置されてよく、封止部品は光学ウィンドウが固定されると、レーザー室を封止しその与圧に耐えうる。
しかし、封止部品は他の部品に比べてUV光に相対的に敏感でありうり、光学システム内に存在するUV光(例えば、迷UV光又は散乱UV光)に曝されると劣化しうる。具体的には、迷UV光はウィンドウに入射し、ウィンドウ材料内で屈折、反射、又は両方され、封止部品へ向けられうる。迷UV光が封止部品に入射すると、封止部品は劣化し始めうる(例えば、散乱UVレーザー光のエネルギーにより)。封止部品の劣化はレーザー室からのガスリークを引き起こし、光学システムの誤動作及び動作停止時間(例えば、封止部品を交換又は修復するため)を引き起こしうる。即ち、動作寿命を改善し光学システムの動作不能を低減するなどのために光学システムの封止又は他の部品の劣化を防ぐ改善された設計が望ましいことがある。
本書に説明するように、光学システムの部品(例えば、封止部品又は他の部品)の劣化を防ぐ又は低減するために、ウィンドウは封止部品を入射レーザー光から保護する(例えば、阻止被膜の配置及び組成に基づき)阻止被膜を含んでもよい。具体的には、阻止被膜はウィンドウの表面に付けられてよく、阻止被膜はUV光(例えば、約193nm光)がレーザー室を封止する部品に入射する又は影響するのを阻止し、封止部品の劣化を防ぐ又は低減するように構成されてよい。また、阻止被膜は、ウィンドウを取り扱う又はに接触することによる損傷(例えば、衝撃損傷、摩耗損傷)から阻止被膜を保護する覆い層(例えば、阻止被膜上に付けられた)を更に含んでよい。加えて又は或いは、覆い層は阻止被膜を環境暴露(例えば、阻止被膜と反応しうる1つ以上のガスから成る周囲環境)から保護しうる。従って、阻止被膜上に付けられた覆い層はウィンドウの耐久性を更に改善しうる。また、覆い層は相対的により少ない量の阻止被膜材料(例えば、覆われていない阻止被膜又は他の相対的により厚い阻止被膜に比べて)が基板に付けられるのを可能にし、それにより基板に阻止被膜を被覆するのに関連する費用を低減しうる。
一例では、阻止被膜はウィンドウの表面に付けられた接着層(例えば、クロム(Cr)を含む約10ナノメートル(nm)接着層)を使ってウィンドウに付着されてよい。ウィンドウは相対的に薄い阻止アルミニウム層(例えば、約80nmアルミニウム(Al)阻止層)を更に含んでもよく、その層はケイ酸塩覆い層(例えば、約20nmSiO層)によって覆われてもよい。そのような場合、相対的により薄いアルミニウム阻止層及びSiO覆い層の組み合わせがより耐久性のあるウィンドウ表面をもたらしうる。阻止被膜を覆う覆い層を含むウィンドウは、例えば製造時、重大な損傷(例えば、引っ掻き傷)なしに清掃(例えば、拭く)に耐えうる。また、ケイ酸塩で覆われた阻止被膜は、阻止被膜からのかなりの量の粒子の剥離(覆い層がない時、起こりうるような)を防ぎうる。従って、本書に記載された覆われた阻止被膜は、例えば光学システム内で損傷なし又は無視できる損傷を伴って取り扱われ、設置され、装着され、又は取り外されうるウィンドウ又は他の光学素子を提供しうる。
本開示の態様は初めに光学システム及び光学部品の文脈で説明される。次に、ケイ酸塩で覆われた阻止被膜の追加の例が提供される。本開示の態様は覆われた阻止被膜に関する装置図及びフローチャートを参照して更に説明される。
本説明は例を提供し、本書に記載された原理の範囲、応用性、又は構成を限定するよう意図されていない。むしろ、下記の説明は当業者に本書に記載された原理の様々な態様を実施するための実施可能説明を提供する。当業者が理解しうるように、本願の趣旨から逸脱することなく様々な変更が素子の機能及び配置においてされうる。
本開示の1つ以上の態様が、加えて又は或いは本書に記載された以外の問題を解決するためにシステムにおいて実施されうることを当業者は理解するべきである。また、本開示の態様は本書に記載された他の異なる(例えば、従来の)システム又はプロセスの技術的改善を提供しうる。しかし、説明及び添付図面は本開示の態様の実施から生じる数例の技術的改善を含み、従って、請求項及び本開示の範囲内の全ての技術的改善を表すわけではない。
図1は本開示の態様に係わるレーザー光学素子用の覆われた阻止被膜を支持する光学システム100の一例を示す。光学システム100は、例えばレーザー源105を含む1つ以上の部品を含んでよい。幾つかの場合、レーザー源105はエキシマーレーザー(励起二量体レーザー)又は他のタイプのレーザーの一例であってもよい。光学システム100はUVレーザー光(例えば、約10nm~約400nmの波長λの電磁放射)又はDUVレーザー光(例えば、約193nm又は約248nmなどの波長λの電磁放射)の様々な用途に使用されてよい。
エキシマーレーザーはUVスペクトル領域内又は近くの光で相対的に高いエネルギー及び高いピークパワーと平均パワーを有する光を生成しうる。そのような場合、レーザー源105は加圧ガス(例えば、大気圧に比べて相対的に高い圧力下)が入ったレーザー室を含んでよい。そのガスは希ガス(例えば、アルゴンガス、クリプトンガス、キセノンガス)及び別のより反応性のガス(例えば、フッ素ガス、塩素ガス)を含んでよい。電気刺激をレーザー室内の加圧ガスに加えると、エキシマーが生成され、UV範囲内のレーザー光が生成される。幾つかの例では、エキシマーレーザー(例えば、レーザー源105)によって生成されレーザー光は約126nmと約351nmの間の波長を有してもよい。一例では、アルゴンガス及びフッ素ガス(例えば、ArFガス)を使用するエキシマーレーザーは、例えば波長193nmの又は近くのUVレーザー光を生成し、クリプトン及び塩素ガス(例えば、KrClガス)を使用するエキシマーレーザーは、例えば波長222nmの又は近くのUVレーザー光を生成しうる。他の例では、クリプトンガス(例えば、Krガス)を使用するエキシマーレーザーは、波長146nmの又は近くのレーザー光を生成し、クリプトン及びフッ素ガス(例えば、KrFガス)を使用するエキシマーレーザーは、波長248nmの又は近くのレーザー光を生成し、キセノン一塩化物ガス(例えば、XeClガス)を使用するエキシマーレーザーは、波長308nmの又は近くのレーザー光を生成しうる。異なる波長のレーザー光を生成するために他のガス及びガス組み合わせが可能であり、本書に提供された例は請求項又は本開示の範囲を限定すると考えられるべきでない。
レーザー源105はレーザー光の出力を可能にするウィンドウ(例えば、レーザー室ウィンドウ)を含んでもよい。レーザー室ウィンドウは光学的透過基板110の例(例えば、少なくとも幾つかの光波長、例えばUV光を光学的に透過する基板)を含んでも又はであってもよい。例えば、光学的透過基板110はフッ化カルシウム(CaF)を含み、相対的に低い吸収係数及び相対的に高い損傷閾値を有し、例えばUV光又はDUV光又は両方の効率的透過を可能にしてもよい。他の例では、光学的透過基板110はフッ化マグネシウム(MgF)又はフッ化金属材料を含んでもよい。いずれの場合も、光学的透過基板110はレーザー光(例えば、UVレーザー光、DUVレーザー光、又は他の波長のレーザー光)に相対的に耐久性のある1つ以上の材料を含んでもよい。また、光学的透過基板110はまた、レーザー室の光学ウィンドウなどとしての光学的透過基板110の用途を支援する様々な特性であって、相対的に低い散乱、相対的に低い蛍光、熱抵抗、及び化学耐性などを含む特性を有してよい。幾つかの例では、フッ化カルシウム光学素子は広範囲のUV、可視、又は赤外(IR)用途に対して理想的であり、相対的に低い屈折率を有しうる。光学的透過基板110はフッ化カルシウム以外の幾つかの他の材料(フッ化カルシウムと同じ又は類似の特性の幾つかを有する)を含んでもよい。従って、フッ化カルシウム材料を含む光学的透過基板110の例が例として提供され、請求項又は本開示の範囲を限定すると考えられるべきでない。
幾つかの例では、レーザー源105(例えば、エキシマーレーザー)は様々な用途で使用されてよい。例えば、光学システム100はUV光を使って試料を加工又は分析する様々な用途に組み込まれ又は使用されうる。一例として、光学システム100はリソグラフィー(例えば、フォトリソグラフィー)を含む製造及び微細加工用途に使用されてよい。他の例では、光学システム100は半導体の検査、医療(例えば、レーザー利用原位置角膜曲率形成術(LASIK)処置)などに使用されうる。
レーザー源105に関連するエネルギーのために、光学的透過基板110は、光学的透過基板110の少なくとも1つの表面上に1つ以上の保護被膜を含んでもよい。例えば、光学素子は幾つかの光波長、偏光状態などに対する透過又は反射を改善するよう被覆されてもよい。幾つかの用途では、光学的透過基板110はUV光又はDUV光の相対的に高強度放射に多分曝されうる。そのため、光学的透過基板110は、光学的透過基板110をUV又はDUVエネルギーから保護する被膜を含んでもよく、それにより光学的透過基板110の耐久性を向上させ光学システム100の動作寿命を増加させる。加えて又は或いは、光学的透過基板110の被膜は、入射光の反射を相対的に低減し光学的透過基板110を通過する光の効率を改善するなどする1つ以上の光学特性、例えば反射防止特性を有してもよい。幾つかの例では、1つ以上の保護被膜を含む光学的透過基板110は保護被覆されたフッ化カルシウム(PCCF)と呼ばれるか又は何か他の用語で呼ばれうる。加えて又は或いは、光学的透過基板110の少なくとも1つの表面に付けられた保護被膜はPCCFx被膜と呼ばれるか又は何か他の用語で呼ばれうる。
幾つかの場合、光学的透過基板110の少なくとも1つの表面に付けられた保護被膜は、光学システム100の他の部品が光学的透過基板110の前に劣化し始めるほど良く働くことがある。例えば、レーザー源105の断面図115が示すように、光学システム100の光学素子は1つ以上の支持部品120内に又はによって支持(例えば、に装着)されある位置に固定されうる。具体的には、光学的透過基板110はレーザー源105の端に支持部品120(例えば、光学的透過基板110の少なくとも幾つかの部分を囲う)によって支持(例えば、適所に保持)されてよい。レーザー源105はレーザー源105のレーザー室内の加圧ガスを封止するのに使われる1つ以上の封止部品125を更に含んでよい。例えば、封止部品125はオーリング、環状リング、又はレーザー室の相対的に高い圧力を封止及びに耐えうる他の部品の一例であってもよい。幾つかの例では、封止部品125はある化学耐性を持ちうる合成ゴム及びフッ素重合体エラストマーの一例であってもよい。他の例では、封止部品125は1つ以上の他の合成ゴム材料(例えば、ニトリル)、シリコーン材料などを含むオーリングの一例であってもよい。光学的透過基板110が支持部品120によって固定されると、封止部品125は光学的透過基板110と支持部品120の間に少なくとも部分的に圧縮され、レーザー室を封止しうる(例えば、次にArFガスなどのガスで加圧されうる)。
しかし、封止部品125はUV光に敏感であり、光学システム100内に存在するUV光(例えば、迷UV光130)に曝されると劣化し易いことがある。1つの説明例として、迷UV光130は光学的透過基板110に入射してもよい。迷UV光130は光学的透過基板110内で屈折され、幾つかの場合、封止部品125へ向けられうる(例えば、1つ以上の反射又は屈折により)。迷UV光130が封止部品125に入射すると、封止部品125は劣化しうる(例えば、散乱193nmレーザー光のエネルギーにより)。劣化は時間経過と共に及び直ちに起こりうる。封止部品125の劣化はレーザー室からのガスリークを引き起こしうり(例えば、封止部品125のひび割れ又は封止能力の全体的な低下により)、光学システム100の動作停止時間(例えば、封止部品125を交換又は修復するための)を発生させる。加えて又は或いは、封止部品125の劣化は光学的透過基板110の移動を引き起こしうり、光学的透過基板110の位置合わせずれを引き起こし光学システム100の動作に影響することがある。
光学システム100の少なくとも封止部品125を含む部品の劣化を防ぐ又は低減するために、光学的透過基板110は封止部品125を入射レーザー光(例えば、迷UV光130)から保護する覆われた阻止被膜135を含んでよい。具体的には、覆われた阻止被膜135はUV光(例えば、193nmDUV光)が封止部品125に入射する又は影響するのを阻止し封止部品125の劣化を防ぐ又は限定するように構成されてよい。覆われた阻止被膜135は、例えば光学的透過基板110を扱うことで引き起こされる損傷から覆われた阻止被膜135を保護し、更に光学的透過基板110の耐久性を向上させる覆い層(例えば、覆われた阻止被膜135の第1層上に付けられた)を、例えば保護被膜に加えて含んでもよい。この覆い層は図3及び4を参照して本開示の他の項で更に説明される。
本開示に記載された以外の代りの例では、レーザー室ウィンドウは阻止被膜を含んでよいが、本書に記載された覆い層を含まなくてもよい。そのような阻止被膜は、例えば基板の表面に接着層を使って付着されたアルミニウム(例えば約300nmの厚みを有する)を含んでもよい。しかし、そのような阻止被膜は相対的に柔らかい表面を有し取り扱い(例えば、製造時又はエンドユーザーによって)により容易に傷付けられうる。引っ掻き傷は、例えば基板表面を清掃する(例えば、拭く)ことで引き起こされる又は更に悪化させられる。他の例では、阻止被膜は光学部品の日常的取り付けの結果として損傷しうる。いずれの場合も、アルミニウム被膜への引っ掻き傷は又は他の損傷は剥がれによる粒子を生成するなどする場合があり、光学システム100の光学効率に影響しうる。特に、剥がれによる基板の透明孔部分上の汚れはレーザー源105の早期故障を引き起こすか又は光学システム100の動作停止時間を減少させるか又は両方でありうる。
従って、本開示に説明されるように、光学的透過基板110の覆われた阻止被膜135(例えば、覆われたアルミニウム阻止被膜)はアルミニウム阻止被膜上に付けられた覆い層(例えば、ケイ酸塩覆い層)を含んでもよく、アルミニウム阻止被膜は少なくとも封止部品125を保護するように構成されている。一例では、光学的透過基板110は光学的透過基板110の表面に付けられた接着層(例えば、約10nm厚クロム(Cr)接着層)を含んでもよい。光学的透過基板110はケイ酸塩覆い層(例えば、約20nm厚SiO層)で覆われる相対的に薄い阻止アルミニウム層(例えば、約80nm厚アルミニウム(Al)阻止層)を更に含んでもよい。このような場合、相対的により薄いアルミニウム阻止層とケイ酸塩覆い層の組み合わせは光学的透過基板110のより耐久性のある表面をもたらしうる(例えば、覆い層のない約300nmアルミニウム阻止層を有する光学素子に比べて)。覆われた阻止被膜135の覆い層を含む光学的透過基板110は、例えば製造中、清掃(例えば、拭く)に重大な欠陥(例えば、引っ掻き傷)なく耐えうることがある。また、ケイ酸塩で覆われた阻止被膜135は阻止被膜の剥がれによるどんなかなりの量の粒子も生成しないことがある。従って、本書に記載された覆われた阻止被膜135は製造歩留まりを増加させ、動作停止時間を低減するなどしうる。また、光学的透過基板110は、例えば光学システム100内で損傷なく又は僅かの損傷で取り扱われ、取り付けられ、装着され、又は取り外されうる。従って、覆われた阻止被膜135を含む光学的透過基板110は、より少ない粒子汚染により平均光学素子寿命が増加することがある。
幾つかの場合では、覆われた阻止被膜135(例えば、阻止層と覆い層)又は接着性層又はそれらの組み合わせの材料はエキシマーレーザー室の反応性ガスとの反応を低減又は防ぐように選択されてよい。例えば、レーザー源105がArFエキシマーレーザーを含む場合、アルミニウムとSiO両方がレーザー室内のArFガス中のフッ素と反応せず、一方、他の阻止被膜材料はフッ素ガスと反応することがある。このように、本書に記載された覆われた阻止被膜135は、有利にもArFレーザー室内の加圧フッ素ガスへの長期曝露に耐えうる。幾つかの場合では、覆われた阻止被膜135(例えば、金属阻止層又は膜)はアルミニウムと同様のフッ素へのより低い反応性を持った他の材料(例えば、金属)を含んでもよい。幾つかの場合では、他の接着層及びクロムに類似の材料が阻止被膜135を光学的透過基板110の表面に付着させるのに使用されてもよい。
また、覆われた阻止被膜135を含むことにより、迷UV光130のレーザーエネルギーが光学システム100の1つ以上の封止部品125に影響するのを防ぐことがある。即ち、覆われた阻止被膜135は封止部品125(例えば、オーリング)の何か劣化を防ぐことがあり、レーザー源105及び光学システム100の動作長寿命を可能にする。このような場合、基板の一面上の保護被膜は、基板がUV又はDUV光の高エネルギーに耐えるのに十分な耐久性があることを保証しうり、反対側の面上の阻止被膜はレーザー源105の他の部品がUVレーザーエネルギーから保護されるのを保証しうる。
光学システム100の幾つかの態様をエキシマーレーザー、UV光、及びDUV光に関して説明したが、光学システム100は他のタイプのレーザー及び本書に明示されていない他の光波長を含んでもよい。即ち、光学的透過基板110と覆われた阻止被膜135は様々な他のレーザー又は光学システムと共に使用されるよう構成されうる。
図2A及び2Bは、本開示の態様に係るレーザー光学素子用の覆われた阻止被膜を支持する被覆された基板200の例(例えば、被覆された基板200‐a、200‐b)を示す。例えば、図2Aは被覆された基板200‐aの一面を図示する。また、図2Bは被覆された基板200‐bの断面図を示す。被覆された基板200‐a及び200‐bは基板210と覆われた阻止被膜215(例えば、ケイ酸塩で覆われたアルミニウム阻止被膜)を含んでよい。基板210は図1を参照して説明した光学的透過基板110の一例でありうる。同様に、覆われた阻止被膜215は図1を参照して説明した覆われた阻止被膜135の一例(例えば、ケイ酸塩で覆われたアルミニウム阻止被膜)でありうる。このように、覆われた阻止被膜215は単一層、被膜、又は膜として示されているが、阻止被膜は、例えば少なくとも阻止層と覆い層を含む1つ以上の材料層を含んでもよい。従って、被覆された基板200‐a及び200‐bは光学システムに含まれるレーザー室ウィンドウなどの光学素子の一例でありうる。被覆された基板200‐a及び200‐bはケイ酸塩層で覆われているアルミニウム阻止被膜の例を示しうり、阻止被膜は1つ以上の部品をUVレーザー光から保護するように構成され、ケイ酸塩覆い層は阻止被膜を損傷(例えば、衝撃損傷、摩耗損傷、環境暴露)から保護するように構成される。
図2Aに示すように、基板210は幾つかの例で形状が円形であり、覆われた阻止被膜215は幾つかの例で基板210の表面上で環状又はリング状形状を有してよい。基板210の表面上の覆われた阻止被膜215は基板210の外縁に又は近くに概ね位置してよい。即ち、覆われた阻止被膜215の外径は基板の縁に又は基板210の縁からある距離内に概ね位置してよい。
幾つかの例では、基板210は縁のある丸み(例えば、傾斜)を有してもよく、従って、覆われた阻止被膜215の外径は基板210の丸みのある縁のほぼ近くにありうる。幾つかの例では、基板210の傾斜は約1ミリメートル(mm)であり、従って、覆われた阻止被膜215は基板210の縁から約1mm離れていてよい。加えて又は或いは、基板210の表面上に覆われた阻止被膜215が除外されたある領域がありうり、この領域は基板210(例えば、覆われた阻止被膜215を含む)が製造される仕方に基づきうる。例として、除外ゾーンが基板210に対して画定されうり、この除外ゾーンは基板を支えるツールが使用されうる(例えば、基板を加工する時、覆われた阻止被膜215が付けられる時などに)基板210の表面上の位置、領域、又は両方に一致する。例として、基板210の表面上の阻止被膜215が除外された領域(例えば、除外ゾーン)は約2mm以下であってよい。従って、幾つかの場合、阻止被膜215は基板210の縁から約3mm以下離れている(例えば、傾斜と除外ゾーン両方を含め)。
幾つかの例では、覆われた阻止被膜215は光学システム内の他の光学素子又は部品の位置に基づいて基板の表面に付けられてよい。具体的には、図1を参照して説明したように、被覆された基板200‐aはエキシマーレーザー室のウィンドウの一例であってよく、被覆された基板200‐aは1つ以上の封止部品(加圧された時、レーザー室を封止する)に対して又は当接して配置(例えば、固定、取り付け)されてよい。従って、基板210の表面上の阻止被膜の位置は、封止部品が基板210とそこで接触するように構成された対応する位置(例えば、半径)に基づいてよい。言い換えると、覆われた阻止被膜215は、覆われた阻止被膜215が光学システムの基板210と封止部品(又は他の部品)の間にあるよう構成されるように基板210の表面に付けられてよい。
同様に、覆われた阻止被膜215の1つ以上の寸法は、光学システムの他の部品(例えば、封止部品)の位置、サイズ、又は両方に基づいてよい。例として、覆われた阻止被膜215の外径は基板210の縁に又は近くにあってよいが、阻止被膜の内径φは基板の直径φに基づいてよい(例えば、阻止被膜の内径φは基板の直径φのあるパーセントであってよい)。また、阻止被膜の内径φはまた、封止部品のサイズ又は封止部品の基板210に対する位置(例えば、封止部品が基板210の表面と接触しうる位置に一致する)又は両方に基づいてもよい。従って、阻止被膜は光学システム内の他の部品のサイズ又は位置に基づく環状幅wを有してよく、環状幅はそれらの部品が覆われた阻止被膜215によってUVエネルギーから保護されるのを保証するように構成されてよい。幾つかの例では、環状幅wは基板の直径φに基づく寸法範囲を有してよい。幾つかの態様では、基板の直径φは約50mmで、阻止被膜の内径φ(被覆された基板200‐aの透明孔の外径に一致しうる)は40mmで、環状幅wは約10mmであってよい。他の例では、基板の直径φは40mmで、阻止被膜の内径φは36mmで、環状幅wは約4mmであってよい。環状幅wは約1mmから約20mm又は約2mmから約15mm又は約5mmから約15mm又は約8mmから約10mmの範囲であってよいことは熟考されている。しかし、基板210及び覆われた阻止被膜215の他の寸法が可能であり、本書に提供される代表的な値は請求項又は本開示の範囲を限定すると考えられるべきでない。
図2Bに示された被覆された基板200‐bの断面図は基板210の異なる表面220上の様々な被膜を示しうる。例として、基板210の第1表面220‐aは被膜225(例えば、保護被膜)を含み、第2表面220‐b(第1表面220‐aと反対側の)は覆われた阻止被膜215を含みうる。第1表面220‐a上の被膜225は光学的透過基板を少なくとも紫外線レーザーエネルギーから保護するように構成された被膜の一例であってもよい。例えば、この被膜はUV光(例えば、193nmDUVレーザー光)による損傷を防ぐように構成された反射防止又は他の被膜であってもよく、基板210にUVエネルギーからのある保護を提供し、それにより被覆された基板200‐a、200‐bの耐久性を向上させうる。幾つかの場合では、基板210の第2表面220‐b上の覆われた阻止被膜215(例えば、覆われたアルミニウム阻止被膜)は第2表面に接着層を使って付着されてよい。他の例では、覆われた阻止被膜215は基板210の第2表面220‐bに直接付けられてよい(例えば、接着層なしで)。図3及び4に関して更に詳細に説明するように、阻止層はケイ酸塩層(例えば、約10nmSiO層)で覆われたアルミニウム層(例えば、約80nmアルミニウム層)を含んでよく、ケイ酸塩層はアルミニウム阻止被膜を、被覆された基板200‐a、200‐bを取り扱う時、様々なタイプの損傷から保護し被覆された基板200‐a、200‐bの耐久性を更に向上させように構成されてよい。
図3は本開示の態様に係るレーザー光学素子用の覆われた阻止被膜を支持する被覆された基板300の一例を示す。被覆された基板300は、基板310(例えば、光学的透過基板)と覆われた阻止被膜として構成される層315とを含んでよい。層315は第1層320(例えば、接着層、接着性層)、第2層325(例えば、阻止層)、及び第3層330(例えば、覆い層)を含んでよい。しかし、異なる数の層315が可能であり、各層の組成、厚み、又は特性、又はそれらの任意の組み合わせは本書に提供された例と異なりうる。また、幾つかの場合、本書に記載された層は、被膜又は膜(例えば、薄膜)、又は両方と等価であり、これらの用語は交換可能に使用されてよい。例えば、基板310又は別の層上に付けられた層は膜(例えば、蒸着処理により付けられた薄膜)として付けられてよい。同様に、付けられた時、層は基板又は他の層の一部を被覆し、従って、被膜と呼ばれることがある。
図3の被覆された基板300は光学システムの1つ以上の部品をレーザー光(例えば、UVレーザー光)から保護するために被覆された基板310の一部の例を示す。例えば、基板310は図1、2A、及び2Bを参照して説明した光学的透過基板110又は基板210の一例でありうり、基板310はフッ化カルシウム(CaF)光学部品の一例(例えば、ウィンドウ)でありうる。層315は図1、2A、及び2Bを参照して説明した覆われた阻止被膜135又は覆われた阻止被膜215の一例であるか、又は含みうる。
他で更に詳細に説明されるように、複数の層315が基板310の一部に付けられてよく、基板310の縁の近くに位置する環状形状を有してよい。従って、図3に示す被覆された基板300は層315を含む被覆された基板300の断面の一例であり、基板310の他の部分(不図示)は異なる数の(例えば、より少ない、より多い、ゼロ個の)層が付けられるか、又は異なるタイプの被膜、層、又は膜が基板310の1つ以上の表面に付けられてもよい。一例では、基板310はその第1表面に付けられた複数の層315と基板310の少なくとも1つの他の表面(例えば、第1表面と反対側の第2表面)に付けられた1つ以上の他の層(例えば、保護被膜、反射防止被膜)とを含んでよい。
基板310の表面に付けられた層315は少なくとも部分的にレーザー光(例えば、UVレーザー光)を阻止するように構成され、また層315の耐久性を向上させる少なくとも1つの保護層を含み、それにより被覆された基板300(例えば、レーザー光学素子、レンズ、ウィンドウ)の動作長寿命を可能にしてもよい。基板310の第1表面に付けられた第1層320は接着層(接着性層、被膜、又は膜とも呼ばれる)を含んでもよい。
例えば、第1層320は第2層325の基板310への付着を助ける1つ以上の材料であっても又は含んでもよい。第1層320は、少なくとも約5nm又は約5nmと20nmの間又は約7nmと15nmの間(例えば、基板310の第1表面から測定して)であってよい第1厚みtを有してよい。幾つかの態様では、第1層320は約10nm厚であってもよい。第1層320は基板310に付けられた金属接着性層(例えば、1つ以上の金属又は金属性材料を含む)であってよく、第2層325の基板310への付着を向上又は改善してもよい。しかし、幾つかの例では、第1層320は任意選択であってよい(図4を参照して説明されるように)。幾つかの態様では、第1層320はクロム(Cr)接着性層、被膜、又は膜を含んでもよい。幾つかの場合、接着性層(例えば、第1層320)としてのクロムの使用は基板310の表面への第1層320の相対的に速く効率的な付着を可能にしうる(例えば、蒸着処理時に加熱せずに)。他の例では、第1層320はニッケル(Ni)接着性層、被膜、又は膜を含んでもよい。加えて又は或いは、第1層320はニッケルクロム材料(例えば、ニッケルクロム合金)、金属材料、金属合金材料などを含んでもよい。即ち、例えばクロムと比べて同様の幾つかの特性を有する他の材料が第1層320の一部として使用されてもよい。例えば、基板310は光学ウィンドウ(例えば、エキシマーレーザーシステムのレーザー室の一部)として使用されてよいので、第1層320の1つ以上の材料はレーザー室内で加圧された1つ以上のガスとの反応性を防ぐ又は低減するように選択されてよい。
基板310の表面に付けられた第2層325(例えば、第1層320上)は阻止層(阻止被膜又は膜とも呼ばれる)であってもよい。第2層325はUVレーザー光が光学システムの1つ以上の部品に影響するのを少なくとも部分的に阻止するように構成された材料を含んでよい。第2層325は第2の厚みtを有し、幾つかの例では、約50と280nmの間(例えば、第1層320の表面から測定して)であってもよい。約280より大きい厚みははがれ易いことがあり、基板310の機能に影響することがある(例えば、基板310がレーザー光学素子である場合のように1つ以上の薄片が入射光と相互作用することがある)。幾つかの態様では、第2層325は約80nmから200nm厚又は約100nmから150nm厚であってよい。幾つかの例では、第2の厚みtは第1の厚みtと異なる(例えば、より大きい)。
第2層325はUV光を少なくとも部分的に阻止又は反射する金属性阻止被膜(例えば、1つ以上の金属又は金属性材料を含む)であってもよい。幾つかの態様では、第2層325はUV光を少なくとも部分的に吸収してもよい(例えば、ある光は阻止被膜の材料によって吸収及び反射されうる)。第2層325はアルミニウム(Al)又はUV光(例えば、約193nmの波長を持つ)を少なくとも部分的に阻止するように構成された何か他の材料であってよい。幾つかの例では、第2層325はニッケルクロム材料、金属性材料、金属合金材料、酸化金属材料、酸化クロム材料、又は何か他の材料であってよい。例えば、アルミニウムと比べて同様の幾つかの特性を有する1つ以上の他の材料が第2層325に含まれてもよい。ここで、第2層325用の選択された材料は被覆された基板300(例えば、レーザー光学素子)の用途に基づいてよい。一例として、基板はArFエキシマーレーザーのレーザー室ウィンドウとして使用されてよく、アルミニウムはArFガス内のフッ素とある限定された又は無反応でありうるので、同様にアルミニウム阻止被膜(例えば、第2層325)はArFガスと反応しないか又は最小の反応をすることがある。
幾つかの場合、第2層325の厚みtは阻止被膜に使用される材料の種類に基づいてもよい。例えば、幾つかの材料は他の材料と異なって(例えば、より良く)UV光を阻止する特性を有しうり、第2層325のある閾値厚みは、UV光へのある量の不透明度を達成する、又は層315又は第2層325の全体厚みをある閾値厚み(例えば、最小厚み)内に保つなどするのに使用されてよい。
基板310の表面(例えば、第2層325上)に付けられた第3層330は覆い層(覆い被膜又は膜とも呼ばれうる)であってもよい。第3層330は第2層325を何か損傷又は劣化(例えば、摩耗損傷、衝撃損傷、剥がれ、環境暴露など)から保護するように構成された材料を含んでよい。従って、第3層330を第2層325上に付けることで、第2層325は相対的に増加した耐久性(例えば、覆い層のない被膜と比べて)を有しうり、被覆された基板300の取り扱いによって引き起こされうる損傷に耐えうる。第3層330は10nm以上又は約10nmと20nmの間又は約12nmと15nmの間(例えば、第2層325の表面から測定して)の第3の厚みtを有しうる。幾つかの態様では、第3の厚みは約10nmであってよい。幾つかの例では、第3の厚みtは第1の厚みt又は第2の厚みtの一方又は両方と異なってもよい(例えば、より大きい、より小さい)。幾つかの場合、第3層330はケイ酸塩材料(例えば、SiO)又は1つ以上の他の材料を含んでよい。例えば、第3層330は金属性材料、酸化金属材料などを含みうる。幾つかの例では、第3層330は酸化アルミニウム(Al)材料を含みうる。本書で同様に説明するように、第3層330の材料は被覆された基板300の用途に基づいて選択されてよく、第3層330(例えば、覆い層)は、例えばレーザー室内の1つ以上のガスとの反応を低減又は防ぐ材料であってよい。例えば、第3層330の材料は、第2層325を保護しうる材料の相対的耐久性に基づいて選択されてよい。各層の厚み(例えば、t、t、t)に基づいて、層315の全体厚み(例えば、基板310の表面から測定した)は、幾つかの例では約60と300nmの間であってもよい。しかし、層315の他の寸法又は厚みが可能でありうる。
第3層330を付けることは被覆された基板300が製造及び設置(例えば、エンドユーザーによる)に相対的により耐久性があるようにすることがあり、従って、製造者及びユーザー両方において歩留まり損失を防ぐ。一例として、覆い層は阻止層が定期的取り扱い、設置、又は動作により剥がれる又は損傷するのを防ぎ、基板310の被覆されていない部分が薄片又は他の粒子状物質(基板310を通過する高エネルギーレーザー光と干渉する可能性がある)がないままであることを保証しうる。即ち、例えば、基板310の透明孔部分内の光学素子の表面上の被覆されていない部分上の汚染(例えば、金属汚染)の量を減らすことは、レーザーシステム内の被覆された基板300の予想される寿命を増加させうる。
図4は本開示の態様に係るレーザー光学素子用の覆われた阻止被膜を支持する被覆された基板400の例を示す。被覆された基板400は基板410(例えば、光学的透過基板)と覆われた阻止被膜として構成された層415とを含んでよい。層415は第1層420(例えば、阻止層)と第2層425(例えば、覆い層)を含んでよい。しかし、異なる数の層415が可能であり、各層の組成、厚み、又は特性、又はそれらの任意の組み合わせは本書に提供された例と異なりうる。
図4の被覆された基板400は光学システムの1つ以上の部品をレーザー光(例えば、UVレーザー光)から保護するために被覆された基板410の一部の例を示す。例えば、基板410は図1、2A、2B、及び3を参照して説明した光学的透過基板110、基板210、又は基板310の一例であり、フッ化カルシウム(CaF)光学部品の一例(例えば、光学ウィンドウ)でありうる。層415は図1、2A、2B、及び3を参照して説明した覆われた阻止被膜135、覆われた阻止被膜215、又は層315の一例であるか、又は含みうる。
層415は基板410の一部に付けられてよく、基板410の縁の近くに位置する環状形状を有してよい。従って、図4に示す被覆された基板400は層415を含む被覆された基板400の断面の一例であり、基板410の他の部分(不図示)は異なる数の(例えば、より少ない、より多い、ゼロ個の)層が付けられるか、又は異なるタイプの被膜、層、又は膜が基板410の1つ以上の表面に付けられてもよい。一例では、基板410はその第1表面に付けられた複数の層415及び基板410の少なくとも1つの他の表面(例えば、第1表面と反対側の第2表面)に付けられた1つ以上の他の層又は被膜(例えば、保護被膜、反射防止被膜)を含んでよい。
基板410の表面に付けられた層415は少なくとも部分的にレーザー光(例えば、UVレーザー光)を阻止するように構成され、また層415の耐久性を向上させる少なくとも1つの保護層を含み、それにより被覆された基板400(例えば、レーザー光学素子、レンズ、ウィンドウ)の動作長寿命を可能にしてもよい。幾つかの例では、層415は接着層なしで付けられてもよい。例えば、第1層420(例えば、基板410の一表面に付けられた)はレーザー光が光学システムの1つ以上の部品に影響するのを少なくとも部分的に阻止するように構成された材料を含みうる。ここで、第1層420は基板410の表面に、第1層420と基板410の表面の間に別の中間層なしで十分付着されうる。接着層がないことは、幾つかの例では、被覆された基板400の製造を速め、また基板410上の耐久性のある覆われた阻止被膜を提供する。幾つかの他の例では、接着層の排除は、基板410の表面に被覆された基板400の用途に関連するガス(例えば、エキシマーレーザーのレーザー室内のArFなどのガス)と反応しうる材料を付けるのを防ぐことがある。
第1層420は約50と120nmの間又は約60と100nmの間(例えば、基板410の一表面から測定して)であってよい第1厚みtを有してよい。幾つかの態様では、第1層420は約80nm厚であってもよい。第1層420はUV光を少なくとも部分的に阻止又は反射する金属性阻止被膜(例えば、1つ以上の金属又は金属性材料を含む)であってよい。幾つかの態様では、第1層420はUV光を少なくとも部分的に吸収してもよい(例えば、ある光は阻止被膜の材料によって吸収及び反射されうる)。幾つかの例では、第1層420はアルミニウム(Al)又はUV光(例えば、約193nmの波長を有する)を少なくとも部分的に阻止するように構成されたある他の材料であってもよい。
基板410の表面(例えば、第1層420上)に付けられた第2層425は覆い層(覆い被膜又は膜とも呼ばれうる)であってもよい。第2層425は第1層420を何か損傷又は劣化(例えば、摩耗損傷、衝撃損傷、剥がれなど)から保護するように構成された材料を含んでよい。従って、第2層425を第1層420上に付けることで、第1層420は相対的に増加した耐久性(例えば、覆い層のない被膜と比べて)を有しうり、被覆された基板400の取り扱いによって引き起こされうる損傷に耐えうる。第2層425は10nm以上又は約10nmと20nmの間又は約12と15nmの間(例えば、第1層420の表面から測定して)の第2の厚みtを有しうる。幾つかの態様では、第3の厚みは約10nmでありうる。幾つかの例では、第2の厚みtは第1厚みtと異なって(例えば、より小さい)よい。幾つかの場合、第2層425はケイ酸塩材料(例えば、SiO)又は1つ以上の他の材料を含みうる。加えて又は或いは、第2層425は酸化アルミニウム(Al)材料を含んでもよい。
図5は本開示の態様に係るレーザー光学素子用の覆われた阻止被膜を支持する装置500の一例を示す。例えば、装置500は物理的気相成長(例えば、電子ビーム物理的気相成長)、熱蒸着(例えば、熱蒸発成長、熱気相成長、熱化学気相成長)、スパッタリング、又は他の蒸着処理(例えば、照準線蒸着処理など)などの1つ以上の蒸着処理用に構成された装置の例であり、蒸着処理は異なる材料層、被膜、又は膜を基板510に付けるために使用されうる。例えば、装置500は保護被膜を基板510の一表面に付ける、接着性層を基板510の別の表面に付ける、阻止被膜(又は阻止層)を接着性層上に付ける、及び覆い層を阻止層上に付けるのうち1つ以上を行うのに使用されてよい。このように、基板510は図1、2A、2B、3、及び4を参照して説明した光学的透過基板110、基板210、基板310、又は基板410の一例であってよい。例えば、基板510はフッ化カルシウム(CaF)光学部品の一例(例えば、レーザーシステムのウィンドウ)であってよい。
装置500は、例えば真空室505、1つ以上の材料源515、及び基板ホルダー520を備えてよい。材料源515はインゴット、材料小粒、材料片(例えば、約1mm~3mmの範囲のサイズの片)、材料塊、材料ペレットなどの一例であってよい。材料源515は基板510上に様々な層、被膜、又は薄膜の形態で蒸着される1つ以上の材料を含みうる。例えば、材料源515は阻止被膜を基板510に付けるために使用されるアルミニウム材料の一例であってよい。他の例では、材料源515は接着性層を基板510に付ける(例えば、阻止被膜を基板510に付ける前に)ために使用されるクロム材料の一例であってよい。材料源515は他の材料、元素、化合物などであっても又は含んでもよい。1つの態様では、材料源515からの材料は、材料源515から基板510への照準線流れ又は塗布の形態に昇華されうる(例えば、電磁場によって材料源515へ方向付けされる電子ビームによって引き起こされる)。他の例では、材料源515の1つ以上の材料は基板510上に蒸着のため蒸発させられうる。一例として、クロム(Cr)材料を含む接着層は基板510に付けられる時に昇華されうる一方、アルミニウム(Al)を含む阻止層又はケイ酸塩覆い層又は両方は基板510に付けられる時に蒸発されうる。ここで、本装置は材料を基板510のある部分に付けるように構成されうる。
幾つかの例では、基板ホルダー520、基板510、又は両方は回転し、材料源515からの材料を基板510上に蒸着するための様々な手法又は構成を可能にしうる。例えば、基板ホルダー520又は基板510又は両方は、例えば周転円歯車、遊星歯車などを含む1つ以上の回転装置及び手法を使って回転させられてよい。いずれの場合も、材料源515からの1つ以上の材料525が基板510上に、例えば順次蒸着され、様々な厚みを持つ複数の層が基板510上に蒸着されうる。図5に示すように、材料525は基板510の下方に位置する材料源515を使って蒸着されてよい。他の例では、材料525は基板510の上方に位置する材料源515を使って蒸着されてよい。幾つかの場合、材料525は1つ以上のマスキング手法、1つ以上のエッチング手法、又はそれらの任意の組み合わせを使って基板上に蒸着されてよい。例として、1つ以上のマスクが材料525の1つ以上の層を基板510上に特定の形状(例えば、環状形状)に蒸着するために使用されてよい。
一例として、装置500は異なる被膜又は層を基板510に付けるために構成されうる。一例では、装置500は保護層又は被膜を基板510の一表面に付けてもよい。本書で説明したように、保護層は基板510をUVレーザーエネルギーから保護する反射防止被膜を含んでもよい。加えて又は或いは、装置500は接着性層(例えば、接着層)を基板510の別の面に付けるのに使用されてもよい。そのような場合、接着性層は阻止被膜を基板510に付着させるのに使用される1つ以上の金属性材料を含んでもよい。一態様では、接着性層はクロム(Cr)を含んでよいが、他の材料が阻止被膜を基板510の表面に付着させるために使用されてもよい。装置500は接着性層が基板510上である厚みになるまで接着性被膜を基板510に蒸着してもよい。一例として、接着性層は接着性層が約10nm厚(例えば、基板510の表面から測定して)になるまで蒸着されてよい。他の例では、接着性層の厚みは約5nmと約20nmの間であってもよい。幾つかの場合、接着性層は基板510の縁にある又はに近いリング又は環の形状に蒸着されてよい。例えば、基板510は円形形状を有し、接着性層は基板510の外縁に付けられ、基板510の一部(例えば、透明孔部分)を接着性層及び/又は他の被膜又は層なしで残してよい(例えば、図2Aを参照して例示するように)。
接着性層を蒸着後、装置500は阻止被膜を基板に(例えば、接着性層上に)付けるために構成されてよい。阻止被膜は基板510の縁にある又はに近い環状阻止被膜を生成するように基板510に付けられてよい(例えば、蒸着処理によって、蒸着処理と除去処理によって)。従って、阻止被膜は基板510の一部を覆うように付けられうる。幾つかの例では、阻止被膜(及び材料525)はアルミニウム又はUVレーザー光を少なくとも部分的に阻止しうる別の材料であってもよい。
阻止被膜はある厚みになるまで装置500によって蒸着されてよい。例えば、阻止被膜は約60nm厚(例えば、基板510の表面に先に付けられた接着性層から測定して)になるまで蒸着されてよい。他の例では、阻止被膜の厚みは約50nmと約200nmの間であってよい。幾つかの場合、阻止被膜は先に接着性層を付けることなく基板510の表面に付けられてよい。このように、阻止被膜は基板510の表面に付けられ、基板510の表面に十分付着しうる(例えば、接着性層なしで)。
阻止被膜が基板510の表面に蒸着された後、覆い層が阻止被膜上に蒸着されてよい(例えば、蒸着処理によって、蒸着処理と除去処理によって)。そのような場合、基板510の縁にある又はに近い環状阻止被膜がケイ酸塩層によって覆われるように覆い層が基板510に付けられてよく、ケイ酸塩層は阻止被膜(及びもしあれば接着性層)と同じ環状形状を有する。従って、ケイ酸塩覆い層は基板510の一部を覆うように付けられてよい。幾つかの例では、ケイ酸塩覆い層(及び材料525)は二酸化ケイ素(SiO)又は少なくとも部分的に阻止被膜を保護しうる別の材料であってもよい。例えば、SiO層は阻止被膜を摩耗又は衝撃による損傷、又は他のタイプの損傷から保護しうる。ケイ酸塩覆い層はある厚みになるまで装置500によって蒸着されてよい。例えば、覆い層は約10nm厚(例えば、基板510の表面に先に付けられた阻止被膜層から測定して)になるまで蒸着されてよい。他の例では、ケイ酸塩層の厚みは約10nm以上であってよい。幾つかの例では、覆い層(及び材料525)は酸化アルミニウム(Al)材料を含んでよい。
幾つかの例では、接着性層、阻止被膜、及び覆い層用の様々な材料が1つ以上の温度条件下で基板510に蒸着されるか付けられてよい。例えば、それらの層は基板510上に周囲温度又は室温で形成されてよい。そのような場合、基板510への層及び材料の蒸着は何も熱源を必要としないことがあり、それにより覆われた阻止層を含む光学的透過基板の効率的製造を可能にする。また、低温(例えば、周囲温度)被覆処理は被覆室サイクル時間を低減しうり(例えば、他の被覆処理及び被膜構成に比べて)、それにより製造効率を増加させる。
図6は本開示の態様に係るレーザー光学素子用の覆われた阻止被膜を支持する方法600を例示するフローチャートを示す。方法600の動作は本書に記載されたように装置又はその部品によって実行されうる。例えば、方法600の動作は図5を参照して説明したように蒸着処理(例えば、物理的気相成長)用に構成された装置によって実行されてよい。幾つかの例では、装置は一組の命令を実行してその装置の機能要素を制御し記載された機能を実行してよい。加えて又は或いは、装置は記載された機能の態様を特殊用途ハードウェアを使って実行してもよい。
605で、本方法は光学的透過基板の第1表面にその光学的透過基板を少なくともUVレーザーエネルギーから保護するための保護被膜を付けることを含みうる。605の動作は本書に開示された例に従って実行されてよい。
610で、本方法は第1の厚みを有する接着性層を光学的透過基板の第1表面と反対側の第2表面の少なくとも一部上に付けることを含みうる。610の動作は本書に開示された例に従って実行されてよい。
615で、本方法はその接着性層上に接着性層の第1の厚みより大きく約280ナノメートル未満の第2の厚みを有する阻止被膜(例えばアルミニウム)を付けることを含みうる。615の動作は本書に開示された例に従って実行されてよい。
620で、本方法はその阻止被膜上に阻止被膜の第2の厚みより小さい第3の厚みを有する覆い層(例えばケイ酸塩層)を付けることを含みうる。620の動作は本書に開示された例に従って実行されてよい。
幾つかの例では、本書に記載した装置は方法600などの方法を実行しうる。この装置は、光学的透過基板の第1表面にその光学的透過基板を少なくとも紫外線レーザーエネルギーから保護するための保護被膜を付ける、及び第1の厚みを有する接着性層を光学的透過基板の第1表面と反対側の第2表面の少なくとも一部上に付ける、及びその接着性層上に接着性層の第1の厚みより大きく約280ナノメートル未満の第2の厚みを有する阻止被膜を付ける、及びその阻止被膜上に阻止被膜の第2の厚みより小さい第3の厚みを有する覆い層を付けるための特徴、回路、論理、手段、又は命令群(例えば、プロセッサによる実行可能な命令群を記憶する持続性コンピュータ読取可能媒体)を含んでよい。
本書に記載した方法600及び装置の幾つかの例では、接着性層を付けることは、金属接着性層から成る接着性層を約5nm以上の第1の厚みになるまで蒸着するための動作、特徴、回路、論理、手段、又は命令群を含んでよい。
本書に記載した方法600及び装置の幾つかの例では、阻止被膜を付けることは、紫外線を少なくとも部分的に阻止するための金属性阻止層から成る阻止被膜を約60nm以上の第2の厚みになるまで蒸着するための動作、特徴、回路、論理、手段、又は命令群を含んでよい。
本書に記載した方法600及び装置の幾つかの例では、覆い層を付けることは、阻止被膜を衝撃損傷、摩耗損傷、環境暴露、又はそれらの任意の組み合わせから保護する二酸化ケイ素材料から成る覆い層を約10nm以上の第3の厚みになるまで蒸着するための動作、特徴、回路、論理、手段、又は命令群を含んでよい。
本書に記載した方法600及び装置の幾つかの例では、接着性層、阻止被膜、及びケイ酸塩層のそれぞれは、電子ビーム物理的気相成長処理、スパッタリング処理、又は熱蒸着処理、又はそれらの任意の組み合わせを使って環状形状に付けられてよい。
図7は本開示の態様に係るレーザー光学素子用の覆われた阻止被膜を支持する方法700を例示するフローチャートを示す。方法700の動作は本書に記載されたように装置又はその部品によって実行されうる。例えば、方法700の動作は図5を参照して説明したように蒸着処理(例えば、物理的気相成長)用に構成された装置によって実行されてよい。幾つかの例では、装置は一組の命令を実行してその装置の機能要素を制御し記載された機能を実行してよい。加えて又は或いは、装置は記載された機能の態様を特殊用途ハードウェアを使って実行してもよい。
705で、本方法は光学的透過基板の第1表面にその光学的透過基板を少なくとも紫外線レーザーエネルギーから保護するための保護被膜を付けることを含みうる。705の動作は本書に開示された例に従って実行されてよい。
710で、本方法は約5nm以上の第1の厚みになるまで金属接着性層から成る接着性層を光学的透過基板の第1表面と反対側の第2表面の少なくとも一部上に蒸着することを含みうる。710の動作は本書に開示された例に従って実行されてよい。
715で、本方法はその接着性層上に接着性層の第1の厚みより大きく約60nm以上で約120nm未満の第2の厚みになるまでUV光を少なくとも部分的に阻止するための金属性阻止層から成る阻止被膜(例えばアルミニウム)を蒸着することを含みうる。715の動作は本書に開示された例に従って実行されてよい。
720で、本方法はその阻止被膜上に阻止被膜の第2の厚みより小さく約10nm以上の第3の厚みになるまで阻止被膜を衝撃損傷、摩耗損傷、環境暴露、又はそれらの任意の組み合わせから保護する二酸化ケイ素(SiO)材料から成る覆い層を蒸着することを含みうる。720の動作は本書に開示された例に従って実行されてよい。
システムが記述される。本システムは第1表面上の保護被膜と第1表面と反対側の第2表面上の阻止被膜とを有する光学的透過基板であって、前記保護被膜は該光学的透過基板を少なくとも紫外線レーザーエネルギーから保護するように構成され、前記阻止被膜は約120ナノメートル未満の第1の厚みを有し前記第2表面の一部に付着される、光学的透過基板と、前記第2表面の一部上の前記阻止被膜を覆い前記阻止被膜の第1の厚みより小さい第2の厚みを有する覆い層と、前記覆い層と前記光学的透過基板を支持するように構成された構造体の間に位置する封止部品とを含んでもよい。
本システムの幾つかの例では、阻止被膜は紫外線を少なくとも部分的に反射するように構成されてよい1つ以上の材料から成り、第1の厚みは前記1つ以上の材料の反射率に少なくとも部分的に基づいてよい。装置の幾つかの例では、阻止被膜はアルミニウム材料から成り、第1の厚みは約60ナノメートルと約120ナノメートルの間であってよい。
本システムの幾つかの例では、覆い層は二酸化ケイ素材料から成り、第2の厚みは約10ナノメートル以上である。装置の幾つかの例では、阻止被膜は封止部品の位置に少なくとも部分的に基づいて少なくとも封止部品を入射紫外線レーザーエネルギーから保護するように構成されてよい。
本システムの幾つかの例では、阻止被膜は光学的透過基板の縁の概ね近くに位置してよい外径を有する環状形状を有する。装置の幾つかの例では、環状形状の内径は封止部品のサイズ、光学的透過基板に対する封止部品の位置、又は光学的透過基板の直径のうち1つ以上に少なくとも部分的に基づいてよい。
幾つかの例では、本システムは光学的透過基板と阻止被膜の間に位置する接着層を含んでよく、接着層は阻止被膜を光学的透過基板に付着させる金属性層から成り第2の厚みより小さい第3の厚みを有する。装置の幾つかの例では、第1の厚みは約80ナノメートルであり、第2の厚みは約20ナノメートルであり、第3の厚みは約10ナノメートルであってもよい。
本システムの幾つかの例では、本システムはエキシマーレーザーシステムの室の一部を含み、封止部品は室が加圧された時、圧力に耐えるように構成された環状リングから成る。
装置が記述される。本装置は紫外線を光学的に透過する基板、基板の第1表面に付けられた保護層、基板の第1表面と反対側の第2表面の一部に付けられた金属性接着層、金属性接着層上に付けられた環状阻止層、及び環状阻止層上に付けられた環状ケイ酸塩層を含んでよく、保護層は基板を少なくとも紫外線レーザーエネルギーから保護するように構成され、環状阻止層は約60ナノメートルと約120ナノメートルの間の第1の厚みを有し紫外線を阻止するように構成され、環状ケイ酸塩層は約60ナノメートル未満の第2の厚みを有する。
本装置の幾つかの例では、金属性接着層はクロムから成り、約10ナノメートルの第3の厚みを有してよい。本装置の幾つかの例では、環状阻止層はアルミニウム材料から成り、第1の厚みは約80ナノメートルであり、環状阻止層は基板の直径に少なくとも部分的に基づきうる内径と基板の縁の概ね近くに位置する外径を有しうる。
本装置の幾つかの例では、環状ケイ酸塩層は二酸化ケイ素から成り、第2の厚みは約20ナノメートルであってよい。本装置の幾つかの例では、紫外線は約193ナノメートルの波長を有してよい。
これらの方法は実施形態を記述し、他の実施形態が可能なように動作及びステップは並べ替え又は変更されてよいことに注意すべきである。幾つかの例では、これらの方法のうち2つ以上の態様が組み合わされてもよい。例えば、各方法の態様は他の方法のステップ又は態様、又は本書に記載された他のステップ又は手法を含んでよい。従って、本開示の態様は消費者選択及び保守インターフェースを可能にしうる。
本書に明記した説明と添付図面は構成例を記述し、実施されうる又は請求項の範囲内の例の全ては示していない。本書で使用される用語「代表的な」は例又は例示として働くことを意味し、「好適な」も「他の例より有利な」も意味しない。詳細な説明は記載された手法の理解を提供するために特定の詳細を含む。しかし、これらの手法はこれらの特定の詳細なしで実行されてもよい。幾つかの例では、周知の構造体及び装置は記載された例の概念を曖昧にするのを防ぐためにブロック図で示される。
本書で使用されるように、用語「約」は、修飾された特性(例えば、この用語で修飾された動詞又は形容詞)又は関係する態様(例えば、関係する動作又は機能)は絶対である必要がなく、特性又は関係する態様(例えば、関係する動作又は機能)の利点を達成するのに十分近いことを意味する。
添付図において、類似の構成要素又は特徴は同じ符号を有する場合がある。また、同じ種類の様々な構成要素が、符号の後ろにダッシュと類似の構成要素間を識別する第2の符号を付けることで区別される場合がある。第1符号だけが本明細書で使用される場合、説明は第2符号に拘らず同じ第1符号を持つ類似の構成要素のいずれにも当てはまる。
本書に記載された情報及び信号は様々な異なる技術及び手法のどれでも使用して表されうる。例えば、上記説明を通して参照されるデータ、命令、コマンド、情報、信号、ビット、シンボル、及びチップは電圧、電流、電磁波、磁場又は磁性粒子、光学場又は粒子、又はそれらの任意の組み合わせによって表されうる。
本開示に関して説明された様々な例示のブロック及びモジュールは汎用プロセッサ、デジタル信号プロセッサ(DSP)、中央処理ユニット(CPU)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、又は他のプログラム可能論理装置、個別ゲート又はトランジスター論理回路、個別ハードウェア部品、又はそれらの任意の組み合わせ(本書に記載した機能を実行するように設計された)によって実行されうる。汎用プロセッサはマイクロプロセッサであってもよいが、或いはプロセッサは任意のプロセッサ、コントローラ、マイクロコントローラ、又は状態マシンであってもよい。プロセッサはまた、計算装置の組み合わせ(例えば、DSPとマイクロプロセッサ、複数のマイクロプロセッサ、DSPコアと共に1つ以上のマイクロプロセッサ、又は任意の他のそのような構成)として実現されてもよい。各ユニットの機能はまた、メモリに記憶され1つ以上の汎用又は特定用途向けプロセッサによって実行されるようフォーマットされた命令群を用いて全体又は一部が実行されうる。
本書に記載された機能はハードウェア、プロセッサによって実行されるソフトウェア、ファームウェア、又はそれらの任意の組み合わせで実行されうる。プロセッサによって実行されるソフトウェアで実行される場合、機能は1つ以上の命令又はコードとしてコンピュータ読取可能媒体に記憶されるか、送信されうる。他の例及び実施形態は本開示及び添付請求項の範囲内である。例えば、ソフトウェアの性質により、本書に記載された機能はプロセッサ、ハードウェア、ファームウェア、配線、又はこれらのうちいずれかの組み合わせによって実行されるソフトウェアを使って実行されうる。機能を実行する特徴はまた、様々な位置に物理的に位置してよく、機能の複数の部分が異なる物理的位置で実行されるように分散されてもよい。また、請求項を含め本書で使用されるように、項目のリスト(例えば、「の少なくとも1つ」又は「の1つ以上」などの句が前置された項目のリスト)で使用される「又は」は、包含リストを示し、例えば、A、B、又はCの少なくとも1つというリストは、A又はB又はC又はAB又はAC又はBC又はABC(即ち、A及びB及びC)を意味する。また、本書で使用されるように、句「に基づいて」は閉じた条件の組を指すとは解釈されてはならない。例えば、「条件Aに基づいて」と記述された代表的なステップは、条件A及び条件Bの両方に基づいていてもよく、本開示の範囲から逸脱しない。言い換えると、本書で使用されるように、句「に基づいて」は、句「に少なくとも部分的に基づいて」と同様に解釈されるものとする。
コンピュータ読取可能媒体は持続性コンピュータ記憶媒体と、コンピュータプログラムの1つの場所から別の場所への転送を可能にする任意の媒体を含む通信媒体両方を含む。持続性記憶媒体は汎用又は特殊用途コンピュータによってアクセスされうる任意の入手可能媒体であってよい。限定ではなく例として、持続性コンピュータ読取可能媒体は、ランダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)、電気的消去・プログラム可能読み出し専用メモリ(EEPROM)、コンパクトディスク(CD)ROM又は他の光ディスク記憶装置、磁気ディスク記憶装置又は他の磁気記憶装置、又は所望のプログラムコードを命令群又はデータ構造体の形態で運ぶ又は記憶するのに使用されうり汎用又は特殊用途コンピュータ又はプロセッサによってアクセスされうる任意の他の持続性媒体から成りうる。また、任意の接続はコンピュータ読取可能媒体と呼ばれる。例えば、ソフトウェアがウェブサイト、サーバー、又は他の遠隔源から同軸ケーブル、光ファイバーケーブル、ツイストペア、デジタル加入者回線(DSL)、又は赤外線、無線、マイクロ波など無線技術を使って送信される場合、同軸ケーブル、光ファイバーケーブル、ツイストペア、DSL、又は赤外線、無線、マイクロ波など無線技術は媒体の定義に含まれる。本書で使用されるディスクはCD、レーザーディスク、光ディスク、デジタル多用途ディスク(DVD)、ブルーレイディスク(これらはデータを光学的にレーザーで再生する)、及びフロッピーディスク(データを磁気的に再生する)を含む。上記の組み合わせもコンピュータ読取可能媒体の範囲内に含まれる。
本明細書の説明は当業者が本開示を実施又は使用するのを可能にするために提供される。本開示への様々な部分変更は当業者には容易に明らかとなろう、また本明細書に規定された共通の原理は他の変形物に適用されてもよく、本開示の範囲から逸脱しない。従って、本開示は、本明細書に記載された実施例及び構成に限定されず、本明細書に記載された原理及び新規の特徴と合致する最も広い範囲を与えられるべきである。
以下、本発明の好ましい実施形態を項分け記載する。
実施形態1
システムであって、
第1表面上の保護被膜と前記第1表面と反対側の第2表面上の阻止被膜とを含む光学的透過基板であって、前記保護被膜は該光学的透過基板を少なくとも紫外線レーザーエネルギーから保護するように構成され、前記阻止被膜は約280ナノメートル未満の第1の厚みを有し前記第2表面の一部に付着され、前記第2表面の前記一部上の前記阻止被膜を覆い前記阻止被膜の前記第1の厚みより小さい第2の厚みを有する覆い層を更に含む光学的透過基板と、
前記光学的透過基板を支えるように構成された構造体と、
前記覆い層と前記光学的透過基板を支えるように構成された前記構造体の間に配置された封止部品と
を備えるシステム。
実施形態2
前記阻止被膜はアルミニウム材料から成る、実施形態1記載のシステム。
実施形態3
前記第1の厚みは約60ナノメートルと約120ナノメートルの間である、実施形態2記載のシステム。
実施形態4
前記覆い層は二酸化ケイ素材料から成る、実施形態1~3のいずれかに記載のシステム。
実施形態5
前記第2の厚みは少なくとも約10ナノメートルである、実施形態4記載のシステム。
実施形態6
前記阻止被膜は前記光学的透過基板の外縁の概ね近くに位置する外径を有する環状形状を有する、実施形態1~5のいずれかに記載のシステム。
実施形態7
前記阻止被膜の環状幅は約1mmから約20mmの範囲内である、実施形態6記載のシステム。
実施形態8
前記光学的透過基板と前記阻止被膜の間に位置する接着層を更に含み、前記接着層は前記阻止被膜を前記光学的透過基板に付着させる金属性層から成り前記第2の厚みより小さい第3の厚みを有する、実施形態1~7のいずれかに記載のシステム。
実施形態9
前記第1の厚みは約80ナノメートルであり、前記第2の厚みは約20ナノメートルであり、前記第3の厚みは約10ナノメートルである、実施形態8記載のシステム。
実施形態10
該システムはエキシマーレーザーシステムの室の一部を含み、前記封止部品は前記室が加圧された時、圧力に耐えるように構成された環状リングから成る、実施形態1~9のいずれかに記載のシステム。
実施形態11
方法であって、
光学的透過基板を少なくとも紫外線レーザーエネルギーから保護するための保護被膜を前記光学的透過基板の第1表面上に付けるステップと、
前記光学的透過基板の前記第1表面と反対側の第2表面の少なくとも一部上に第1の厚みを有する接着性層を付けるステップと、
前記接着性層上に阻止被膜を付けるステップであって、前記阻止被膜は前記接着性層の前記第1の厚みより大きく約280ナノメートル未満の第2の厚みを有する、ステップと、
前記阻止被膜上に覆い層を付けるステップであって、前記覆い層は前記阻止被膜の前記第2の厚みより小さい第3の厚みを有する、ステップと
を含む方法。
実施形態12
前記接着性層を付けるステップは、前記接着性層が約5ナノメートル以上の前記第1の厚みになるまで前記接着性層を蒸着するステップを含み、前記接着性層は金属接着性層から成る、実施形態11記載の方法。
実施形態13
前記阻止被膜を付けるステップは、前記阻止被膜が約60ナノメートル以上の前記第2の厚みになるまで前記阻止被膜を蒸着するステップを含み、前記阻止被膜は紫外線を少なくとも部分的に阻止するように構成された金属性阻止層から成る、実施形態12記載の方法。
実施形態14
前記覆い層を付けるステップは、前記覆い層が約10ナノメートル以上の前記第3の厚みになるまで前記覆い層を蒸着するステップを含み、前記覆い層は二酸化ケイ素材料から成る、実施形態13記載の方法。
実施形態15
前記接着性層、前記阻止被膜、及び前記覆い層のそれぞれは、電子ビーム物理的気相成長処理又はスパッタリング処理又は熱蒸着処理又はそれらの任意の組み合わせを使用して環状形状に付けられる、実施形態11~14のいずれかに記載の方法。
実施形態16
装置であって、
紫外線を光学的に透過する基板と、
前記基板の第1表面上に付けられ少なくとも紫外線レーザーエネルギーから前記基板を保護するように構成された保護層と、
前記基板の前記第1表面と反対側の第2表面の一部に付けられた金属性接着層と、
前記金属性接着層上に付けられ約60ナノメートルと約120ナノメートルの間の第1の厚みを有し紫外線を阻止するように構成された環状阻止層と、
前記環状阻止層上に付けられ約60ナノメートル未満の第2の厚みを有する環状ケイ酸塩層と
を備える装置。
実施形態17
前記金属性接着層はクロムを含み、約10ナノメートルの第3の厚みを有する、実施形態16記載の装置。
実施形態18
前記環状阻止層はアルミニウム材料から成り、前記第1の厚みは約80ナノメートルであり、前記環状阻止層は前記基板の直径に少なくとも部分的に基づく内径と前記基板の縁の概ね近くに位置する外径とを有する、実施形態16又は17記載の装置。
実施形態19
前記環状ケイ酸塩層は二酸化ケイ素から成り、前記第2の厚みは約20ナノメートルである、実施形態16~18のいずれかに記載の装置。
実施形態20
前記紫外線は約193ナノメートルの波長を有する、実施形態16~19のいずれかに記載の装置。
100 光学システム
105 レーザー源
110 光学的透過基板
115 断面図
120 支持部品
125 封止部品
130 迷UV光
135、215 覆われた阻止被膜
210 基板
220‐a 第1表面
220‐b 第2表面
225 被膜
300、400 被覆された基板
310、410 基板
315、415 層
320、420 第1層
325、425 第2層
330 第3層
500 装置
505 真空室
510 基板
515 材料源
520 基板ホルダー
525 材料

Claims (10)

  1. システムであって、
    第1表面上の保護被膜と前記第1表面と反対側の第2表面上の阻止被膜とを含む光学的透過基板であって、前記保護被膜は該光学的透過基板を少なくとも紫外線レーザーエネルギーから保護するように構成され、前記阻止被膜は約280ナノメートル未満の第1の厚みを有し前記第2表面の一部に付着され、前記第2表面の前記一部上の前記阻止被膜を覆い前記阻止被膜の前記第1の厚みより小さい第2の厚みを有する覆い層を更に含む光学的透過基板と、
    前記光学的透過基板を支えるように構成された構造体と、
    前記覆い層と前記光学的透過基板を支えるように構成された前記構造体の間に配置された封止部品と
    を備えるシステム。
  2. 前記阻止被膜はアルミニウム材料から成る、請求項1記載のシステム。
  3. 前記第1の厚みは約60ナノメートルと約120ナノメートルの間である、請求項2記載のシステム。
  4. 前記覆い層は二酸化ケイ素材料から成る、請求項1~3のいずれかに記載のシステム。
  5. 前記第2の厚みは少なくとも約10ナノメートルである、請求項4記載のシステム。
  6. 前記阻止被膜は前記光学的透過基板の外縁の概ね近くに位置する外径を有する環状形状を有する、請求項1~5のいずれかに記載のシステム。
  7. 前記阻止被膜の環状幅は約1mmから約20mmの範囲内である、請求項6記載のシステム。
  8. 前記光学的透過基板と前記阻止被膜の間に位置する接着層を更に含み、前記接着層は前記阻止被膜を前記光学的透過基板に付着させる金属性層から成り前記第2の厚みより小さい第3の厚みを有する、請求項1~7のいずれかに記載のシステム。
  9. 前記第1の厚みは約80ナノメートルであり、前記第2の厚みは約20ナノメートルであり、前記第3の厚みは約10ナノメートルである、請求項8記載のシステム。
  10. 該システムはエキシマーレーザーシステムの室の一部を含み、前記封止部品は前記室が加圧された時、圧力に耐えるように構成された環状リングから成る、請求項1~9のいずれかに記載のシステム。
JP2023558241A 2021-03-23 2022-03-09 レーザー光学素子用の覆われた阻止被膜 Pending JP2024512543A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202163164755P 2021-03-23 2021-03-23
US63/164,755 2021-03-23
PCT/US2022/019423 WO2022203861A1 (en) 2021-03-23 2022-03-09 Capped blocking coating for laser optics

Publications (1)

Publication Number Publication Date
JP2024512543A true JP2024512543A (ja) 2024-03-19

Family

ID=81325040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023558241A Pending JP2024512543A (ja) 2021-03-23 2022-03-09 レーザー光学素子用の覆われた阻止被膜

Country Status (4)

Country Link
US (1) US20220311200A1 (ja)
EP (1) EP4314910A1 (ja)
JP (1) JP2024512543A (ja)
WO (1) WO2022203861A1 (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9158207B2 (en) * 2011-08-09 2015-10-13 Carl Zeiss Smt Gmbh Optical component comprising radiation protective layer
US10578785B2 (en) * 2015-08-18 2020-03-03 Corning Incorporated Blocking coating with adhesion layer for ultraviolet optics

Also Published As

Publication number Publication date
WO2022203861A1 (en) 2022-09-29
US20220311200A1 (en) 2022-09-29
EP4314910A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
TWI730139B (zh) 具多層吸收劑的極紫外遮罩坯料及製造方法
TWI821984B (zh) 具有合金吸收劑的極紫外線遮罩坯料及製造極紫外線遮罩坯料的方法
TWI599672B (zh) 具吸收劑之平面化極紫外線微影基板及其製造系統
JP5270820B2 (ja) 長寿命エキシマーレーザ光学素子
US11835852B2 (en) Reflective mask blank for EUV exposure, and reflective mask
US7326502B2 (en) Multilayer coatings for EUV mask substrates
US20060066940A1 (en) Reflective optical element and EUV lithography appliance
CN110488402B (zh) 一种紫外可见红外高效反射的银基薄膜结构及镀膜方法
JP2009116219A (ja) 反射防止膜、反射防止膜の形成方法、及び透光部材
JPWO2010050520A1 (ja) Euvリソグラフィ用反射型マスクブランク
JP2019207426A (ja) レンズアセンブリ用uv保護被膜
CN105093852A (zh) 紫外光刻机曝光***用精密介质膜反射镜及其镀制方法
US10459134B2 (en) UV-blocking coating with capping layer in optical assembly having UV light source
JP2024512543A (ja) レーザー光学素子用の覆われた阻止被膜
JP5873022B2 (ja) 反射を抑制した接着剤保護用コーティング
US20070231713A1 (en) Anti-reflective coating for out-of-band illumination with lithography optical systems
JP2008105313A (ja) ハードコート構造を備えた透明体、およびハードコート構造
Schwinde et al. Development of advanced silver coatings for telescope mirrors
US11448956B2 (en) EUV mask
JP2006173502A (ja) 光学素子及びこれを用いた投影露光装置
JP2013029324A (ja) 多重反射式ガスセル
TWI482986B (zh) 具防水塗層之浸入微影光學裝置、含此之投影曝光裝置以及用於浸入微影的方法
JP2005308469A (ja) 多層膜反射鏡及びeuv露光装置
JP2005275029A (ja) 裏面反射鏡及びそれを備えるペンタプリズム
JPH04310899A (ja) 多層膜反射鏡および該多層膜反射鏡を有する光学装置