JP2024087615A - Fixed-wing aircraft with high angle of elevation take-off and landing, near-hovering flight method and ultra-short distance take-off and landing method using said aircraft, and high angle of elevation take-off and landing fixed-wing aircraft system - Google Patents

Fixed-wing aircraft with high angle of elevation take-off and landing, near-hovering flight method and ultra-short distance take-off and landing method using said aircraft, and high angle of elevation take-off and landing fixed-wing aircraft system Download PDF

Info

Publication number
JP2024087615A
JP2024087615A JP2022202536A JP2022202536A JP2024087615A JP 2024087615 A JP2024087615 A JP 2024087615A JP 2022202536 A JP2022202536 A JP 2022202536A JP 2022202536 A JP2022202536 A JP 2022202536A JP 2024087615 A JP2024087615 A JP 2024087615A
Authority
JP
Japan
Prior art keywords
angle
landing
aircraft
takeoff
wing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022202536A
Other languages
Japanese (ja)
Inventor
芳人 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2022202536A priority Critical patent/JP2024087615A/en
Publication of JP2024087615A publication Critical patent/JP2024087615A/en
Pending legal-status Critical Current

Links

Landscapes

  • Toys (AREA)

Abstract

【課題】無人及び有人の固定翼式飛行体において超短距離で離着陸可能な高仰角離着陸固定翼式飛行体を提供する。【解決手段】高仰角離着陸固定翼式飛行体2は1以上の推進手段と、1以上の胴体4を備えた機体3と、タンデム配置の2葉の翼幅bの水平翼6と、2葉以上の垂直翼7と、複数の可動小翼8と、該機体の下部には左右方向に0.4*b以上離間配置された4脚以上の脚長可変降着装置9とを有し、高仰角離着陸固定翼式飛行体の推力重量比T/Wを0.5~1.2の範囲とし、機体の仰角を10~90度の範囲の高仰角姿勢として略ホバリング飛行状態で超短距離の滑走で離着陸させることが可能な該高仰角離着陸固定翼式飛行体である。【選択図】図4[Problem] To provide a high-angle takeoff and landing fixed-wing aircraft capable of taking off and landing in an extremely short distance, both unmanned and manned, fixed-wing aircraft. [Solution] The high-angle takeoff and landing fixed-wing aircraft 2 has one or more propulsion means, an airframe 3 equipped with one or more fuselages 4, a horizontal wing 6 with two blades of wingspan b arranged in tandem, two or more vertical wings 7, a plurality of movable winglets 8, and four or more variable-length landing gears 9 arranged on the lower part of the airframe with a space of 0.4*b or more in the left-right direction, the high-angle takeoff and landing fixed-wing aircraft has a thrust-to-weight ratio T/W in the range of 0.5 to 1.2, and is capable of taking off and landing in an extremely short run in a substantially hovering flight state with the airframe in a high-angle attitude with an elevation angle in the range of 10 to 90 degrees. [Selected Figure] Figure 4

Description

本発明は、高仰角離着陸固定翼式飛行体、該飛行体による略ホバリング飛行方法及び超短距離離着陸方法、更には高仰角離着陸固定翼式飛行体システムに関する。 The present invention relates to a fixed-wing aircraft with high angles of elevation for takeoff and landing, a method for near-hovering flight and an ultra-short distance takeoff and landing method for such an aircraft, and a fixed-wing aircraft system with high angles of elevation for takeoff and landing.

有人飛行体及び無人飛行体において、短距離で離着陸あるいは離着水が可能であることはそれらの利用範囲を拡大するうえで重要である。ヘリコプターやマルチコプターのような回転翼飛行体では滑走することなく所定位置において垂直離着陸が可能である。また、空中の一定位置で停止するホバリング飛行が容易である。しかし回転翼飛行体は飛行速度が遅い(一般的無人機で100km/h以下)、飛行時間が短い、航続距離が短い(無人機では500km以下)などの欠点がある。一方、固定翼飛行体は飛行速度が速い、航続距離が長い(軍用無人機で約5000km)という長所があるが、失速速度(軍用無人機で40km/h程度)より高速で水平離着陸する必要があるため、加速及び減速のために長い滑走路が必要である。また、ホバリング飛行が困難であるとされている。これらのことにより固定翼飛行体の利用範囲が限定されてきた。
本発明の対象として、上記のような欠点のある回転翼飛行体は除くこととする。該回転翼飛行体以外の飛行体で短距離の滑走あるいは無滑走で離着陸が可能な飛行体として、胴体に対する主翼仰角度を可変とする飛行体および胴体に対する推進手段の仰角度を可変とする飛行体があるが、可動部分により重量増がもたらされるという難点があり、これらは本発明の対象外とする。
本発明では、胴体に対して主翼角度が固定され、推進手段の主推進方向も固定されている飛行体を対象とする。
本発明で対象とする飛行体は有人および無人飛行体を含めることとする。本発明では、推進手段としては、例えばプロペラ式、ジェット式、ロケット式など型式を問わないこととする。
回転翼飛行体以外の飛行体では離着陸距離によって以下のようにおおよそ分類されている(非特許文献1、離着陸距離とは高さ15mの障害をクリアするとの条件付き)。
(1) VTOL(Vertical Take-off and Landing Aircraft):離着陸距離:0 (m)
(2) USTOL(Ultra-short Take-off and Landing Aircraft):離着陸距離:150 (m)以下
(3) STOL(Short Take-off and Landing Aircraft):離着陸距離:150-300 (m)
(4) ITOL(Intermediate Take-off and Landing Aircraft):離着陸距離:300-600 (m)
(5) NTOL(Normal Take-off and Landing Aircraft):離着陸距離: 600 (m)以上
(5)はCTOL(Conventional Take-off and Landing Aircraft)と呼ばれることもある。
上記の分類は1960年代以前に提案された有人機を対象とした古い分類であって、今日のような無人航空機(UAV)は想定していなかったように思われる。上記の分類で、(1) VTOLは戦闘機で実用化されている。また、カタパルト方式として無滑走での離陸方法が提案されているが短距離着陸方法については不明確である(非特許文献4)。(3) STOLは特許文献1、非特許文献1、2、3に示すように検討されており、離着陸時の騒音被害範囲が(5) NTOLに比べて狭いことで、都市近郊に空港を配置可能であることにより、ドアツードアの移動時間が最も短い移動手段として期待されている(非特許文献3)。しかし、検討されているSTOL機の形状、推力および離着陸時の機体仰角は(5) NTOLと類似している。必然的に離着陸距離が150m以下のUSTOL機は実用化されていない。
本発明の対象は上記で (2) USTOLに該当する。本発明では有人飛行体および無人飛行体を対象としており、離着陸距離はそれぞれ50m以下および10m以下を想定し、前者では道路、公園、運動場、河川敷、農地、草原、雪原、氷原、砂漠、高層ビルの屋上、池などで、後者では駐車場、舗装道路、ビルの屋上、公園、運動場、プール、トラックの荷台、船の甲板、輸送機後部胴体内などで離着可能な飛行体の実現を目的としている。
一般的な固定翼機の場合、機体の仰角(機体の長手軸の水平面に対するピッチ角度)が10~20度を超えると失速状態になるとされている。しかし、不可抗力的に失速状態になった場合に、姿勢制御可能な正常状態へ復帰する方法を探るために、高仰角姿勢における翼面近傍の流れの研究(非特許文献5、6)、および小型UAVでの高仰角飛行実験(非特許文献7、8、9)がなされている。また、短距離での着陸技術として、高仰角失速着陸法が検討されている(非特許文献10、11、12、13、14、図8)が、着地直前に機体を高仰角姿勢から水平姿勢に移行するという危険な機体の姿勢制御が要求される(非特許文献13、14、図8)という課題があることに加え短距離での離陸方法が示されていない。
短距離での離陸技術として、カタパルト方式とスキー・ジャンプ方式(離陸滑走路の終端を登り傾斜面とする)が実用化され、特に後者に関しては更なる検討がなされている(非特許文献15)。
鳥の跳躍離陸の解析がなされ(非特許文献16)、2脚ジャンピング・着地ロボットのための人口筋骨格アクチュエータの開発がすすめられ(非特許文献17)、羽ばたき飛行ロボットの跳躍離陸を可能とするためにトーションバネを用いた跳躍機構の研究がなされている(非特許文献18)。
固定翼式飛行体であるエンジン付きグライダーで自動操縦による離着陸システムの開発が進められている(非特許文献19)。
一方、固定翼の機体を120度までの高仰角姿勢にして略ホバリング飛行した後通常の低仰角水平飛行に回復させるという特殊な飛行技術が1989年のパリの航空ショーで元ロシア空軍パイロットのViktor Pugachevによって公開された。この特殊飛行技術はPugachev’s Cobra Maneuverと称され、その後の航空イベントや空戦で利用されてきている(非特許文献20、21、図9)。
双発実験機で機体仰角-10~+90度の範囲での風洞実験と機体仰角+20~+50度の範囲での飛行実験がなされ、後者では高仰角姿勢による水平飛行速度約20km/hの略ホバリング飛行の安定制御が実証された(非特許文献8)。機体仰角50度で高度を一定に保ちながら約20km/hの低速水平飛行が可能であることが実証されているので、Pugachev’s Cobra Maneuverのように更に高仰角飛行とすれば水平飛行速度約20km/h以下の安定した略ホバリング飛行が可能であることが示唆される。
しかし、総推力/最大離陸重量の比T/W、推進手段の配置、主翼構成、可動小翼の配置、降着装置など機体構造および失速状態での機体姿勢制御を安定化することにより高仰角姿勢による安定な略ホバリング飛行や安全な超短距離離着陸を実現させるための改良については非特許文献5~14では示されていない。
従来の飛行体の推進手段の総推力/最大離陸重量の比T/Wでみると商用飛行機では0.1~0.4、戦闘機で0.9~1.2、VTOLおよび回転翼機で1.0超である。
For manned and unmanned aircraft, the ability to take off and land or take off and land on water in a short distance is important in expanding the range of their use. Rotary-wing aircraft such as helicopters and multicopters can take off and land vertically at a specified position without running. They can also easily perform hovering flight, stopping at a fixed position in the air. However, rotary-wing aircraft have disadvantages such as slow flight speed (100 km/h or less for general unmanned aircraft), short flight time, and short range (500 km or less for unmanned aircraft). On the other hand, fixed-wing aircraft have the advantages of fast flight speed and long range (about 5,000 km for military unmanned aircraft), but they need to take off and land horizontally at a speed faster than the stall speed (about 40 km/h for military unmanned aircraft), so they need a long runway for acceleration and deceleration. They are also considered to be difficult to hover. These factors have limited the range of use of fixed-wing aircraft.
The subject of this invention does not include rotary wing aircraft with the above-mentioned drawbacks. Aircraft other than rotary wing aircraft that can take off and land with a short or no runway include aircraft with variable wing elevation angles relative to the fuselage and aircraft with variable propulsion means elevation angles relative to the fuselage, but these have the drawback of increased weight due to movable parts, and are therefore not subject to this invention.
The present invention is directed to an aircraft having a fixed main wing angle relative to the fuselage and a fixed main thrust direction of the propulsion means.
The flying object of the present invention includes manned and unmanned flying objects. In the present invention, the propulsion means may be of any type, such as a propeller type, a jet type, or a rocket type.
Aircraft other than rotorcraft are roughly classified according to takeoff and landing distance as follows (Non-Patent Document 1, takeoff and landing distance is subject to the condition that an obstacle of 15 m in height can be cleared):
(1) VTOL (Vertical Take-off and Landing Aircraft): Take-off and landing distance: 0 (m)
(2) USTOL (Ultra-short Take-off and Landing Aircraft): Take-off and landing distance: 150 (m) or less (3) STOL (Short Take-off and Landing Aircraft): Take-off and landing distance: 150-300 (m)
(4) ITOL (Intermediate Take-off and Landing Aircraft): Take-off and landing distance: 300-600 (m)
(5) NTOL (Normal Take-off and Landing Aircraft): Take-off and landing distance: 600 (m) or more (5) is sometimes called CTOL (Conventional Take-off and Landing Aircraft).
The above classification is an old classification for manned aircraft proposed before the 1960s, and does not seem to have anticipated today's unmanned aerial vehicles (UAVs). In the above classification, (1) VTOL has been put to practical use in fighter aircraft. In addition, a method of takeoff and landing without a runway has been proposed as a catapult method, but the short-distance landing method is unclear (Non-Patent Document 4). (3) STOL is being considered as shown in Patent Document 1, Non-Patent Documents 1, 2, and 3, and since the noise pollution range during takeoff and landing is narrower than (5) NTOL, airports can be located near cities, and it is expected to be the means of transportation with the shortest door-to-door travel time (Non-Patent Document 3). However, the shape, thrust, and aircraft elevation angle during takeoff and landing of the STOL aircraft being considered are similar to (5) NTOL. Inevitably, USTOL aircraft with a takeoff and landing distance of less than 150 m have not been put to practical use.
The subject of this invention corresponds to (2) USTOL as mentioned above. This invention targets manned and unmanned aerial vehicles, with takeoff and landing distances of 50m or less and 10m or less, respectively, and aims to realize an aerial vehicle that can take off and land on roads, parks, sports fields, riverbeds, farmland, grasslands, snow fields, ice fields, deserts, rooftops of high-rise buildings, ponds, etc. for the former, and on parking lots, paved roads, rooftops of buildings, parks, sports fields, swimming pools, truck beds, ship decks, and inside the rear fuselage of transport aircraft, etc. for the latter.
In the case of a typical fixed-wing aircraft, it is said that the aircraft will stall when the elevation angle (pitch angle of the aircraft's longitudinal axis relative to the horizontal plane) exceeds 10 to 20 degrees. However, in order to find a way to return to a normal state where attitude control is possible when an aircraft inevitably enters a stall state, research has been conducted on the flow near the wing surface at a high elevation angle (Non-Patent Documents 5 and 6), and high elevation angle flight experiments with small UAVs (Non-Patent Documents 7, 8, and 9). In addition, a high elevation angle stall landing method has been considered as a landing technique for short distances (Non-Patent Documents 10, 11, 12, 13, and 14, Figure 8), but there is a problem that dangerous aircraft attitude control is required to transition the aircraft from a high elevation angle attitude to a horizontal attitude just before landing (Non-Patent Documents 13 and 14, Figure 8), and a method for takeoff at a short distance is not shown.
As short-distance takeoff techniques, the catapult method and the ski-jump method (where the end of the takeoff runway is an uphill slope) have been put to practical use, and further study is being conducted on the latter in particular (Non-Patent Document 15).
An analysis of bird jump takeoff has been conducted (Non-Patent Document 16), an artificial musculoskeletal actuator for a two-legged jumping and landing robot has been developed (Non-Patent Document 17), and a jumping mechanism using torsion springs has been researched to enable jump takeoff for a flapping flying robot (Non-Patent Document 18).
Development of an autopilot takeoff and landing system for engine-equipped gliders, which are fixed-wing flying objects, is underway (Non-Patent Document 19).
Meanwhile, a special flying technique in which a fixed-wing aircraft is put into a high-angle attitude of up to 120 degrees, flies in a near-hovering position, and then returns to normal low-angle level flight was demonstrated by former Russian Air Force pilot Viktor Pugachev at the Paris Air Show in 1989. This special flying technique is called Pugachev's Cobra Maneuver, and has been used in subsequent aviation events and aerial combat (Non-Patent Documents 20, 21, Figure 9).
A twin-engine experimental aircraft was used in wind tunnel tests with an aircraft elevation angle of -10 to +90 degrees, and flight tests with an aircraft elevation angle of +20 to +50 degrees, and the latter demonstrated stable control of near-hovering flight at a horizontal flight speed of about 20 km/h with a high elevation angle attitude (Non-Patent Document 8). Since it was demonstrated that low-speed horizontal flight of about 20 km/h is possible while maintaining a constant altitude with an aircraft elevation angle of 50 degrees, it is suggested that stable near-hovering flight at a horizontal flight speed of about 20 km/h or less is possible if the aircraft is flown at an even higher elevation angle, as in Pugachev's Cobra Maneuver.
However, Non-Patent Documents 5 to 14 do not disclose improvements to achieve stable near-hovering flight with a high angle of attack or safe ultra-short takeoff and landing by stabilizing the aircraft structure, such as the total thrust/maximum takeoff weight ratio T/W, the propulsion means arrangement, the main wing configuration, the arrangement of the movable winglets, and the landing gear, as well as aircraft attitude control during a stall.
In terms of the ratio of total thrust to maximum takeoff weight (T/W) of the propulsion means of conventional aircraft, commercial airplanes have a ratio of 0.1 to 0.4, fighter aircraft have a ratio of 0.9 to 1.2, and VTOL and rotorcraft have a ratio of over 1.0.

特許5046100Patent 5046100

松浦陽恵,”VTOL機とSTOL機に関するいくつかの問題点”, 航空学会誌, Vol. 12, No. 125 (1964-6), 178-187.Harue Matsuura, "Some Problems on VTOL and STOL Aircraft", Journal of the Aeronautical Society, Vol. 12, No. 125 (1964-6), 178-187. 落合一夫, “DHC-6 Twin-Otter 軽輸送機”, 航空学会誌, Vol. 13, No. 138 (1965-7), 227-228.Kazuo Ochiai, “DHC-6 Twin-Otter Light Transport Aircraft”, Journal of the Aeronautical Society, Vol. 13, No. 138 (1965-7), 227-228. 近藤次郎, “STOL 交通システム”, 日本機械学会誌, Vol. 78, No. 680 (1975-7), 634-639.Jiro Kondo, “STOL Transportation System”, Journal of the Japan Society of Mechanical Engineers, Vol. 78, No. 680 (1975-7), 634-639. ”CNG-V Target Drone”, https://www.unmannedsystemstechnology.com/company/a-techsyn/cng-v-target-drone/#product-gallery-5"CNG-V Target Drone", https://www.unmannedsystemstechnology.com/company/a-techsyn/cng-v-target-drone/#product-gallery-5 松尾則久, 平野昇吾, “民間小型機の大仰角特性”, 日本航空宇宙学会誌, Vol. 33, No. 377 (1985-6), 326-332.Norihisa Matsuo, Shogo Hirano, “Large Angle of Elevation Characteristics of Small Civil Aircraft”, Journal of the Japan Society for Aeronautical and Space Sciences, Vol. 33, No. 377 (1985-6), 326-332. 石黒満津夫, “飛行機の揚力の限界”, 日本機械学会誌, Vol. 105, No. 1006 (2002-9), 622-624.Mitsuo Ishiguro, “Limits of Airplane Lift”, Journal of the Japan Society of Mechanical Engineers, Vol. 105, No. 1006 (2002-9), 622-624. Baron Johnson and Richard Lind, "High Angle-of-Attack Flight Dynamics of Small UAVs", 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, 05 - 08 January 2009, Orlando, Florida., https://doi.org/10.2514/6.2009-61"Baron Johnson and Richard Lind, "High Angle-of-Attack Flight Dynamics of Small UAVs", 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, 05 - 08 January 2009, Orlando, Florida., https://doi.org/10.2514/6.2009-61" Daisuke Kubo, Koji Muraoka, Noriaki Okada, “HIGH ANGLE OF ATTACK FLIGHT CHARACTERISTICSOF A WING-IN-PROPELLER-SLIPSTREAM AIRCRAFT”, 27TH CONGRESS OF THE INTERNATIONAL COUNCIL OF THE AERONAUTICAL SCIENCES, 19 - 24 September 2010, Nice, France., http://www.icas.org/ICAS_ARCHIVE/ICAS2010/PAPERS/237.PDF""Daisuke Kubo, Koji Muraoka, Noriaki Okada, “HIGH ANGLE OF ATTACK FLIGHT CHARACTERISTICS OF A WING-IN-PROPELLER-SLIPSTREAM AIRCRAFT”, 27TH CONGRESS OF THE INTERNATIONAL COUNCIL OF THE AERONAUTICAL SCIENCES, 19 - 24 September 2010, Nice, France., http://www.icas.org/ICAS_ARCHIVE/ICAS2010/PAPERS/237.PDF"" Daisuke Kubo, Shinji Suzuki,""HIGH ANGLE OF ATTACK FLIGHT CONTROL OF A TAIL-SITTER UNMANNED AIRCRAFT"", 28TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES(2012).<https://www.icas.org/ICAS_ARCHIVE/ICAS2012/PAPERS/533.PDF>"Daisuke Kubo, Shinji Suzuki,""HIGH ANGLE OF ATTACK FLIGHT CONTROL OF A TAIL-SITTER UNMANNED AIRCRAFT"", 28TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES(2012).<https://www.icas.org/ICAS_ARCHIVE/ICAS2012/PAPERS/533.PDF>" 牧嵜 敦、鳥に倣った高迎角失速着陸法の研究、福岡工業大学工学部知能機械工学科平成 21 年度卒業論文 指導教員 河村 良行 教授<http://www.fit.ac.jp/~kawamura/packages/study/2009st/sissokutyakuriku.pdf>Atsushi Makizaki, Study on a high angle of attack stall landing method based on birds, Fukuoka Institute of Technology, Faculty of Engineering, Department of Intelligent Mechanical Engineering, 2009 Graduation Thesis, Supervisor: Professor Yoshiyuki Kawamura <http://www.fit.ac.jp/~kawamura/packages/study/2009st/sissokutyakuriku.pdf> 溝口 由華、福田 浩文、鳥に倣った高迎角失速着陸法の研究、福岡工業大学工学部知能機械工学科平成 22 年度卒業論文 指導教員 河村 良行 教授 指導院生 牧嵜 敦. <http://www.fit.ac.jp/~kawamura/packages/study/2010st/torininarattakougeikakusisokutykurikuhounokennkyuu.pdf>Yuka Mizoguchi, Hirofumi Fukuda, Study on a stall landing method at high angles of attack imitating birds, Fukuoka Institute of Technology, Department of Intelligent Mechanical Engineering, 2010 Graduation Thesis, Supervisor: Professor Yoshiyuki Kawamura, Graduate Student: Atsushi Makizaki. <http://www.fit.ac.jp/~kawamura/packages/study/2010st/torininarattakougeikakusisokutykurikuhounokennkyuu.pdf> Kristoffer Gryte, "High Angle of Attack Landing of an Unmanned Aerial Vehicle", Master of Science in Cybernetics and Robotics, Supervisor: Thor Inge Fossen, ITK, Department of Engineering Cybernetics, Submission date: July 2015., Norwegian University of Science and Technology, https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2352405.Kristoffer Gryte, "High Angle of Attack Landing of an Unmanned Aerial Vehicle", Master of Science in Cybernetics and Robotics, Supervisor: Thor Inge Fossen, ITK, Department of Engineering Cybernetics, Submission date: July 2015., Norwegian University of Science and Technology, https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2352405. Min-Jea Tahk, Seungyeop Han, Byung-Yoon Lee and Jaemyung Ahn, "Perch Landing Assisted by Thruster (PLAT): Concept and Trajectory Optimization", Int’l J. of Aeronautical & Space Sci. 17(3), 378&#8211;390 (2016), DOI: https://koreascience.kr/article/JAKO201634347631077.pdf.Min-Jea Tahk, Seungyeop Han, Byung-Yoon Lee and Jaemyung Ahn, "Perch Landing Assisted by Thruster (PLAT): Concept and Trajectory Optimization", Int’l J. of Aeronautical & Space Sci. 17(3), 378&#8211;390 (2016), DOI: https://koreascience.kr/article/JAKO201634347631077.pdf. 今村彰隆, 三輪昌史, “無人航空機の超短距離着陸に関する基礎的検討”, ロボティクス・メカトロニクス講演会講演概要集, 日本機械学会誌, (2017-5), 1P1-H06(1)-(2), 日本機械学会."Akitaka Imamura, Masashi Miwa, “Fundamental Study on Ultra-Short-Distance Landing of Unmanned Aerial Vehicles”, Abstracts of the Robotics and Mechatronics Conference, Journal of the Japan Society of Mechanical Engineers, (2017-5), 1P1-H06(1)-(2), Japan Society of Mechanical Engineers.” P. Shrikant Rao, Amitabh Saraf, ""PERFORMANCE ANALYSIS AND CONTROL DESIGNFOR SKI-JUMP TAKE OFF"", AIAA Guidance, Navigation, and Control Conference and Exhibit11 August 2003 - 14 August 2003, Austin, Texas<https://doi.org/10.2514/6.2003-5412>""P. Shrikant Rao, Amitabh Saraf, "PERFORMANCE ANALYSIS AND CONTROL DESIGNFOR SKI-JUMP TAKE OFF", AIAA Guidance, Navigation, and Control Conference and Exhibit11 August 2003 - 14 August 2003, Austin, Texas<https://doi.org/10.2514/6.2003-5412>"" Ben Parslew, Girupakaran Sivalingam and William Crowther, ""A dynamics and stability framework for avian jumping take-off"", . R. Soc. open sci. 5: 181544. (2018).<https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.181544>"Ben Parslew, Girupakaran Sivalingam and William Crowther, ""A dynamics and stability framework for avian jumping take-off"", . R. Soc. open sci. 5: 181544. (2018).<https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.181544>" Ryuma Niiyama, Akihiko Nagakubo, Yasuo Kuniyoshi, "A Bipedal Jumping and Landing Robot with an Artificial Musculoskeletal System", 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10-14 April 2007. <http://www.isi.imi.i.u-tokyo.ac.jp/~niiyama/pdf/Niiyama2007_ICRA2007_ThC5-2_Mowgli.pdf>Ryuma Niiyama, Akihiko Nagakubo, Yasuo Kuniyoshi, "A Bipedal Jumping and Landing Robot with an Artificial Musculoskeletal System", 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10-14 April 2007. <http://www.isi.imi.i.u-tokyo.ac.jp/~niiyama/pdf/Niiyama2007_ICRA2007_ThC5-2_Mowgli.pdf> 木村 悠希, 大竹博, "跳躍による鳥型飛行ロボットの離陸の実現", ロボティクス・メカトロニクス講演会講演概要集 2018 (0), 2P1-D07-, 2018, 一般社団法人 日本機械学会<file:///C:/Users/user/Downloads/2018_2P1-D07.pdf>Yuki Kimura, Hiroshi Ohtake, "Realization of Takeoff of a Bird-like Flying Robot by Jumping", Abstracts of the Robotics and Mechatronics Conference 2018 (0), 2P1-D07-, 2018, Japan Society of Mechanical Engineers<file:///C:/Users/user/Downloads/2018_2P1-D07.pdf> T. Nagayama, N. Akamine, A. Yamane, "AUTOMATIC TAKE-OFF AND LANDING SYSTEM FOR FIXED WING SMALL AIRCRAFT", 24th Congress of International Council of the Aeronautical Sciences, 29 August-3, September 2004, Yokohama, Japan, Paper ICAS 2004-4.9.2.<https://www.icas.org/ICAS_ARCHIVE/ICAS2004/PAPERS/498.PDF>T. Nagayama, N. Akamine, A. Yamane, "AUTOMATIC TAKE-OFF AND LANDING SYSTEM FOR FIXED WING SMALL AIRCRAFT", 24th Congress of International Council of the Aeronautical Sciences, 29 August-3, September 2004, Yokohama, Japan, Paper ICAS 2004-4.9.2.<https://www.icas.org/ICAS_ARCHIVE/ICAS2004/PAPERS/498.PDF> ”Cobra maneuver”, Wikipedia, (2022-9-29). <https://en.wikipedia.org/wiki/Cobra_maneuver>"Cobra maneuver", Wikipedia, (2022-9-29). <https://en.wikipedia.org/wiki/Cobra_maneuver> “Viktor Pugachev”, Wikipedia, (2022-9-20). https://en.wikipedia.org/wiki/ Viktor Pugachev"Viktor Pugachev", Wikipedia, (2022-9-20). https://en.wikipedia.org/wiki/Viktor Pugachev Brede, B., Calders, K., Lau, A., Raumonen, P., Bartholomeus, H. M., Herold, M., & Kooistra, L., "Non-destructive tree volume estimation through quantitative structuremodelling: Comparing UAV laser scanning with terrestrial LIDAR", Remote Sensing of Environment, (2019). 233, [111355]. <https://doi.org/10.1016/j.rse.2019.111355>Brede, B., Calders, K., Lau, A., Raumonen, P., Bartholomeus, H. M., Herold, M., & Kooistra, L., "Non-destructive tree volume estimation through quantitative structure modelling: Comparing UAV laser scanning with terrestrial LIDAR", Remote Sensing of Environment, (2019). 233, [111355]. <https://doi.org/10.1016/j.rse.2019.111355>

本発明は、無人及び有人の固定翼式飛行体において機体を高仰角姿勢として安定した略ホバリング飛行を可能とする構造および制御の仕様とした高仰角離着陸固定翼式飛行体、該飛行体による略ホバリング飛行方法及び超短距離離着陸方法、更には高仰角離着陸固定翼式飛行体システムを提供することを課題とする。 The objective of the present invention is to provide a high-angle takeoff and landing fixed-wing aircraft with a structure and control specifications that enable stable, near-hovering flight with the aircraft in a high-angle attitude for both unmanned and manned fixed-wing aircraft, a method of near-hovering flight using said aircraft, and an ultra-short-distance takeoff and landing method, as well as a high-angle takeoff and landing fixed-wing aircraft system.

請求項1に係る本発明は、高仰角の機体姿勢の状態で安定した略ホバリング飛行および超短距離滑走での安全な離着陸が可能な固定翼式飛行体である高仰角離着陸固定翼式飛行体であって、該高仰角離着陸固定翼式飛行体は1基以上の推進手段と、1以上の胴体を備えた機体と、タンデム配置の2葉の水平翼と、2葉以上の垂直翼と、5以上の可動小翼と、前後方向および左右方向に離間配置された4脚以上の脚長調整機能を有する降着装置である脚長可変降着装置と、少なくとも該推進手段と該可動小翼と該脚長可変降着装置を制御するCPUとを含んで構成され、該水平翼および該垂直翼の各々は機体のロール・ピッチ・ヨーの姿勢を制御可能な該可動小翼を備え、各々の該水平翼の面積をSとし、翼幅(左右方向の長さ)をbとしたときのアスペクト比AR(=b^2/S)を0.5~20の範囲とし、該水平翼の翼端を翼根より上げる角度である上反角を5~40度の範囲とし、該推進手段は総推力と離陸重量との比T/Wtおよび総推力と着陸重量との比T/Wlを0.5~1.2の範囲とすることを可能とし、該脚長可変降着装置は機体の仰角(ピッチ角)を10~90度の範囲の高仰角姿勢の状態で離着陸させることを可能とすると共に左右の間隔を0.4*b以上とすることを特徴とする高仰角離着陸固定翼式飛行体である。
一般的な固定翼式飛行体では翼面積が大きな水平主翼を胴体の前方に、翼面積が小さな水平尾翼を胴体の後方に配設している。この構造の飛行体が機体を高仰角姿勢として飛行すると前方に配設されている水平主翼の後方域に大きな空気流の乱れ領域(Dynamic Stall Vortex:DSV)が形成され、後方に配設されている小さな翼面積の水平尾翼の揚力が失われ、所定の高仰角姿勢を安定して維持することが困難になる。
本発明では、後方に配設されている水平翼の翼面積を通常前方に配設されている水平主翼と同程度に大きくすることで翼面荷重を低下させて短距離離着陸性能を向上させると共に高仰角姿勢で飛行する飛行体のピッチングおよびローリングに対する機体姿勢の制御を安定化させて略ホバリング飛行を容易化させている。タンデム配置の2葉の水平翼の構造である。
一般的な固定翼式飛行体では1葉の小さな垂直尾翼を機体後方上部位置に配設させている。機体のヨーイング安定性と左右方向の旋回能力及び空気抵抗低減を考慮した設計で、本発明で検討しているような高仰角姿勢での飛行への対応を想定していない。本発明で、2葉以上のタンデム配置の垂直翼としたことにより上記乱れ領域(DSV)が生じてもヨーイングに対する機体姿勢の制御を安定化させた。垂直翼を機体の前方上方あるいは前方下方位置に配設することで高仰角飛行時においても上記乱れ領域の影響を排除することが出来る。垂直翼を水平翼の左右対称位置に配設してもよい。
各々の該水平翼のアスペクト比AR(=b^2/S)を0.5~20の範囲とした。実用化されている固定翼式飛行体ではアスペクト比1以下の例は見当たらないが、ムササビの高仰角滑空の例により実現可能と判断した。低アスペクト比の飛行体ではローリングに対する機体姿勢の安定性については劣るが、全体として機体をコンパクトに且つ高剛性構造とすることが出来る、俊敏な飛行が可能、耐衝撃損傷性に優れるなどのメリットが期待できる。20程度の高アスペクト比の飛行体とすることで、アルバトロスのようにエネルギ源の低量搭載で長航続距離の飛行体とすることが出来る。
該水平翼の翼端を翼根より上げる角度である上反角を5~40度の範囲とすることで、該高仰角離着陸固定翼式飛行体が突風を受けたときや高仰角飛行時の機体のローリングからの復元力を高めることが出来る。
本発明では、機体の仰角を10~90度の範囲の高仰角姿勢の状態で離着陸させることを可能とする前後方向および左右方向に離間配置された4脚以上の脚長可変降着装置を備えさせた。特に左右方向に0.4*b以上このことにより、超短距離滑走での着陸安全性を向上させると共に超短距離滑走での離陸を可能とさせた。更に、離着陸時に突風や滑走路面の障害物などによる転倒事故を防止できる構造となる。特に脚長可変降着装置を左右方向に0.4*b以上離間配置させることによりアスペクト比の大きな水平翼を有する飛行体の着陸時に突風により予期せぬローリングが生じた場合においても該水平翼の翼端が接地損傷することを防止することが出来る。
該降着装置は弾性手段とダンピング手段を備えさせる。これにより、軟弱地での離着陸時の降着装置の沈み込みを少なくすることが出来る。また、突風を受ける状態であっても安全な離着陸が可能となる。
該降着装置は弾性手段とダンピング手段を備えさせると共に左右方向及び前後方向に広く離間させて配設させる。こうすることにより突風を受ける状態であっても安全な離着陸が可能となる。特にアスペクト比の大きな水平翼を有する飛行体の着陸時に突風により予期せぬローリングが生じた場合においても該水平翼の翼端が接地損傷することを防止することが出来る。
該脚長可変降着装置には、車輪、フロートの外にそりを装着することにより、雪上および氷上においても離着陸することが可能であるため、遭難者救助などの活動に適用できる。
本発明における高仰角離着陸固定翼式飛行体の用途については、調査、捜索、災害対策、農漁業用、航行安全対策、運輸、防衛など多岐にわたると想定される。用途ごとに最適な仕様が設定されるべきであるが、仕様の設定に際して軽量化に関する配慮は重要であるため、重要ではない装備は可能な限り排除すべきである。そうした観点から、推進手段の出力の設定においても必要最小限の出力とすべきとの考え方から、推力重量比を0.5~1.2の範囲とした。推力重量比がこの範囲以下では超短距離滑走での離着陸及び略ホバリング飛行が困難となり、この範囲以上では過剰装備となる可能性がある。
該高仰角離着陸固定翼式飛行体を複胴の機体とすることで、機体全体の剛性を高めることが可能となり、積載重量を増加させることや強風、台風、竜巻、集中豪雨、噴火などに最接近しての詳細情報の収集が可能となる。氷雨、噴石、蝗害の情報収集用として本発明の高仰角離着陸固定翼式飛行体を適用する場合には、無人機、双胴、タンデム配置の2葉の低アスペクト比の水平翼とそれぞれの該水平翼に配設した4基の高推力の推進手段という仕様とすることで対応可能である。
該推進手段の動力手段の選定に関しては、燃料や蓄電手段を含めた動力手段の総重量をWp(kN)、動力手段の出力をPp(kW)、搭載燃料量や搭載蓄電量によって定まるエネルギーをEp(kJ)としたときに動力密度ρp=Pp/Wpとエネルギー密度ρe=Ep/Wpが重要になる。動力密度ρpは該高仰角離着陸固定翼式飛行体の揚力の余裕度に関連し、エネルギー密度ρeは航続距離、滞空時間に関連する。現状では動力密度ρp=とエネルギー密度ρeに優れ、有人飛行体および無人飛行体で実績の豊富なガソリンエンジンが本発明の高仰角離着陸固定翼式飛行体の動力手段として適すると考えられる。
推進手段としてはジェット方式およびプロペラ方式などが適用可能であるが、高仰角離着陸固定翼式飛行体の使用目的によって選択すればよい。高温排気を排出させないプロペラ方式の方が使用範囲が広いと思われる。複数基プロペラ方式の場合左右のプロペラの回転方向を反対方向とすることで高仰角飛行時の姿勢制御の安定性を向上させることが出来る(非特許文献5)。
本発明では有人飛行体および無人飛行体を対象としており、離着陸距離はそれぞれ50m以下および10m以下を想定し、前者では道路、公園、運動場、河川敷、農地、草原、雪原、氷原、砂漠、高層ビルの屋上、池、プールで、後者では道路、公園、運動場、船の甲板、トラックの荷台、貨物飛行体などで離着可能な飛行体の実現を目的としている。
有人飛行体の場合、高仰角略ホバリング飛行により水平方向飛行速度を5km/h程度以下まで低下させ得る仕様とし、直径10m程度以下の旋回飛行を可能とすることで、海上、山岳地、洪水時あるいは高層ビル火災時の屋上での被災者を救護することが出来る。また、遠隔地救急搬送医療に関して、現状のドクターヘリやメディカルジェットの機能に対して近隣にヘリポートやNTOL対応空港を持たない地域で迅速性および費用の面で本発明のUSTOLはより寄与できるのではないかと思われる。山岳火災の消火のためにNTOL のWaterbomberが使用されているが飛行速度を低速化できないためピンポイントでの効果的な消火剤投下ができていない。本発明の有人飛行体では低速飛行が可能であるためパイロットは最も効果的なピンポイントでの消火剤投下が可能となる。本発明の飛行体の適用により、着陸せずに略ホバリング飛行状態で散水タンクの交換が可能となるため、火災現場により近い位置で給水し山岳火災、船舶火災、燃料タンク火災、3/11のような海面火災、高層ビル火災などを高効率で迅速に消火することが可能となる。本発明の有人飛行体は回転翼式(ヘリコプター、マルチコプターなど)のWaterbomberに比べて巡航飛行速度が速いため、火災現場の遠隔地から消火活動参加が可能となり、火災被害損失対消火費用の観点からメリットがもたらされる可能性が生ずる。
自然災害(地震、台風、竜巻、集中豪雨、洪水、地すべり、津波、噴火など)や事故等(海難、山岳遭難、緊急医療、火災、有害物質・放射能発生、テロ、戦禍など)に関して、被災を最小限とするために迅速な局地情報の収集や事後防災対策、被災者救護のための移動手段が必要となる。そうした有事の異常状態において、地上移動手段の対応可能範囲は限定される。そうした状況において、対応可能な条件下において回転翼式飛行体が限定的に対応している。回転翼式飛行体では翼による揚力の助力がないので常に1以上の高い推力/重量比の低いエネルギー効率での短時間、短距離の飛行任務においてのみ対応可能である。
一方、固定翼式飛行体では水平飛行時に、固定翼による揚力の助けを得て、推力の大半を水平方向移動のために利用することが出来るので、0.1程度の低い推力/重量比で高いエネルギー効率での高速かつ長距離の水平移動が可能である。しかし、STOL、ITOL、NTOLの有人固定翼式飛行体は離着陸にそれぞれ少なくとも150m、300m、600mの離着陸用滑走路を備えた空港が必要である。また、失速飛行速度以下での飛行は一般的に忌避されているためホバリング飛行は不可である。
本発明のUSTOLである高仰角離着陸固定翼式飛行体は、低い推力/重量比での高速かつ長距離の経済的水平飛行が可能であることと高仰角姿勢での略ホバリング飛行で超短距離離着陸が可能であるため、従来の固定翼式飛行体と回転翼式飛行体のそれぞれが有する長所を併せ持つ飛行体である。
The present invention according to claim 1 is a fixed-wing aircraft with a high angle of elevation that is capable of stable hovering flight and safe takeoff and landing with an ultra-short runway while in a high angle of elevation aircraft attitude, the fixed-wing aircraft having one or more propulsion means, an aircraft with one or more fuselages, two horizontal wings in tandem, two or more vertical wings, five or more movable winglets, a variable landing gear that is a landing gear with a leg length adjustment function for four or more legs arranged at a distance in the front-rear and left-right directions, and a CPU that controls at least the propulsion means, the movable winglets, and the variable landing gear, each of which is adjusted according to the roll pitch of the aircraft. The vehicle is a fixed-wing aircraft with a high angle of elevation takeoff and landing, characterized in that it is equipped with movable winglets capable of controlling the attitude of Chi-Yo, the aspect ratio AR (=b^2/S) being in the range of 0.5 to 20 when the area of each of the horizontal wings is S and the wingspan (length in the left-right direction) is b, the dihedral angle which is the angle at which the tip of the horizontal wing is raised above the root of the wing is in the range of 5 to 40 degrees, the propulsion means enables the ratio of total thrust to takeoff weight T/Wt and the ratio of total thrust to landing weight T/Wl to be in the range of 0.5 to 1.2, and the variable landing gear enables the aircraft to take off and land in a high angle of elevation attitude with an elevation angle (pitch angle) in the range of 10 to 90 degrees, and the left-right spacing is 0.4*b or more.
In a typical fixed-wing aircraft, the horizontal main wing with a large wing area is arranged in front of the fuselage, and the horizontal stabilizer with a small wing area is arranged behind the fuselage. When an aircraft with this structure flies at a high angle of attack, a large airflow turbulence area (Dynamic Stall Vortex: DSV) is formed behind the horizontal main wing arranged in front, and the lift of the horizontal stabilizer with a small wing area arranged in the rear is lost, making it difficult to stably maintain the specified high angle of attack.
In this invention, the wing area of the horizontal wing arranged at the rear is made as large as that of the horizontal main wing usually arranged at the front, thereby reducing the wing loading and improving short-field takeoff and landing performance, and stabilizing the control of the aircraft attitude against pitching and rolling of the aircraft flying at a high angle of elevation, facilitating near-hovering flight. This is a two-bladed horizontal wing structure arranged in tandem.
In a typical fixed-wing aircraft, a small vertical stabilizer with one blade is arranged at the upper rear position of the aircraft. This is a design that takes into consideration the aircraft's yawing stability, left and right turning ability, and air resistance reduction, and does not assume flight at a high angle of elevation as considered in the present invention. In the present invention, by using a tandem vertical wing with two or more blades, control of the aircraft's attitude against yawing is stabilized even if the above-mentioned turbulent field (DSV) occurs. By arranging the vertical wing at a forward upper or forward lower position of the aircraft, the influence of the above-mentioned turbulent field can be eliminated even during high angle of elevation flight. The vertical wing may be arranged symmetrically to the horizontal wing.
The aspect ratio AR (= b^2/S) of each horizontal wing was set in the range of 0.5 to 20. There are no examples of fixed-wing aircraft with an aspect ratio of 1 or less in practical use, but it was determined that this is feasible based on the example of the flying squirrel's high-angle gliding. Although aircraft with low aspect ratios are inferior in terms of stability of aircraft attitude against rolling, the aircraft as a whole can be made compact and have a high rigidity structure, and agile flight is possible, and excellent resistance to impact damage can be expected. By making the aircraft have a high aspect ratio of around 20, it is possible to make an aircraft with a long range that requires a small amount of energy source, like the Albatross.
By setting the dihedral angle, which is the angle at which the wing tip of the horizontal wing is raised above the wing root, in the range of 5 to 40 degrees, the ability of the high-angle takeoff and landing fixed-wing aircraft to recover from rolling when it encounters a gust of wind or flies at a high angle of elevation can be increased.
In the present invention, the landing gear is provided with four or more variable landing gears spaced apart in the front-rear and left-right directions, which enable the aircraft to take off and land in a high-angle attitude with an elevation angle ranging from 10 to 90 degrees. In particular, the variable landing gears are spaced apart by 0.4*b or more in the left-right direction, which improves the safety of landing in an ultra-short runway and enables takeoff in an ultra-short runway. Furthermore, the structure is capable of preventing accidents of tipping over due to gusts of wind or obstacles on the runway surface during takeoff and landing. In particular, by arranging the variable landing gears spaced apart by 0.4*b or more in the left-right direction, it is possible to prevent the wing tips of the horizontal wing with a large aspect ratio from being damaged when the aircraft lands, even if an unexpected rolling occurs due to a gust of wind.
The landing gear is provided with elastic means and damping means, which reduces the sinking of the landing gear during takeoff and landing on soft ground, and allows for safe takeoff and landing even in gusty wind conditions.
The landing gear is provided with elastic means and damping means, and is widely spaced apart in the left-right and front-rear directions. This allows safe takeoff and landing even in wind gusts. In particular, even if an aircraft with a horizontal wing with a large aspect ratio rolls unexpectedly due to a wind gust during landing, the wing tips of the horizontal wing can be prevented from being damaged when touching down.
By attaching a sled to the outside of the wheels and floats, the variable landing gear can take off and land on snow and ice, making it applicable to activities such as rescuing stranded people.
The high-angle takeoff and landing fixed-wing aircraft of the present invention is expected to have a wide range of uses, including investigation, search, disaster prevention, agriculture and fishing, navigation safety, transportation, and defense. Optimal specifications should be set for each use, but weight reduction is important when setting specifications, so non-essential equipment should be eliminated as much as possible. From this perspective, the thrust-to-weight ratio is set to a range of 0.5 to 1.2, based on the idea that the output of the propulsion means should be set to the minimum necessary output. If the thrust-to-weight ratio is below this range, takeoff and landing with an ultra-short runway and near-hovering flight will be difficult, and if it is above this range, there is a possibility of overequipment.
By making the high-angle takeoff and landing fixed-wing aircraft a double-fuselage aircraft, it is possible to increase the rigidity of the entire aircraft, increase the payload, and collect detailed information at close range of strong winds, typhoons, tornadoes, heavy rain, volcanic eruptions, etc. When applying the high-angle takeoff and landing fixed-wing aircraft of the present invention to collect information on freezing rain, volcanic rocks, and locust damage, this can be achieved by making it an unmanned aircraft, twin-fuselage, tandem-arranged two-bladed low aspect ratio horizontal wing and four high-thrust propulsion means arranged on each of the horizontal wing.
With regard to the selection of the power means of the propulsion means, the power density ρp = Pp/Wp and the energy density ρe = Ep/Wp are important, where the total weight of the power means including fuel and electricity storage means is Wp (kN), the output of the power means is Pp (kW), and the energy determined by the amount of fuel and electricity storage on board is Ep (kJ). The power density ρp is related to the lift margin of the high-angle takeoff and landing fixed-wing aircraft, and the energy density ρe is related to the flight range and flight time. At present, gasoline engines, which have excellent power density ρp = and energy density ρe and have a proven track record in manned and unmanned aircraft, are considered to be suitable as the power means for the high-angle takeoff and landing fixed-wing aircraft of the present invention.
As a propulsion means, a jet system or a propeller system can be applied, and the method can be selected according to the purpose of use of the fixed-wing aircraft with high angle of elevation takeoff and landing. The propeller system, which does not emit high-temperature exhaust, is considered to have a wider range of uses. In the case of a multiple-propeller system, the left and right propellers can be rotated in opposite directions to improve the stability of attitude control during high angle of elevation flight (Non-Patent Document 5).
This invention is intended for manned and unmanned aerial vehicles, with takeoff and landing distances assumed to be 50m or less and 10m or less, respectively. For the former, the aim is to realise an aerial vehicle capable of taking off and landing on roads, parks, sports fields, riverbeds, farmland, grasslands, snow fields, ice fields, deserts, rooftops of high-rise buildings, ponds and swimming pools, and for the latter, roads, parks, sports fields, ship decks, truck beds, cargo aircraft, etc.
In the case of manned aircraft, the horizontal flight speed can be reduced to about 5 km/h or less by high-angle hovering flight, and turning flight with a diameter of about 10 m or less can be performed, which allows rescue of victims at sea, in mountainous areas, during floods, or on the rooftops of high-rise buildings during fires. In addition, with regard to emergency medical transport to remote areas, the USTOL of the present invention is likely to contribute more in terms of speed and cost to areas that do not have nearby heliports or NTOL-compatible airports than the current functions of doctor helicopters and medical jets. NTOL waterbombers are used to extinguish mountain fires, but because the flight speed cannot be reduced, effective pinpoint dropping of extinguishing agent is not possible. The manned aircraft of the present invention is capable of low-speed flight, allowing the pilot to drop extinguishing agent at the most effective pinpoint. By applying the aircraft of the present invention, water tanks can be replaced in a state of almost hovering flight without landing, making it possible to supply water closer to the fire site and extinguish mountain fires, ship fires, fuel tank fires, sea surface fires such as those on 3/11, high-rise building fires, etc. The manned aircraft of the present invention has a faster cruising flight speed than rotary-wing waterbombers (helicopters, multicopters, etc.), making it possible to participate in firefighting activities from a remote location at the fire site, which may bring about benefits in terms of fire damage losses versus firefighting costs.
In the event of natural disasters (earthquakes, typhoons, tornadoes, torrential rains, floods, landslides, tsunamis, volcanic eruptions, etc.) or accidents (marine accidents, mountain accidents, emergency medical care, fires, release of hazardous materials and radiation, terrorism, war damage, etc.), rapid collection of local information, post-incident disaster prevention measures, and transportation means for rescue of victims are required to minimize damage. In such abnormal conditions of an emergency, the range of ground transportation means that can respond is limited. In such situations, rotorcraft can only respond in a limited manner under applicable conditions. Rotary wing aircraft do not provide lift assistance from wings, so they can only respond to short-term, short-distance flight missions with low energy efficiency with a high thrust-to-weight ratio of always more than 1.
On the other hand, fixed-wing aircraft can utilize most of their thrust for horizontal movement with the help of lift from the fixed wings during horizontal flight, so they can achieve high-speed, long-distance horizontal movement with high energy efficiency with a thrust-to-weight ratio as low as 0.1. However, manned fixed-wing aircraft (STOL, ITOL, and NTOL) require airports with runways of at least 150 m, 300 m, and 600 m, respectively, for takeoff and landing. In addition, flying below the stall speed is generally avoided, so hovering is not possible.
The high-angle takeoff and landing fixed-wing air vehicle, which is the USTOL of the present invention, is capable of high-speed, long-distance, economical level flight with a low thrust-to-weight ratio, and is also capable of ultra-short-distance takeoff and landing with near-hovering flight at a high angle of elevation, thus combining the advantages of both conventional fixed-wing air vehicles and rotary-wing air vehicles.

請求項2に係る本発明は、高仰角の機体姿勢の状態で安定した略ホバリング飛行および超短距離滑走での安全な離着陸が可能な固定翼式飛行体である高仰角離着陸固定翼式飛行体であって、該高仰角離着陸固定翼式飛行体は左右対称位置に配設された2基以上の偶数基の推進手段と、1以上の胴体を備えた機体と、タンデム配置の2葉の水平翼と、2葉以上の垂直翼と、6以上の可動小翼と、前後方向および左右方向に離間配置された4脚以上の脚長調整機能を有する降着装置である脚長可変降着装置と、少なくとも該推進手段と該可動小翼と該脚長可変降着装置を制御するCPUとを含んで構成され、該水平翼および該垂直翼の各々は機体のロール・ピッチ・ヨーの姿勢を制御可能な可動小翼を備え、左右対称位置に配設された推進手段の回転方向を互いに逆方向とし、各々の該水平翼の面積をSとし、翼幅(左右方向の長さ)をbとしたときのアスペクト比AR(=b^2/S)を0.5~20の範囲とし、該水平翼の翼端を翼根より上げる角度である上反角を5~40度の範囲とし、該推進手段は総推力と離陸重量との比T/Wtおよび総推力と着陸重量との比T/Wlを0.5~1.2の範囲とすることを可能とし、該脚長可変降着装置は機体の仰角を10~90度の範囲の高仰角姿勢の状態で離着陸させることを可能とする高仰角の機体姿勢の状態で安定した略ホバリング飛行および超短距離滑走での安全な離着陸が可能な固定翼式飛行体である高仰角離着陸固定翼式飛行体であって、該高仰角離着陸固定翼式飛行体は1基以上の推進手段と、1以上の胴体を備えた機体と、タンデム配置の2葉の水平翼と、2葉以上の垂直翼と、5以上の可動小翼と、前後方向および左右方向に離間配置された4脚以上の脚長調整機能を有する降着装置である脚長可変降着装置と、少なくとも該推進手段と該可動小翼と該脚長可変降着装置を制御するCPUとを含んで構成され、該水平翼および該垂直翼の各々は機体のロール・ピッチ・ヨーの姿勢を制御可能な該可動小翼を備え、各々の該水平翼の面積をSとし、翼幅(左右方向の長さ)をbとしたときのアスペクト比AR(=b^2/S)を0.5~20の範囲とし、該水平翼の翼端を翼根より上げる角度である上反角を5~40度の範囲とし、該推進手段は総推力と離陸重量との比T/Wtおよび総推力と着陸重量との比T/Wlを0.5~1.2の範囲とすることを可能とし、該脚長可変降着装置は機体の仰角(ピッチ角)を10~90度の範囲の高仰角姿勢の状態で離着陸させることを可能とすると共に左右の間隔を0.4*b以上とすることを特徴とする高仰角離着陸固定翼式飛行体である。
請求項2では2基以上の偶数基の推進手段を左右対称位置に配設させたことと左右の推進手段の回転方向を互いに逆方向に限定した点が請求項1と異なる。推進手段が奇数基であると、推進手段の回転慣性力にアンバランスが生じて機体を左右どちらかにローリングさせようとする力が作用する。高仰角姿勢での飛行中に機体姿勢を安定制御させるためには各推進手段の回転数を迅速に変化させる制御が必要となる。2基以上の偶数基の推進手段を左右対称位置に配設させることと左右の推進手段の回転方向を互いに逆方向にすることで、高仰角姿勢での飛行制御の安定性を格段に向上させることが出来る。
請求項1及び2では1以上の胴体を備えた機体としているが、単胴ではなく双胴の機体であってもよい。機体を双胴とすることで重量が増加するというデメリットは生ずるが、機体全体の剛性を向上させるなどメリットが期待できる。例えば、水平翼のアスペクト比増、機外搭載重量増(Waterbomber機能、救援物資など)、脚長可変降着装置の配置自由度増と収納による機体全体の空気流の抵抗(ドラッグ)減などである。
The present invention according to claim 2 is a fixed-wing aircraft with a high angle of elevation, which is a fixed-wing aircraft capable of stable near-hovering flight in a high angle of elevation aircraft attitude and safe takeoff and landing with an ultra-short runway, said fixed-wing aircraft with a high angle of elevation includes an even number of propulsion means at least two arranged symmetrically on the left and right, an aircraft body having one or more fuselages, two horizontal wings arranged in tandem, two or more vertical wings, six or more movable winglets, a variable landing gear with adjustable landing gear length for four or more legs arranged spaced apart in the front-rear and left-right directions, and a CPU that controls at least said propulsion means, said movable winglets, and said variable landing gear length. and each of said vertical wings is provided with a movable winglet capable of controlling the roll, pitch and yaw attitude of the aircraft, the directions of rotation of the propulsion means arranged at symmetrical positions are opposite to each other, the area of each of said horizontal wings is S and the wingspan (length in the left-right direction) is b, the aspect ratio AR (=b^2/S) is in the range of 0.5 to 20, and the dihedral angle which is the angle at which the wing tip of said horizontal wing is raised above the wing root is in the range of 5 to 40 degrees, said propulsion means makes it possible to set the ratio T/Wt of total thrust to takeoff weight and the ratio T/Wl of total thrust to landing weight in the range of 0.5 to 1.2, and said variable landing gear makes it possible to take off and land the aircraft in a high elevation angle attitude with an elevation angle in the range of 10 to 90 degrees. The fixed-wing aircraft with high elevation angle of takeoff and landing is a fixed-wing aircraft capable of stable near-hovering flight and safe takeoff and landing with an ultra-short runway in a state of aircraft attitude with a high elevation angle, and the fixed-wing aircraft with high elevation angle of takeoff and landing is configured to include one or more propulsion means, an aircraft with one or more fuselages, two horizontal wings in tandem arrangement, two or more vertical wings, five or more movable winglets, a variable-leg landing gear that is a landing gear with a leg length adjustment function for four or more legs arranged at a distance in the front-rear and left-right directions, and a CPU that controls at least the propulsion means, the movable winglets, and the variable-leg landing gear, and each of the horizontal wings and the vertical wings is adapted to adjust the roll, pitch, yaw, and speed of the aircraft. a horizontal wing having an aspect ratio AR (=b^2/S) in the range of 0.5 to 20, where S is the area of each horizontal wing and b is the wingspan (length in the left-right direction); a dihedral angle, which is the angle at which the wingtip of the horizontal wing is raised above the wing root, in the range of 5 to 40 degrees; the propulsion means enables the ratio of total thrust to takeoff weight T/Wt and the ratio of total thrust to landing weight T/Wl to be in the range of 0.5 to 1.2; and the variable landing gear enables the aircraft to take off and land in a high elevation attitude with an elevation angle (pitch angle) in the range of 10 to 90 degrees, with a left-right spacing of 0.4*b or more.
Claim 2 differs from claim 1 in that an even number of propulsion means (two or more) are arranged symmetrically and the rotation directions of the left and right propulsion means are limited to opposite directions. If there are an odd number of propulsion means, an imbalance occurs in the rotational inertia of the propulsion means, and a force acts to roll the aircraft to the left or right. In order to stably control the aircraft attitude during flight at a high elevation angle, control is required to quickly change the rotation speed of each propulsion means. By arranging an even number of propulsion means (two or more) symmetrically and limiting the rotation directions of the left and right propulsion means to opposite directions, the stability of flight control at a high elevation angle can be significantly improved.
Although claims 1 and 2 state that the aircraft has one or more fuselages, it may be a twin-fuselage aircraft instead of a mono-fuselage. Although making the aircraft a twin-fuselage aircraft has the disadvantage of increased weight, it is expected to have advantages such as improved rigidity of the entire aircraft. For example, it has the following advantages: an increased aspect ratio of the horizontal wing, increased external load weight (waterbomber function, relief supplies, etc.), increased freedom of arrangement of the variable landing gear and reduced airflow resistance (drag) of the entire aircraft by storing it.

請求項3に係る本発明は、該高仰角離着陸固定翼式飛行体が、機体の3次元位置の測定が可能な衛星測位システムおよび機体の姿勢の測定が可能な9軸センサーを備えると共に、機体周辺の風速及び風向の測定が可能な3次元風速計あるいは及び3次元突風検出手段、パン・チルト・ズーム可能な1個以上の可視光撮像装置、パン・チルト・ズーム可能な1個以上の赤外線型暗視撮像装置、パン・チルト・ズーム可能な1個以上の微光監視型暗視撮像装置、測距機能を有するレーザースキャニング装置の少なくとも1種の測定手段と少なくとも該測定手段が収集した測定データを該CPUのメモリーに格納するデータ格納手段を備え、該可視光撮像装置、該赤外線型暗視撮像装置、該微光監視型暗視撮像装置及び該レーザースキャニング装置は該高仰角離着陸固定翼式飛行体の機体の仰角が10~90度の高仰角姿勢の状態であっても該機体の鉛直下方向の撮像あるいは測距が可能であることを特徴とする請求項1ないし2記載の高仰角離着陸固定翼式飛行体である。
衛星測位システムとしてはGPS(精度数m)、GNSS(同10-20m)、SBAS(同2-3m)、MADOCA(同10cm)、GNSS+RTK測位(同数cm)、CLAS(同6cm)、などが実用化されており、その受信可能領域および精度は本発明に適合するレベルに向上してきている。衛星測位システムで機体の飛行高度の精度あるいは検知応答性が不充分であるケースが予測される場合は別途高度センサーを装備する。該高仰角離着陸固定翼式飛行体の三次元位置を衛星測位システムで検知し、機体の姿勢を9軸センサーで検知可能とすることで、これらの検知情報と該推進手段と該可動小翼との複合制御により機体の位置及び姿勢を適切にフィードバック制御することが出来る。
加えて、該高仰角離着陸固定翼式飛行体が、3次元風速計、3次元突風検出手段を備えることで、該高仰角離着陸固定翼式飛行体の現在位置での気流及び突風の情報を得て、荒天時であっても機体の位置及び姿勢を更に迅速且つ適正にフィードバック制御することが出来る。
該高仰角離着陸固定翼式飛行体が、パン・チルト・ズーム可能な1個以上の可視光撮像装置、パン・チルト・ズーム可能な1個以上の赤外線型暗視撮像装置、パン・チルト・ズーム可能な1個以上の微光監視型暗視撮像装置、測距機能を有するレーザースキャニング装置の少なくとも1種の測定手段を備えることで、該高仰角離着陸固定翼式飛行体の鉛直下方向を含む周辺の撮像情報、測距情報を得て、より適正且つ安全な飛行および離着陸が可能となる。
特に、パン・チルト・ズーム可能な赤外線型暗視撮像装置あるいは及びパン・チルト・ズーム可能な微光監視型暗視撮像装置、測距機能を有するレーザースキャニング装置を該高仰角離着陸固定翼式飛行体に搭載することにより、夜間や荒天時においても遭難者や海賊船の捜索、魚群探知などの飛行任務を適確に遂行することが出来る。
該高仰角離着陸固定翼式飛行体の飛行目的に応じて離陸、水平飛行、略ホバリング飛行、着陸を含む飛行計画を予め作成しそれをプログラム化して該CPUのメモリーに格納しておくことで、該高仰角離着陸固定翼式飛行体の自動操縦が可能となる。
The present invention according to claim 3 relates to the high-angle-of-elevation fixed-wing aircraft as described in claims 1 and 2, characterized in that the high-angle-of-elevation fixed-wing aircraft is equipped with a satellite positioning system capable of measuring the three-dimensional position of the aircraft and a nine-axis sensor capable of measuring the attitude of the aircraft, and is also equipped with at least one measuring means selected from the group consisting of one or more visible light imaging devices capable of panning, tilting and zooming, one or more infrared night vision imaging devices capable of panning, tilting and zooming, one or more low-light surveillance night vision imaging devices capable of panning, tilting and zooming, and a laser scanning device with a distance measuring function, and a data storage means for storing at least the measurement data collected by the measuring means in the memory of the CPU, and the visible light imaging device, the infrared night vision imaging device, the low-light surveillance night vision imaging device and the laser scanning device are capable of imaging or measuring the distance vertically downward of the aircraft even when the aircraft is in a high-angle-of-elevation attitude with an elevation angle of 10 to 90 degrees.
Satellite positioning systems such as GPS (accuracy of several meters), GNSS (10-20 m), SBAS (2-3 m), MADOCA (10 cm), GNSS+RTK positioning (several cm), and CLAS (6 cm) have been put to practical use, and their reception range and accuracy have improved to a level suitable for the present invention. If it is predicted that the accuracy of the aircraft's flight altitude or detection response is insufficient in the satellite positioning system, a separate altitude sensor is equipped. By detecting the three-dimensional position of the high-angle takeoff and landing fixed-wing aircraft with a satellite positioning system and making it possible to detect the aircraft's attitude with a nine-axis sensor, the position and attitude of the aircraft can be appropriately feedback-controlled by the combined control of the detection information, the propulsion means, and the movable winglet.
In addition, by equipping the high elevation angle takeoff and landing fixed-wing aircraft with a three-dimensional anemometer and three-dimensional wind gust detection means, information on air currents and wind gusts at the current position of the high elevation angle takeoff and landing fixed-wing aircraft can be obtained, enabling more rapid and appropriate feedback control of the aircraft's position and attitude even in bad weather.
By equipping the high-elevation fixed-wing take-off and landing aircraft with at least one measurement means including one or more visible light imaging devices with pan-tilt-zoom capability, one or more infrared night vision imaging devices with pan-tilt-zoom capability, one or more low-light surveillance night vision imaging devices with pan-tilt-zoom capability, or a laser scanning device with ranging function, the high-elevation fixed-wing take-off and landing aircraft can obtain imaging information and ranging information of the surrounding area including the vertically downward direction, enabling more appropriate and safer flight and take-off and landing.
In particular, by mounting a pan/tilt/zoom capable infrared night vision imaging device or a pan/tilt/zoom capable low light surveillance night vision imaging device, and a laser scanning device with distance measurement function on the high elevation angle takeoff and landing fixed-wing aircraft, it will be possible to accurately carry out flight missions such as searching for victims or pirate ships, and detecting fish, even at night or in bad weather.
By creating a flight plan in advance including takeoff, level flight, approximate hovering flight, and landing according to the flight objective of the high-angle takeoff and landing fixed-wing aircraft, programming the plan and storing it in the CPU memory, automatic control of the high-angle takeoff and landing fixed-wing aircraft becomes possible.

請求項4に係る本発明は、該高仰角離着陸固定翼式飛行体が、大気の温度・湿度・気圧検出手段、浮遊微粒子物体の粒度及び濃度の検出が可能な浮遊微粒子検出手段、放射性物質検出手段、化学性物質検出手段の少なくとも1種を備えることを特徴とする請求項3記載の高仰角離着陸固定翼式飛行体である。
本発明における高仰角離着陸固定翼式飛行体の用途については、調査、捜索、災害対策、農漁業用、航行安全対策、運輸、防衛など多岐にわたると想定される。
本発明における高仰角離着陸固定翼式飛行体の用途に応じて必要なセンサーを装備する。大気の温度・湿度・気圧検出手段を装備し、台風の目の中に飛行させることで、台風の勢力、進行状況などを逐次測定することが出来る。
浮遊微粒子検出手段を装備し、雪、霰、黄砂、PM2.5、PM0.5、火山の噴煙などの浮遊状況などを逐次測定することが出来る。
放射性物質検出手段を装備し、原子力発電所、使用済み核燃料再処理施設、放射性物質を含む廃棄物の周辺を周航監視することで、異常発生を迅速に監視できる。
化学性物質検出手段を装備し、化学工場、化学物質保管庫などの周辺を周航監視することで、異常発生を迅速に監視できる。
Unmanned Aerial Vehicle Laser Scanning (UAV-LS) システム(非特許文献22)を本発明の高仰角離着陸固定翼式飛行体に搭載すれば、低速・長時間の飛行により広範囲の地表の植生(Above-Ground Biomass (AGB) )のより精度の高い調査が効率的に安価に実施できる。
The present invention of claim 4 is a fixed-wing aircraft with a high angle of elevation for take-off and landing as described in claim 3, characterized in that the fixed-wing aircraft with a high angle of elevation is equipped with at least one of the following means for detecting atmospheric temperature, humidity, and air pressure, suspended particulate matter detection means capable of detecting the particle size and concentration of suspended particulate matter, radioactive substance detection means, and chemical substance detection means.
The high-angle takeoff and landing fixed-wing aircraft of the present invention is expected to have a wide range of applications, including surveys, searches, disaster prevention measures, agriculture and fisheries, navigation safety measures, transportation, and defense.
The high-angle takeoff and landing fixed-wing aircraft of the present invention is equipped with sensors required according to its intended use. By equipping it with atmospheric temperature, humidity, and air pressure detection means and flying it into the eye of a typhoon, it is possible to continuously measure the strength and progress of the typhoon.
Equipped with a means for detecting suspended particulate matter, it can sequentially measure suspended conditions such as snow, hail, yellow sand, PM2.5, PM0.5, and volcanic smoke.
Equipped with means to detect radioactive materials, the vessel will be able to circumnavigate and monitor the areas surrounding nuclear power plants, spent nuclear fuel reprocessing facilities, and waste sites containing radioactive materials, enabling it to quickly monitor for any abnormal occurrences.
Equipped with a means of detecting chemical substances, the vessel can circumnavigate chemical plants, chemical substance storage facilities, etc., allowing for rapid monitoring of any abnormal occurrences.
By mounting an Unmanned Aerial Vehicle Laser Scanning (UAV-LS) system (Non-Patent Document 22) on the high-angle takeoff and landing fixed-wing aircraft of the present invention, it is possible to efficiently and inexpensively conduct more accurate surveys of above-ground biomass (AGB) over a wide area by flying at low speed and for a long period of time.

請求項5に係る本発明は、該脚長可変降着装置の調整により該脚長可変降着装置を流体抵抗の低い状態に畳み込み、該推進手段と該可動小翼との複合制御により、機体の仰角を10~90度の範囲の高仰角姿勢とした状態で所定時間範囲内において所定高度範囲および所定水平速度以下の略ホバリング飛行を可能とせしめることを特徴とする請求項1ないし4記載の高仰角離着陸固定翼式飛行体による略ホバリング飛行方法である。
前記Pugachev’s Cobra Maneuverの実演に供されたSu-27、Mig-21、Saab 35、F-16、Chengdu J-7などの戦闘機は空中戦に要求される数々の機能を備えており、たまたまそうした機能の一部を使い、高いレベルの操縦技術を有するパイロットだけが仰角120度までの高仰角姿勢での略ホバリング飛行が可能であったということであるのに対して、本発明の請求項1,2に記載した高仰角離着陸固定翼式飛行体の仕様は仰角90度までの高仰角姿勢での安定な略ホバリング飛行を可能とする仕様に特化している。従って、通常レベルの技量のパイロットであっても、数百時間程度の操縦訓練をこなすことで、請求項1及び2に記載の本発明の該高仰角離着陸固定翼式飛行体の安定な略ホバリング飛行操縦が可能となることを想定している。
該高仰角離着陸固定翼式飛行体の推力重量比T/Wは0.5~1.2の範囲としている。このため、高い推力重量比T/Wの該推進手段の性能を発揮させることにより、該可動小翼と該推進手段との複合制御により該機体の仰角を10~90度の範囲の高仰角姿勢として略ホバリング状態で安定して飛行させることが可能となる。
請求項3に記載の本発明の該高仰角離着陸固定翼式飛行体の仕様は、衛星測位システムおよび9軸センサーを備えているため、所定位置近傍での高仰角姿勢での略ホバリング飛行をフィードバック制御により自動操縦とすることが出来る。請求項3に記載の本発明の該高仰角離着陸固定翼式飛行体は有人飛行体と無人飛行体のどちらかの仕様とすることが出来る。
パン・チルト・ズーム可能な1個以上の可視光撮像装置、パン・チルト・ズーム可能な1個以上の赤外線型暗視撮像装置、パン・チルト・ズーム可能な1個以上の微光監視型暗視撮像装置の少なくとも1種の測定手段を請求項3に記載の本発明の該高仰角離着陸固定翼式飛行体に装備させ、略ホバリング飛行予定位置近傍の障害物、地形状況、救護対象者の状況などの情報を収集すると共に該機体3に搭載されている3次元風速計、3次元突風検出手段による風向などの情報を得て、荒天時においても的確且つ安全な略ホバリング飛行任務を遂行することが出来る。
本発明における高仰角離着陸固定翼式飛行体の用途に応じて必要なセンサーを装備する。大気の温度・湿度・気圧検出手段を装備し、該高仰角離着陸固定翼式飛行体の略ホバリング飛行能力を発揮して、5~10km/hの比較的低速で移動する台風の目の中に飛行させることで、台風の勢力、進行状況などを逐次測定することが出来る。
浮遊微粒子検出手段を装備し、所定位置の雪、霰、黄砂、PM2.5、PM0.5、火山の噴煙などの浮遊状況などを略ホバリング飛行により逐次測定することが出来る。
放射性物質検出手段を装備し、原子力発電所、使用済み核燃料再処理施設、放射性物質を含む廃棄物の周辺を略ホバリング飛行による低速周航監視することで、異常発生を迅速に監視できる。
化学性物質検出手段を装備し、化学工場、化学物質保管庫などの周辺を略ホバリング飛行による低速周航監視することで、異常発生を迅速に監視できる。
The present invention of claim 5 is a method for approximately hovering flight by a fixed-wing aircraft with a high angle of elevation take-off and landing as described in any one of claims 1 to 4, characterized in that by adjusting the landing gear, the landing gear is folded into a state of low fluid resistance, and by composite control of the propulsion means and the movable winglet, approximately hovering flight is enabled within a predetermined time range at a predetermined altitude range and at or below a predetermined horizontal speed with the aircraft in a high angle of elevation attitude in the range of 10 to 90 degrees.
Fighter aircraft such as Su-27, Mig-21, Saab 35, F-16, and Chengdu J-7 used in the demonstration of Pugachev's Cobra Maneuver are equipped with a number of functions required for aerial combat, and only pilots with high levels of piloting skill were able to fly in a near-hovering flight at a high elevation angle of up to 120 degrees by using only a portion of these functions. In contrast, the specifications of the high elevation angle takeoff and landing fixed-wing aircraft described in claims 1 and 2 of the present invention are specialized to enable stable near-hovering flight at a high elevation angle of up to 90 degrees. Therefore, it is assumed that even pilots with average levels of skill will be able to fly in a stable near-hovering flight of the high elevation angle takeoff and landing fixed-wing aircraft described in claims 1 and 2 of the present invention after several hundred hours of piloting training.
The thrust-to-weight ratio T/W of the fixed-wing aircraft with high takeoff and landing angles is set to a range of 0.5 to 1.2. Therefore, by utilizing the performance of the propulsion means with a high thrust-to-weight ratio T/W, it is possible to fly the aircraft stably in a substantially hovering state with a high elevation angle of 10 to 90 degrees by combined control of the movable winglet and the propulsion means.
The specifications of the high-angle takeoff and landing fixed-wing aircraft of the present invention described in claim 3 include a satellite positioning system and a 9-axis sensor, so that the approximately hovering flight at a high-angle attitude near a specified position can be automatically controlled by feedback control. The high-angle takeoff and landing fixed-wing aircraft of the present invention described in claim 3 can be either a manned aircraft or an unmanned aircraft.
At least one type of measuring means, such as one or more visible light imaging devices capable of pan/tilt/zoom, one or more infrared night vision imaging devices capable of pan/tilt/zoom, or one or more low light surveillance night vision imaging devices capable of pan/tilt/zoom, is equipped on the high elevation angle take-off and landing fixed-wing aircraft of the present invention as described in claim 3, and information such as obstacles, terrain conditions, and the status of persons to be rescued in the vicinity of the planned approximate hovering flight location can be collected, and information such as wind direction can be obtained from a three-dimensional anemometer and three-dimensional gust detection means mounted on the aircraft 3, making it possible to carry out accurate and safe approximate hovering flight missions even in bad weather.
The high-angle takeoff and landing fixed-wing aircraft of the present invention is equipped with sensors required according to its intended use, and is equipped with means for detecting atmospheric temperature, humidity, and air pressure. By utilizing the approximate hovering flight capability of the high-angle takeoff and landing fixed-wing aircraft and flying it into the eye of a typhoon moving at a relatively slow speed of 5 to 10 km/h, the strength and progress of the typhoon can be measured successively.
Equipped with a means for detecting suspended particulate matter, it can sequentially measure suspended conditions such as snow, hail, yellow sand, PM2.5, PM0.5, and volcanic smoke in a specified location by approximately hovering flight.
Equipped with a means for detecting radioactive materials, the drone can circumnavigate the areas surrounding nuclear power plants, spent nuclear fuel reprocessing facilities, and waste sites containing radioactive materials at a slow speed in a near-hovering flight, enabling rapid monitoring of any abnormal occurrences.
Equipped with a chemical substance detection means, the drone can circumnavigate chemical plants, chemical substance storage facilities, etc. at low speeds using a near-hovering flight, enabling rapid monitoring of any abnormal occurrences.

請求項6に係る本発明は、該脚長可変降着装置の調整により機体の仰角を10~90度の範囲の高仰角姿勢とし、該推進手段と該可動小翼との複合制御により、高仰角姿勢の状態で、超短距離滑走で安全な離着陸を可能とせしめることを特徴とする請求項1ないし4記載の高仰角離着陸固定翼式飛行体による超短距離離着陸方法である。
該高仰角離着陸固定翼式飛行体を離陸あるいは離水させるときには 、該脚長可変降着装置により機体の仰角を10~90度の範囲の高仰角姿勢として離陸あるいは離水準備姿勢とする。次いで該推進手段の出力を徐々に上げて、高い推力重量比T/Wの性能を発揮させることにより、該可動小翼と該推進手段との複合制御により機体を高仰角姿勢に維持した状態で略ホバリング飛行に移行させ、超短距離滑走で離陸あるいは離水を可能とせしめる。
該高仰角離着陸固定翼式飛行体を着陸あるいは着水させるときには 、該可動小翼と該推進手段との複合制御により該機体の仰角を10~90度の範囲の高仰角姿勢として略ホバリング状態とする。次いで該脚長可変降着装置を調整して高仰角姿勢のまま着陸あるいは着水可能な形態とする。次いで該推進手段の出力を徐々に下げて、低速で降下し該機体の後部に配設された該脚長可変降着装置を最初に接地あるいは接水させ次いで該機体の前部に配設された該脚長可変降着装置を接地あるいは接水させ、機体の仰角を10~90度の範囲の高仰角姿勢の状態のままで着陸あるいは着水させ、超短距離の滑走後の停止時に該脚長可変降着装置の脚長の調整により該機体を水平姿勢に徐々に移行させるという方法で該高仰角離着陸固定翼式飛行体を超短距離の滑走で着陸あるいは着水させることを可能とせしめる。
本発明では機体の仰角を10~90度の範囲の高仰角姿勢の状態のままで略ホバリング飛行により水平飛行速度を5km/h以下、降下速度を0.2m/s以下としての着陸が可能とせしめる。非特許文献13、14に示されている高仰角着陸法では着陸直前に機体姿勢を高仰角姿勢から水平姿勢に変更するという危険な操縦操作が要求されるが、本発明ではそうした危険な操縦操作を必要としない。本発明では、高仰角姿勢のまま着地し、地上滑走を終了した後の停止時において機体姿勢を高仰角姿勢から水平姿勢に変更するという着陸方法であるので、着陸時の操縦の容易性および安全性が格段に向上する。
The present invention according to claim 6 is a method for ultra-short distance takeoff and landing by a fixed-wing aircraft with a high angle of elevation as described in any one of claims 1 to 4, characterized in that the angle of elevation of the aircraft is set to a high angle of elevation in the range of 10 to 90 degrees by adjusting the variable landing gear, and safe takeoff and landing with an ultra-short distance runway is made possible in a high angle of elevation attitude by combined control of the propulsion means and the movable winglet.
When the high-angle takeoff and landing fixed-wing aircraft is to take off or take off from water, the variable landing gear sets the aircraft to a high-angle attitude of 10 to 90 degrees, preparing for takeoff or takeoff.The output of the propulsion means is then gradually increased to achieve a high thrust-to-weight ratio T/W performance, and the combined control of the movable winglet and the propulsion means causes the aircraft to transition to a near-hovering flight while maintaining the high-angle attitude, enabling it to take off or take off from water with an extremely short runway.
When the high-angle takeoff and landing fixed-wing aircraft is to land or land on water, the aircraft is brought into a high-angle attitude of 10 to 90 degrees by combined control of the movable winglet and the propulsion means, and is in a substantially hovering state. The landing gear is then adjusted to enable landing or water landing in the high-angle attitude. The output of the propulsion means is gradually reduced, the aircraft descends at a low speed, the landing gear disposed at the rear of the aircraft touches down or touches down on the water first, and then the landing gear disposed at the front of the aircraft touches down or touches down on the water, and the aircraft lands or lands on water with the high-angle attitude of 10 to 90 degrees, and when the aircraft stops after an extremely short run, the landing gear is adjusted to gradually shift the aircraft to a horizontal attitude. This method enables the high-angle takeoff and landing fixed-wing aircraft to land or water with an extremely short run.
In the present invention, the aircraft can land at a horizontal flight speed of 5 km/h or less and a descent speed of 0.2 m/s or less by approximately hovering while maintaining the aircraft in a high elevation angle attitude in the range of 10 to 90 degrees. The high elevation angle landing method shown in Non-Patent Documents 13 and 14 requires a dangerous control operation to change the aircraft attitude from a high elevation angle attitude to a horizontal attitude just before landing, but the present invention does not require such a dangerous control operation. In the present invention, the aircraft lands in a high elevation angle attitude, and when it stops after completing the ground run, the aircraft attitude is changed from a high elevation angle attitude to a horizontal attitude, so that the ease of control and safety during landing are significantly improved.

請求項7に係る本発明は、該脚長可変降着装置の調整により機体の仰角を10~90度の範囲の高仰角姿勢とし、該推進手段と該可動小翼と該脚長可変降着装置の伸展操作との複合制御により、高仰角姿勢の状態で、超短距離滑走で安全な滑走・跳躍離陸を可能とせしめると共に、該推進手段と該可動小翼と該脚長可変降着装置の屈曲操作との複合制御により、高仰角姿勢の状態で、超短距離滑走で安全な屈み込み・滑走着陸を可能とせしめることを特徴とする請求項1ないし4記載の高仰角離着陸固定翼式飛行体による超短距離離着陸方法である。
通常の地上滑走離陸の場合、降着装置が地面から離れるまで該降着装置は地面との摩擦抵抗として作用する。本発明では、離陸の際に該推進手段と該可動小翼との複合制御に該脚長可変降着装置の伸展操作を加えることにより、機体をジャンプさせて離陸を助力する。こうすることで離陸滑走距離を更に短縮するなど離陸を容易化することが出来る。地上滑走を開始して、所定の滑走速度(請求項6の場合よりも遅い滑走速度)に達したときに、該脚長可変降着装置の伸展操作を加える。これにより機体の重心高度は地上滑走時よりも増加する。機体は少なくとも1時的に浮揚する。降着装置が地面から離れるため、その走行抵抗がなくなり機体の速度は増加し、その時点の速度を初速、飛行角度を発射角度として機体重心位置は略弾道軌道に従い変化する。機体の重心高度が地上滑走時より高い状態を維持している間に、該推進手段および可動小翼を含めた水平翼の揚力により飛行角度をプラスの状態にすることで上昇を開始することが出来るようになる。請求項7記載の離陸方法では、請求項6記載の離陸方法よりも離陸時滑走速度を低減することができるので、更なる超短距離滑走離陸が可能となる。
着陸の際に該推進手段と該可動小翼との複合制御に該脚長可変降着装置の屈曲操作を加えることにより、機体を沈み込ませて着陸時の衝撃を緩和させる。こうすることで降下速度が速くなった場合や突風など荒天時の場合においても胴体の下方向減速度を減じて着陸をより安全化することが出来る。
The present invention of claim 7 is a method for ultra-short field takeoff and landing by a fixed-wing aircraft with a high angle of elevation as described in any one of claims 1 to 4, characterized in that by adjusting the landing gear, the angle of elevation of the aircraft is set to a high angle of elevation in the range of 10 to 90 degrees, and by composite control of the propulsion means, the movable winglet, and the extension operation of the landing gear, a safe runway or jump takeoff with an ultra-short runway is made possible in a high angle of elevation attitude, and by composite control of the propulsion means, the movable winglet, and the bending operation of the landing gear, a safe crouching or runway landing with an ultra-short runway is made possible in a high angle of elevation attitude.
In the case of a normal ground run takeoff, the landing gear acts as a frictional resistance with the ground until it leaves the ground. In the present invention, the variable landing gear is extended during takeoff in addition to the combined control of the propulsion means and the movable winglet, so that the aircraft jumps and assists in takeoff. This can facilitate takeoff by further shortening the takeoff run distance. When the ground run starts and a predetermined runway speed (runway speed slower than that in the case of claim 6) is reached, the variable landing gear is extended. This increases the altitude of the center of gravity of the aircraft compared to that during ground runway. The aircraft floats at least temporarily. As the landing gear leaves the ground, its running resistance disappears and the speed of the aircraft increases, and the speed at that point is the initial speed and the flight angle is the launch angle, and the position of the center of gravity of the aircraft changes according to an approximately ballistic trajectory. While the altitude of the center of gravity of the aircraft remains higher than that during ground runway, the flight angle is made positive by the lift of the horizontal wing including the propulsion means and the movable winglet, so that the aircraft can begin to climb. In the takeoff method according to the seventh aspect, the takeoff runway speed can be reduced more than in the takeoff method according to the sixth aspect, making it possible to achieve an even shorter runway takeoff.
During landing, the landing gear is flexed in addition to the combined control of the propulsion means and the movable winglets, causing the aircraft to sink and mitigating the impact of landing. This reduces the downward deceleration of the fuselage even when the descent speed increases or in rough weather such as gusts of wind, making the landing safer.

請求項8に係る本発明は、請求項1ないし4のいずれかに記載の1機以上の高仰角離着陸固定翼式飛行体と定置型あるいは移動型の1個以上の指令手段を含んで構成される高仰角離着陸固定翼式飛行体システムであって、該高仰角離着陸固定翼式飛行体は該指令手段と無線交信可能な無線送受信手段を備えており、該指令手段は該高仰角離着陸固定翼式飛行体が離着陸可能な超短距離滑走手段と、該高仰角離着陸固定翼式飛行体に動力エネルギーを補給するエネルギー補給手段と、該高仰角離着陸固定翼式飛行体を補修整備する補修整備手段と、該高仰角離着陸固定翼式飛行体を格納する飛行体格納手段と、該高仰角離着陸固定翼式飛行体と無線交信可能な無線送受信手段と、該高仰角離着陸固定翼式飛行体から受信した該推進手段と該可動小翼と該脚長可変降着装置の作動情報および衛星測位システム、9軸センサー、3次元風速計、3次元突風検出手段、パン・チルト・ズーム可能な1個以上の可視光撮像装置、パン・チルト・ズーム可能な1個以上の赤外線型暗視撮像装置、パン・チルト・ズーム可能な1個以上の微光監視型暗視撮像装置、測距機能を有するレーザースキャニング装置、大気の温度・湿度・気圧検出手段、浮遊微粒子検出手段、放射性物質検出手段、化学性物質検出手段が収集した検出データの少なくとも一部を解析することが可能なデータ解析手段を備えており、該高仰角離着陸固定翼式飛行体は現在の3次元位置と機体姿勢、および推進手段、可変小翼、脚長可変降着装置の作動情報、更に搭載している各種センサーにより収集した検出データを該指令手段に無線送信可能であり、定置対象物の3次元位置を特定する機能および移動対象物を追尾する機能を有し、該指令手段から受信する指令情報に基づいて、機体操縦制御、各種センサーの情報収集制御、該定置対象物あるいは該移動対象物に対してその現在事象を変化させる事象変化手段を備え、該高仰角離着陸固定翼式飛行体は1機以上の直接行動型高仰角離着陸固定翼式飛行体と、該指令手段と該直接行動型高仰角離着陸固定翼式飛行体との間の無線交信を中継する無線中継手段を備えた0機以上の無線中継型高仰角離着陸固定翼式飛行体を含むことを特徴とする高仰角離着陸固定翼式飛行体システムである。
該指令手段は定置型の指令基地であってもよいし、陸上・空中・水上・水中移動型の指令手段であっても良い。これらの指令手段は離着陸用の超短距離滑走路、エネルギー補給手段と、補修整備手段と、飛行体格納手段と、無線送受信手段と、データ解析手段と、を備えており、有人運用あるいは及び無人運用であってよいが、該高仰角離着陸固定翼式飛行体の繰り返しあるいは緊急発進の飛行任務を適確に遂行可能な仕様であることが要求される。
背景技術の項で記述したが、STOL、NTOLの滑走路長はそれぞれ150-300(m)、600(m)超であり、離着陸時の騒音被害を考慮してNTOLの空港は都市中心部から離れて設置されるのに対して、STOLでは都市中心部により近い位置に設置可能であるということで、都市中心部の多くの住民にとっては中近距離移動手段としてSTOLはドアツードア時間の最も短い移動手段として期待されている。本発明の該高仰角離着陸固定翼式飛行体はUSTOLであり、STOLに比べて格段に高い飛行角度で離着陸が可能である。そのため、離着陸時の騒音被害範囲をSTOLよりも狭く出来る。例えば、都市中心部の高さ500(m)の高層ビルの屋上に設けた50(m)の滑走路が本発明の該高仰角離着陸固定翼式飛行体の離着陸空港になり得る。500(m)の高所にある滑走路では、離陸可能速度以下の速度で滑走路端を離れて降下飛行状態になったとしても時間をかけて上昇飛行に変更させることが可能であり即墜落に至ることがない点が地上設置滑走路と異なる利点である。一般的な航空母艦は飛行甲板とその下の階が格納庫、そしてその間を飛行体を載せて移動できるエレベータとで構成されている。これと同じように50(m)の長さの滑走路と格納庫、エレベータを都市中心部の高層ビルの最上部に設置するという構造の空港である。このシステムには翼アスペクト比が小さい水平翼をタンデム配置する構造の飛行体などコンパクトな機体の飛行体が適合する。翼アスペクト比が小さい水平翼の飛行体は揚抗比が低くなるが、近距離移動手段として特化した仕様とすれば少ない燃料の搭載で機体重量を減らし、運航燃料経費の損失の低減が可能であると共に、不時着の被害を低減させることが出来る。500(m)超の距離差により地上歩行者にとっては騒音被害をあまり感じないと思われる。本発明のこのシステムでは、該高層ビルに火災やテロなどが発生した場合に避難手段、消防隊員・軍隊・医療班の派遣手段、消火剤や酸素吸入システムなどの供給手段として活用することが出来る。現行の屋上ヘリポートの大規模化・多様化など延長線上の運用である。
現行の中近距離都市間で運航されている航空機の殆どはNTOLであるので、長距離都市間で運航されている大型機用の大規模の空港(都市中心部から離れた位置に配置されている)を共用している。本発明の高仰角離着陸固定翼式飛行体はUSTOLであり、騒音被害範囲が狭いので、都市中心部により近い地域に中近距離都市間航空機専用の小規模の空港設備を設置できる。そうした変革により、ドアツードアの交通や物流の時間短縮が図られ得る。上記都市中心部の高層ビル最上階の離着陸設備はその一例である。都市中心部から離れた位置に設置された大規模空港を中近距離都市間航空機が利用していると推定される例として、ニュ―ヨーク、ロスアンジェルス、デトロイト、ローマ、ニューデリー、プネー、メルボルン、ホバート、深&#22323;、宣昌、ソウル、蔚山、大阪、名古屋、札幌などの都市が挙げられる。これらの都市などを離発着する中近距離都市間航空機運航のために、都市中心部により近い位置において本発明によるUSTOL飛行体専用に小規模の空港を含む航空システムを構築することにより中近距離都市間の交通および物流の利便性が格段に向上する。
該高仰角離着陸固定翼式飛行体から受信した該推進手段と該可動小翼と該脚長可変降着装置の作動情報および衛星測位システム、9軸センサーの情報をシミュレーションとつき合わせて該指令手段のデータ解析手段で解析することにより、該推進手段と該可動小翼と該脚長可変降着装置の機能劣化、作動不良などをリアルタイムで把握して、より精度の高い作動制御が可能となる。また、該データ解析手段により、搭載エネルギー源の実残量を解析して、飛行任務を修正する指令を飛行体に送信することもできる。
定置対象物としては、山岳事故や水害、風害などによる遭難者、ビルや原油タンクの火災などが挙げられ、移動対象物としては、雨雲、雷雲、黄砂、PM0.5、台風、竜巻、山岳火災、放射性物質の大気拡散、津波、噴煙、原油流出、魚群、海賊船、領海侵犯の不審船、戦時における相手軍及び自軍の戦力配置などが挙げられる。
定置対象物に対する事象変化手段として、山岳事故の遭難者や水害・土砂崩れなどによる孤立被災者に対する食料、救急治療用具、防寒用具、通信機器など救援物資の投下、遭難者救護などが挙げられる。移動対象物に対する事象変化手段として、海難事故被災者に対して飲食料カプセルや位置情報送信手段を備えた自動膨張式のライフボートなどを投下して被災状況を改善させることが出来る。また、山岳火災の消火、落雷制御、海賊船や不審船に対する警告活動などが挙げられる。
該高仰角離着陸固定翼式飛行体は1機以上の直接行動型高仰角離着陸固定翼式飛行体と、0機以上の無線中継型高仰角離着陸固定翼式飛行体で編成され得る。飛行の用途に適合させた仕様の高仰角離着陸固定翼式飛行体編成とする。例えば、該指令手段から遠距離の山岳地域での遭難者捜索および救助が飛行目的の場合、直接行動型高仰角離着陸固定翼式飛行体と無線中継型高仰角離着陸固定翼式飛行体を含めた飛行体編成とすることで、無線送受信環境が劣悪な谷底付近での捜索や救助などの飛行任務を適確に遂行できる。また、無線中継型高仰角離着陸固定翼式飛行体を含めた飛行体編成とすることで、該指令手段から遠距離域での該直接行動型高仰角離着陸固定翼式飛行体の飛行任務を遂行できるようになる。
移動可能な指令手段としての船の甲板で離着陸可能な無人飛行体の実現により本発明のUSTOLの用途は格段に広範囲化する。例えば、漁業支援、海難事故や自然災害時の捜索及び被災者救助、タンカーの水先案内、領海警備、密輸防止などへの新規利用拡大が可能となる。
移動型の指令手段として漁船に本システムを応用すると、水中超音波の反射情報を利用する従来の魚群探知機(水平方向探知可能距離:数百m)やスキャニングソナー(同:約2km)に比べて格段に広範囲の魚群探知が空中から可能となる。例えば、海鳥とカツオの餌が同じであることから、海鳥の群れを双眼鏡で探してのカツオ漁は古くから行われている。また、水持ち群(濃色化)や白湧き群(白色化)のように魚群による海面色調の変化などを本発明の高仰角離着陸固定翼式飛行体システムで検知して、自船の遠方の魚群に最短距離で接近することが出来る。このため漁獲効率を向上させることが出来る。また、他国の監視船の接近を事前に察知することにより拿捕されることを回避することが出来る。
本発明の直接行動型高仰角離着陸固定翼式飛行体と、無線中継型高仰角離着陸固定翼式飛行体を2000km超の航続距離の仕様とすれば、該指令手段を漁船の母港に設置して、該母港より1000km超の範囲の魚群を探知確認後に出港操業することが出来るようになる。また、レーザースキャニング装置を本発明の高仰角離着陸固定翼式飛行体に搭載すれば、魚群位置への到達経路の波高を知ることが出来るため、経済効率が高くしかも安全な操業が可能となる。
総トン数700トン以上の大型外航船の場合、本発明の高仰角離着陸固定翼式飛行体システムを採用することで甲板部航海当直部員の員数削減が可能となると共に航行安全性を向上できる。
該移動対象物が不審飛行体あるいはおよび不審船舶であって領空あるいはおよび領海侵犯の可能性を事前に察知し、要すればそれらに対して退去勧告するなど国防活動に本発明の高仰角離着陸固定翼式飛行体システムは利用できる。本発明の高仰角離着陸固定翼式飛行体はUSTOLであるので、長い滑走路を有する航空母艦でなくともヘリポート甲板を小改造することで巡視船、護衛艦、駆逐艦、巡洋艦、潜水艦でも離着艦可能とすることが出来る。
該指令手段を無人航行可能な海上浮体として、対潜哨戒手段などを装備した高仰角離着陸固定翼式無人飛行体と組み合わせた安価で実効性のある防衛システムとすることが出来る。所定数の高仰角離着陸固定翼式無人飛行体を配備し、交代運航とすることにより広範囲域を24時間警備することが出来る。該浮体には該高仰角離着陸固定翼式無人飛行体への給油や給電が可能なエネルギー自動補給設備を備えることが出来る。こうしたシステムを領海外縁部に複数配置させることで、人的被害無しに防衛機能を格段に向上させることが出来る。また、排他的経済水域の外縁部に複数配置させることで、安価で安全に他国の密漁を防止することが出来る。国際法的に可能であれば公海域にこうしたシステムを複数配置させることで、不特定他国による攻撃ミサイル発射位置(潜水艦からの発射を含む)により近い位置での発射情報を早期に検知し、より迅速・確実な国防手段システムに組み込むことが出来る。
The present invention according to claim 8 provides a high elevation angle takeoff and landing fixed-wing aircraft system including one or more high elevation angle takeoff and landing fixed-wing aircraft according to any one of claims 1 to 4 and one or more stationary or mobile command means, wherein the high elevation angle takeoff and landing fixed-wing aircraft is equipped with a wireless transceiver means capable of wirelessly communicating with the command means, and the command means is equipped with an ultra-short distance runway means by which the high elevation angle takeoff and landing fixed-wing aircraft can take off and land, an energy supply means for supplying the high elevation angle takeoff and landing fixed-wing aircraft with power energy, and a command means for repairing and maintaining the high elevation angle takeoff and landing fixed-wing aircraft. a satellite positioning system, a 9-axis sensor, a 3D anemometer, a 3D gust detection means, one or more visible light imaging devices capable of pan-tilt-zooming, one or more infrared night vision imaging devices capable of pan-tilt-zooming, one or more low light surveillance night vision imaging devices capable of pan-tilt-zooming, one or more infrared night vision imaging devices capable of pan-tilt-zooming, one or more low light surveillance night vision imaging devices capable of pan-tilt-zooming, The high-angle takeoff and landing fixed-wing aircraft is equipped with a laser scanning device having a distance measuring function, a data analysis means capable of analyzing at least a portion of the detection data collected by the atmospheric temperature/humidity/pressure detection means, the suspended particulate detection means, the radioactive material detection means, and the chemical material detection means, and is capable of wirelessly transmitting to the command means the current three-dimensional position and aircraft attitude, as well as operation information of the propulsion means, the variable winglets, and the variable landing gear, and further detection data collected by various sensors mounted thereon, and has a function of identifying the three-dimensional position of a stationary object and tracking a moving object. and an event change means for changing the current event of the stationary object or the moving object based on command information received from the command means, and the high elevation angle takeoff and landing fixed-wing aircraft system is characterized in that the high elevation angle takeoff and landing fixed-wing aircraft includes one or more direct action type high elevation angle takeoff and landing fixed-wing aircraft and zero or more radio relay type high elevation angle takeoff and landing fixed-wing aircraft equipped with radio relay means for relaying radio communication between the command means and the direct action type high elevation angle takeoff and landing fixed-wing aircraft.
The command means may be a stationary command base, or may be a land/air/water/underwater mobile command means. These command means are equipped with an ultra-short runway for takeoff and landing, an energy supply means, a maintenance means, an aircraft storage means, a wireless transmission/reception means, and a data analysis means, and may be manned or unmanned, but are required to have specifications that allow the high-angle takeoff and landing fixed-wing aircraft to perform repeated or emergency takeoff missions appropriately.
As described in the Background Art section, the runway lengths of STOL and NTOL are 150-300 (m) and over 600 (m), respectively. In consideration of noise pollution during takeoff and landing, NTOL airports are installed away from city centers, whereas STOL airports can be installed closer to city centers, and for many residents in city centers, STOL is expected to be the shortest door-to-door means of medium-to-short distance transportation. The high-angle takeoff and landing fixed-wing aircraft of the present invention is a USTOL, which allows takeoff and landing at a flight angle significantly higher than that of STOL. Therefore, the noise pollution range during takeoff and landing can be narrower than that of STOL. For example, a 50 (m) runway installed on the roof of a 500 (m) high-rise building in the city center can be the takeoff and landing airport for the high-angle takeoff and landing fixed-wing aircraft of the present invention. A runway at a height of 500(m) has the advantage over a ground-based runway that even if the aircraft leaves the end of the runway at a speed below the takeoff speed and enters a descending flight state, it can be changed to an ascending flight over time, and does not immediately crash. A typical aircraft carrier is composed of a flight deck, a hangar on the floor below, and an elevator that can transport aircraft between them. In a similar manner, an airport has a structure in which a 50(m) long runway, hangar, and elevator are installed at the top of a high-rise building in the city center. This system is suitable for aircraft with compact aircraft, such as aircraft with a tandem horizontal wing with a small wing aspect ratio. An aircraft with a horizontal wing with a small wing aspect ratio has a low lift-to-drag ratio, but if it is specialized for short-distance transportation, it can reduce the weight of the aircraft by carrying less fuel, reduce the loss of operational fuel costs, and reduce the damage caused by emergency landings. It is thought that the distance difference of over 500(m) will not cause much noise pollution to pedestrians on the ground. This system of the present invention can be used as an evacuation means in the event of a fire or terrorist attack in the high-rise building, as a means of dispatching firefighters, military forces, and medical teams, and as a means of supplying extinguishing agents, oxygen inhalation systems, etc. This is an extension of the current operation of large-scale and diversified rooftop heliports.
Most of the aircraft currently operating between short and medium-distance cities are NTOL, so they share large airports (located away from the city center) for large aircraft operating between long-distance cities. The high-angle takeoff and landing fixed-wing aircraft of the present invention is a USTOL, and the noise pollution range is small, so small airport facilities dedicated to short and medium-distance intercity aircraft can be installed in areas closer to the city center. Such a change can shorten the time for door-to-door traffic and logistics. The takeoff and landing facilities on the top floors of high-rise buildings in the city center are one example. Examples of cities where short and medium-distance intercity aircraft are estimated to use large airports located away from the city center include New York, Los Angeles, Detroit, Rome, New Delhi, Pune, Melbourne, Hobart, Shenzhen, Xunchang, Seoul, Ulsan, Osaka, Nagoya, and Sapporo. By constructing an aviation system including a small airport exclusively for the USTOL aircraft of the present invention in a location closer to the city center in order to operate aircraft between short and medium-distance cities, the convenience of transportation and logistics between short and medium-distance cities will be significantly improved.
By analyzing the operation information of the propulsion means, the movable winglet, and the variable landing gear received from the high-angle takeoff and landing fixed-wing aircraft, as well as the information of the satellite positioning system and the 9-axis sensor, in combination with a simulation using the data analysis means of the command means, it is possible to grasp the functional deterioration and malfunction of the propulsion means, the movable winglet, and the variable landing gear in real time, enabling more accurate operation control. In addition, the data analysis means can also analyze the actual remaining capacity of the on-board energy source and transmit a command to the aircraft to modify the flight mission.
Fixed objects include victims of mountain accidents, floods, or wind damage, and fires in buildings and crude oil tanks, while moving objects include rain clouds, thunderclouds, yellow sand, PM0.5, typhoons, tornadoes, mountain fires, the dispersion of radioactive materials in the atmosphere, tsunamis, volcanic smoke, crude oil spills, schools of fish, pirate ships, suspicious ships violating territorial waters, and the deployment of forces of both the enemy and one's own army in wartime.
Examples of event change methods for fixed objects include dropping relief supplies such as food, emergency medical equipment, cold weather gear, and communication devices to victims of mountain accidents and isolated victims of floods and landslides, and providing relief to victims. Examples of event change methods for moving objects include dropping food and drink capsules and automatically inflatable lifeboats equipped with location information transmission means to victims of marine accidents to improve the disaster situation. Other examples include extinguishing mountain fires, controlling lightning strikes, and warning against pirate ships and suspicious ships.
The high-angle takeoff and landing fixed-wing aircraft may be organized with one or more direct action type high-angle takeoff and landing fixed-wing aircraft and zero or more radio relay type high-angle takeoff and landing fixed-wing aircraft. The high-angle takeoff and landing fixed-wing aircraft organization is made with specifications suited to the purpose of flight. For example, when the flight purpose is to search for and rescue victims in mountainous areas far from the command means, the aircraft organization including the direct action type high-angle takeoff and landing fixed-wing aircraft and the radio relay type high-angle takeoff and landing fixed-wing aircraft can accurately perform flight missions such as search and rescue near the bottom of a valley where the radio transmission and reception environment is poor. In addition, the aircraft organization including the radio relay type high-angle takeoff and landing fixed-wing aircraft can perform the flight mission of the direct action type high-angle takeoff and landing fixed-wing aircraft in a far-distance area from the command means.
The realization of an unmanned aerial vehicle capable of taking off and landing on the deck of a ship as a mobile command means will dramatically expand the range of uses of the USTOL of the present invention, enabling new applications such as fishery support, search and rescue of victims in marine accidents and natural disasters, tanker pilotage, territorial waters security, and smuggling prevention.
When this system is applied to a fishing boat as a mobile command means, it becomes possible to detect schools of fish from the air in a much wider range than conventional fish finders (horizontal detection distance: several hundred meters) or scanning sonars (approximately 2 km), which use information from the reflection of underwater ultrasonic waves. For example, since seabirds and skipjack feed on the same food, skipjack fishing has been practiced for a long time by searching for flocks of seabirds with binoculars. In addition, the high-angle takeoff and landing fixed-wing aircraft system of the present invention can detect changes in the color tone of the sea surface caused by schools of fish, such as water-bearing schools (dark color) and white-springing schools (white color), and can approach schools of fish far from the boat in the shortest distance. This can improve fishing efficiency. In addition, it is possible to avoid capture by detecting the approach of surveillance ships from other countries in advance.
If the direct action type high elevation angle take-off and landing fixed-wing aircraft of the present invention and the radio relay type high elevation angle take-off and landing fixed-wing aircraft are specified for a range of more than 2000 km, the command means can be installed in the home port of a fishing boat, and fishing operations can be carried out after detecting and confirming a school of fish within a range of more than 1000 km from the home port. Also, if a laser scanning device is installed on the high elevation angle take-off and landing fixed-wing aircraft of the present invention, the wave height on the route to the location of the school of fish can be known, enabling economically efficient and safe operations.
In the case of large ocean-going ships with a gross tonnage of 700 tons or more, adoption of the high-angle takeoff and landing fixed-wing aircraft system of the present invention makes it possible to reduce the number of deck watchmen and improve navigation safety.
If the moving object is a suspicious flying object or ship, the high-angle takeoff and landing fixed-wing aircraft system of the present invention can be used for national defense activities, such as detecting the possibility of intrusion into territorial airspace or territorial waters in advance and advising them to leave if necessary. Since the high-angle takeoff and landing fixed-wing aircraft of the present invention is USTOL, it can be used for takeoff and landing on patrol boats, escort ships, destroyers, cruisers, and submarines by making minor modifications to the heliport deck, even if it is not an aircraft carrier with a long runway.
The command means can be an unmanned floating vessel capable of navigating the ocean, and can be combined with a high-angle takeoff and landing fixed-wing unmanned aerial vehicle equipped with anti-submarine patrol means to provide an inexpensive and effective defense system. A predetermined number of high-angle takeoff and landing fixed-wing unmanned aerial vehicles can be deployed and operated in shifts to provide 24-hour security over a wide area. The floating vessel can be equipped with an automatic energy supply facility capable of refueling and powering the high-angle takeoff and landing fixed-wing unmanned aerial vehicle. By arranging multiple such systems on the edge of territorial waters, defense capabilities can be significantly improved without causing human casualties. In addition, by arranging multiple such systems on the outer edge of the exclusive economic zone, poaching by other countries can be prevented inexpensively and safely. If possible under international law, by arranging multiple such systems in international waters, launch information from locations closer to the launch location of attack missiles by unspecified other countries (including launches from submarines) can be detected early, and the information can be incorporated into a more rapid and reliable national defense system.

本発明では、大翼面積の水平翼をタンデムに配設し、またそれぞれの水平翼に推進手段を左右対称位置に配設させることにより高仰角飛行時の姿勢制御(対ローリング、対ヨーイングおよび対ピッチング)の安定性を向上させると共に、推力重量比T/Wを0.5~1.2の高出力の推進手段とすることで安定した略ホバリング飛行(Pugachev’s Cobra Maneuver)を可能とさせている。加えて機体を高仰角姿勢としたままの超短距離離着陸を可能とする脚長可変降着装置を装備させた。
本発明により、公園やビルの屋上で離着陸可能な固定翼式の有人飛行体、道路、駐車場や船の甲板で離着陸可能な固定翼式の無人飛行体の実現が可能となり、海難事故や自然災害時の捜索及び被災者救助、山火事消火活動、タンカーの水先案内・海賊被害防止、原発テロ攻撃の警戒・予防対策、国境・領海警備、密輸防止、離島間の物流、農業・漁業支援などへの新規利用拡大が可能となる。
In this invention, horizontal wings with large wing areas are arranged in tandem, and propulsion means are arranged symmetrically on each horizontal wing, improving the stability of attitude control (against rolling, yawing, and pitching) during flight at high angles of elevation, and a high-output propulsion means with a thrust-to-weight ratio T/W of 0.5 to 1.2 enables stable near-hovering flight (Pugachev's Cobra Maneuver). In addition, the aircraft is equipped with a variable landing gear that enables ultra-short takeoff and landing while maintaining the aircraft in a high-angle attitude.
This invention makes it possible to realize fixed-wing manned aerial vehicles that can take off and land in parks and on the rooftops of buildings, and fixed-wing unmanned aerial vehicles that can take off and land on roads, parking lots, and ship decks, which will enable an expansion of new uses such as search and rescue of victims during maritime accidents and natural disasters, forest firefighting, tanker pilotage and piracy prevention, vigilance and prevention of nuclear power plant terrorist attacks, border and territorial waters security, smuggling prevention, logistics between remote islands, and agricultural and fishing support.

以下、図1~6を参照して、実施形態について説明する。
図1に本発明による高仰角離着陸固定翼式飛行体2の基本構造の例を3面図で説明する。図1の例では、高仰角離着陸固定翼式飛行体2の機体3は単胴の胴体4、タンデム配置され略同形状の2葉の水平翼6および2葉の垂直翼7を含んで構成されている。各々の水平翼6には推進手段5、可動小翼8、脚長可変降着装置9が配設されている。本図では水平翼配設の可動小翼を水平翼後部に配設させているが、可動小翼を水平翼前部に配設させる、あるいは可動小翼を水平翼前部および水平翼後部に配設させてもよい。高仰角姿勢での飛行時に水平翼の上面に発生する剥離流は水平翼前縁から開始されるようで、可動小翼を水平翼前部に配設させることによるDSM制御安定化の効果が期待できる(非特許文献8)。
本図では推進手段としてプロペラ方式の例を示しているが、ジェット方式など種類は限定されない。
略同形状の2葉の水平翼6をタンデムに配置させることで機体姿勢のピッチングおよびローリングに対する安定性を向上させている。この図の例では、低アスペクト比の水平翼を採用しており、機体全体の剛性を上げると共に機体全体をコンパクトな形状とすることにより操縦機敏性、離着陸対応性を向上させ、荒天域の飛行を可能とさせる仕様としている。前部の推進手段に加えて後部の水平翼にも推進手段を配設させることで高仰角姿勢での飛行時に前部の水平翼の乱れた後流(DSVなど)が後部の水平翼の揚力を不安定にさせる影響を低減させている。左右のプロペラの回転方向は互いに逆回転方向として、ローリングに対する機体姿勢を安定化させている。2葉の垂直翼7をタンデムに配設させることによりヨーイングに対する機体姿勢を安定化させている。脚長可変降着装置9を左右に離間した配置として、離着陸時に突風を受けた場合に後部の水平翼の翼端が接地して損傷することや機体が横転することを防止している。
本発明の該高仰角離着陸固定翼式飛行体2は衛星測位システム12と9軸センサー34を備えており、空中での機体の位置および姿勢のフィードバック制御を可能としている。要すれば3次元風速計13、3次元突風検出手段14を装備させて荒天時対応仕様としてもよい。加えて、パン・チルト・ズーム可能な可視光撮像装置15,パン・チルト・ズーム可能な赤外線型暗視撮像装置16.パン・チルト・ズーム可能な微光監視型暗視撮像装置17、測距機能を有するレーザースキャニング装置35のいずれかを1種以上備えることにより、該高仰角離着陸固定翼式飛行体2の高仰角姿勢の飛行中においても鉛直下方向を含む周辺の撮像情報、測距情報を得て、昼夜を問わず安全な着陸や救護活動が可能となる。
本発明では安定した制御により安全に略ホバリング飛行が可能な有人および無人のUSTOL固定翼式飛行体として実現可能な仕様の概念を提示している。その用途の多様性検討の参考として、本発明のUSTOL固定翼式飛行体の機能面の仕様の例を以下に記す。高仰角姿勢による略ホバリング飛行時の水平飛行速度を5km/h程度以下とする。巡航水平速度は推進手段により異なるがラジコン飛行機から有人の偵察機・旅客機・戦闘機の機能までを適用可能と推定すると20~3000km/hと考えられる。同様に飛行時間と航続距離はそれぞれ0.3~20h、0.5~17000kmの範囲と考えられる。回転翼式飛行体の水平飛行速度は0~400km/h、飛行時間と航続距離はそれぞれ0.1~5h、0.5~400kmの範囲と考えられる。従って、本発明の固定翼式飛行体は既存の回転翼式飛行体が有する機能を超えた範囲の機能を持たせることを目標としている。本発明の該高仰角離着陸固定翼式飛行体2の略ホバリング飛行時の水平飛行速度を5km/h程度以下とすることで、ピンポイントでの遭難者の救護や消火剤投下など回転翼式飛行体と同程度の機能を保持させることが出来る。船舶や航空機の事故での捜索や救護、あるいは台風、津波の情報収集のためには往復5000km、10h程度の飛行機能が要求されると思われる。本発明による有人飛行体および無人飛行体の離着陸距離はそれぞれ50m以下および10m以下を想定している。このような航続距離および離着陸距離は現状の固定翼式飛行体および回転翼式飛行体では対応不可能な機能であり、本発明の高仰角離着陸固定翼式飛行体2では対応可能とすることが出来る。
本発明の該高仰角離着陸固定翼式飛行体2は大気の温度・湿度・気圧検出手段10、浮遊微粒子検出手段22、空中放射線濃度検出手段27、化学兵器検出手段28のいずれかを少なくとも備えている。こうした機能を有する本発明の高仰角離着陸固定翼式飛行体2により、台風、竜巻、PM0.5、放射能や化学物質汚染の発生源に近接した詳細情報を収集することが可能となり、迅速で適確な避難指示を発信することが可能となる。本発明の高仰角離着陸固定翼式飛行体2は上記以外の各種センサー類を搭載可能だが、機体重量増をもたらす可能性があるので、目的や飛行空域の天候状態などを考慮して必要最小限のセンサー類を搭載することが望ましい。
本図では4基の推進手段を採用しているが、高仰角飛行時の各推力制御の応答速度を向上させるために、1~2基の動力源(内燃機関+発電機)とサーボモーター駆動の各プロペラ推進手段の構成としてもよい。この場合、可動小翼および脚長可変降着装置の制御を電磁アクチュエータとして制御の応答を高速化させてもよい。
本発明の該高仰角離着陸固定翼式飛行体2は従来にない特殊な飛行方法(略ホバリング飛行)を採用しているため、実用化にあたっては、飛行体操縦免許取得が比較的容易な無人機を当初の対象とすることが適当であると思われる。
本発明の該高仰角離着陸固定翼式飛行体2の機体3の長手軸のピッチ角度が高仰角となる高仰角姿勢における略ホバリング飛行時の状況を図2に示す。脚長可変降着装置9を畳み込んで空気抵抗を少なくしている。4基の推進手段5と水平翼および垂直翼に設けられた可変小翼8の複合制御、あるいはそれに加えて衛星測位システム12と9軸センサー34を組み合わせた複合フィードバック制御により高仰角姿勢を安定して持続させる。更に3次元風速計13、3次元突風検出手段14を備えさせることにより、荒天時における略ホバリング飛行の安全性を高めることが出来る。
本発明の該高仰角離着陸固定翼式飛行体2の水平飛行時の状況を図3に示す。脚長可変降着装置9の畳み込み状態は図2と同様である。水平巡航飛行時においては推力重量比T/Wを0.1程度に低下させることが出来るので4基の推進手段5の一部を停止させてもよい。水平翼に配設されている可動小翼は抵抗の少ない巡航角度とする。
通常、飛行体の飛行時間の殆どは水平巡航飛行に費やされる。回転翼式飛行体では、飛行時間中の殆どを1.1超の推力重量比で飛行するのに対して、本発明の該高仰角離着陸固定翼式飛行体2では水平翼の揚力を得て0.1程度の低い推力重量比での水平巡航飛行が可能である。従って、本発明の該高仰角離着陸固定翼式飛行体2では飛行時間中の殆どを低騒音飛行とすることが可能であり、回転翼式飛行体に比べて飛行航路周辺の騒音被害を低減させることが出来るという効果をもたらす。また、回転翼式飛行体に比べ本発明の該高仰角離着陸固定翼式飛行体2は飛行時間、航続距離、水平飛行速度などの機能面において優れている。
本発明の該高仰角離着陸固定翼式飛行体2の離着時の状況を図4(a)、(b)に示す。図1で理解されるように、機体3の前後タンデムに及び左右に離間して配設された4脚の脚長可変降着装置9を調整して機体3のピッチ角度を高仰角の姿勢にすることが出来る。
離陸の際にはまず4基の推進手段を起動し、図4(a)に示すように脚長可変降着装置9を調整して機体3を高ピッチ角の姿勢にする。脚長可変降着装置9にブレーキをかけた状態で、水平翼6に配設されている可動小翼8を離陸角度に設定する。次いで推進手段5の出力を徐々に上げて、脚長可変降着装置9のブレーキを開放して高仰角姿勢での滑走を開始させる。その後、高い推力重量比T/Wの該推進手段の性能を発揮させることにより超短距離滑走で高仰角姿勢として離陸させることが可能となる。
着陸の際には、図3に示す水平飛行の状態から徐々に図2の高仰角姿勢での略ホバリング飛行に移行する。高度を下げながら図4(b)の右側図のように脚長可変降着装置9を調整して高仰角姿勢のまま着地可能な形態にして着陸予定位置に接近する。要すれば、風向・風速や周囲の障害物の状況を考慮しながら、着陸計画を策定する。着陸計画に従って徐々に高度を下げて図4(b)の左側図のように着陸し超短距離滑走後停止する。その後脚長可変降着装置9を調整して図1に示す駐機姿勢とする。要すればこの姿勢で滑走路上を移動する。該脚長可変降着装置9は弾性手段とダンピング手段を備えており、図4(b)で理解されるように着陸時には前後方向に脚を拡げる形態とするので、突風などで高仰角姿勢が乱れても転倒することなく安全に着陸することが出来る。4基の推進手段5と水平翼および垂直翼に設けられた可変小翼8の複合制御、あるいはそれに加えて衛星測位システム12と9軸センサー34を組み合わせた複合フィードバック制御により高仰角姿勢による着陸を自動操縦とすることもできる。
請求項7に示した滑走・跳躍離陸法(Run and Jump Take-off Maneuver)を図5に示す。図5(a)に示すように脚長可変降着装置9を調整して機体3を高ピッチ角の姿勢にする。脚長可変降着装置9にブレーキをかけた状態で、水平翼6に配設されている可動小翼8を離陸角度に設定する。次いで推進手段5の出力を徐々に上げて、脚長可変降着装置9のブレーキを開放して高仰角姿勢での滑走を開始させる。所定の滑走速度に達したときに、脚長可変降着装置9を展伸操作させて機体を跳躍させ図5(b)の状態にした直後に脚長可変降着装置9を屈曲操作し、図5(a)に示した形態と同じ形態とする。こうすることで離陸失敗時においても安全に着陸することが出来る。本発明の滑走・跳躍離陸法により、図5(b)の状態にした機体重心位置は略弾道軌道に従い一旦上昇し次いで降下するように移動しようとする(図5(c))が、該脚長可変降着装置9と滑走路との摩擦抵抗がなくなるので、その分機体重心の水平移動速度は高くなり、水平翼の揚力は増加する。高仰角方向を向く推進手段5の推力ベクトルの鉛直方向成分と該水平翼の揚力の合力が増加し、機体重力よりも大となって以降は高い推力重量比T/Wの該推進手段の性能を発揮させることにより機体高度は上昇し続け、離陸完了に向かう。このようにして、本発明の滑走・跳躍離陸法は図4(a)に示した跳躍を伴わない高仰角離陸法の場合よりも更なる短距離滑走での離陸が可能となる。該脚長可変降着装置9の脚長操作アクチュエータは電磁方式、導電性高分子方式、空圧方式などの採用を想定しているが、跳躍離陸対応のために、要すればバネ式、火薬式を追加で装備してもよい。
図6に本発明の高仰角離着陸固定翼式飛行体システム1の例を示す。無線送受信手段21と超短距離滑走路11を備えた指令手段18としてのタンカー、コンテナ船やヘリポートを備えた護衛艦などと高仰角離着陸固定翼式飛行体2とを組み合わせた高仰角離着陸固定翼式飛行体システム1の例である。タンカーの甲板や積載コンテナの上面に設けた離着陸用プレートで無人の高仰角離着陸固定翼式飛行体2を離着陸させる。該高仰角離着陸固定翼式飛行体2は直接行動型高仰角離着陸固定翼式飛行体23に加えて無線中継型高仰角離着陸固定翼式飛行体24を備えることにより、無線交信精度が低下する遠方域でも直接行動型高仰角離着陸固定翼式飛行体23を適確に運用することが可能となる。このシステムの導入により、海賊船の接近情報を事前に収集可能となり、母船に被害が及ばない時点で威嚇射撃するなどの防御が可能となる。遠洋漁業に本発明のシステムを適用すれば、遠方広範囲域の魚群の位置と移動方向・速度を事前に検知できるため、燃料消費の少ない効率的な漁獲操業が可能となる。
航路幅の狭いマラッカ・シンガポール海峡、ロンボク海峡やホルムズ海峡などを大型船が航行する場合に本発明のシステムを適用すれば、航路前方の船に高仰角離着陸固定翼式飛行体2から予め注意喚起アナウンスをして衝突事故を未然に防止することが出来る。赤外線型暗視撮像装置16や微光監視型暗視撮像装置17を高仰角離着陸固定翼式飛行体2に装備させることで、夜間や濃霧など荒天時であっても低速航行や航行計画の変更などによる経済的損失を最小限にすることが出来る。
無線中継型高仰角離着陸固定翼式飛行体24を追加することにより、山岳地など無線交信精度が低下する空域でも直接行動型高仰角離着陸固定翼式飛行体23を適確に運用することが可能となる。
日本の本島・離島の東側海浜域は環太平洋地震帯のいずれかから発生する津波被害の可能性を抱えている。津波被害を最小限とするためには、地震発生後に津波発生及び伝播の情報を速やかに収集し、想定被災域の住民や船舶、原発等に情報を迅速に伝達することが重要である。駐車場や舗装道路で離着陸可能な簡便な本発明のシステムを沿岸域に複数配備しておくことで、迅速に広範囲の情報収集及び伝達が可能となり、被害を最小限にすることが出来る。自力で移動できない状態の被災者は脱水や低体温症などのため被災から72時間を経過すると生存率が10%以下に低下するといわれている。従って、被災後72時間以内での迅速かつ効率的な救護活動が求められる。2011年の東日本大震災時に事故原発からの放射線の拡散域の情報が不充分であったために風上にあたる海岸線の被災者の緊急救護活動が適切に実施されなかった。本発明による空中放射線濃度検出手段27を搭載した無人の高仰角離着陸固定翼式飛行体2を使用すれば同様の事故が発生した場合に、放射線の拡散域を迅速に正確に把握することが出来るため、救助隊員の放射線被害を防止しながら適確な救護活動が可能となる。また、拡散域の住民の避難経路を適確に指示し、放射能被害を少なくすることが出来る。
Hereinafter, the embodiment will be described with reference to FIGS.
FIG. 1 illustrates an example of the basic structure of a fixed-wing aircraft 2 with a high angle of elevation and takeoff/landing according to the present invention in three-view diagrams. In the example of FIG. 1, the airframe 3 of the fixed-wing aircraft 2 with a high angle of elevation and takeoff/landing is composed of a mono-fuselage fuselage 4, two horizontal wings 6 and two vertical wings 7 arranged in tandem and having substantially the same shape. Each horizontal wing 6 is provided with a propulsion means 5, a movable winglet 8, and a landing gear 9 with variable landing gear length. In this figure, the movable winglet of the horizontal wing arrangement is arranged at the rear of the horizontal wing, but the movable winglet may be arranged at the front of the horizontal wing, or the movable winglet may be arranged at the front and rear of the horizontal wing. The separated flow generated on the upper surface of the horizontal wing during flight at a high angle of elevation seems to start from the leading edge of the horizontal wing, and the effect of stabilizing DSM control can be expected by arranging the movable winglet at the front of the horizontal wing (Non-Patent Document 8).
In this figure, a propeller type is shown as an example of the propulsion means, but the type is not limited to a jet type.
The two horizontal wings 6 of approximately the same shape are arranged in tandem to improve the stability of the aircraft against pitching and rolling. In the example shown in this figure, a horizontal wing with a low aspect ratio is adopted, which increases the rigidity of the entire aircraft and makes the entire aircraft compact in shape, thereby improving maneuverability and takeoff and landing compatibility, and enabling flight in rough weather. In addition to the front propulsion means, the rear horizontal wing is also provided with a propulsion means, reducing the effect of the turbulent wake (DSV, etc.) of the front horizontal wing destabilizing the lift of the rear horizontal wing when flying at a high angle of attack. The left and right propellers rotate in opposite directions to each other, stabilizing the aircraft's attitude against rolling. The two vertical wings 7 are arranged in tandem to stabilize the aircraft's attitude against yawing. The variable landing gear 9 is arranged at a distance from the left and right to prevent the wing tips of the rear horizontal wing from touching the ground and being damaged when a gust of wind is received during takeoff and landing, and to prevent the aircraft from rolling over.
The high-angle takeoff and landing fixed-wing aircraft 2 of the present invention is equipped with a satellite positioning system 12 and a 9-axis sensor 34, enabling feedback control of the aircraft's position and attitude in the air. If necessary, a 3D anemometer 13 and a 3D gust detection means 14 may be equipped to accommodate stormy weather. In addition, by providing one or more of the pan-tilt-zoom visible light imaging device 15, the pan-tilt-zoom infrared night vision imaging device 16, the pan-tilt-zoom low-light surveillance night vision imaging device 17, and the laser scanning device 35 with distance measurement function, the high-angle takeoff and landing fixed-wing aircraft 2 can obtain surrounding imaging information and distance measurement information including the vertical downward direction even during flight at a high angle of elevation, enabling safe landing and rescue activities regardless of day or night.
This invention presents a concept of specifications that can be realized as a manned and unmanned USTOL fixed-wing air vehicle capable of safe near-hovering flight through stable control. As a reference for considering the diversity of its uses, an example of the functional specifications of the USTOL fixed-wing air vehicle of the present invention is described below. The horizontal flight speed during near-hovering flight with a high elevation angle attitude is about 5 km/h or less. The cruising horizontal speed varies depending on the propulsion means, but it is estimated to be 20 to 3000 km/h if it is applicable to functions from radio-controlled airplanes to manned reconnaissance planes, passenger planes, and fighter planes. Similarly, the flight time and range are estimated to be in the ranges of 0.3 to 20 hours and 0.5 to 17000 km, respectively. The horizontal flight speed of the rotary-wing air vehicle is estimated to be 0 to 400 km/h, and the flight time and range are estimated to be in the ranges of 0.1 to 5 hours and 0.5 to 400 km, respectively. Therefore, the fixed-wing air vehicle of the present invention aims to have functions that exceed the functions of existing rotary-wing air vehicles. By setting the horizontal flight speed of the high-angle takeoff and landing fixed-wing aircraft 2 of the present invention at approximately 5 km/h or less during hovering flight, it is possible to maintain the same functions as rotary-wing aircraft, such as pinpoint rescue of victims and dropping fire extinguishing agents. It is believed that a round-trip flight function of 5,000 km and 10 hours is required for search and rescue in ship or aircraft accidents, or for collecting information on typhoons and tsunamis. The takeoff and landing distances of the manned and unmanned aircraft of the present invention are assumed to be 50 m or less and 10 m or less, respectively. Such a cruising distance and takeoff and landing distance are functions that cannot be met by current fixed-wing and rotary-wing aircraft, but can be met by the high-angle takeoff and landing fixed-wing aircraft 2 of the present invention.
The high-angle takeoff and landing fixed-wing aircraft 2 of the present invention is equipped with at least one of atmospheric temperature, humidity, and pressure detection means 10, suspended particulate matter detection means 22, airborne radiation concentration detection means 27, and chemical weapon detection means 28. The high-angle takeoff and landing fixed-wing aircraft 2 of the present invention having these functions makes it possible to collect detailed information close to sources of typhoons, tornadoes, PM0.5, radioactive material, and chemical pollution, and to issue quick and accurate evacuation instructions. The high-angle takeoff and landing fixed-wing aircraft 2 of the present invention can be equipped with various sensors other than those mentioned above, but since this may result in an increase in the weight of the aircraft, it is desirable to equip it with the minimum number of sensors necessary, taking into consideration the purpose and weather conditions in the flight airspace.
In this figure, four propulsion means are used, but in order to improve the response speed of each thrust control during high angle flight, one or two power sources (internal combustion engine + generator) and servo motor-driven propeller propulsion means may be used. In this case, the movable winglets and variable landing gear may be controlled by electromagnetic actuators to speed up the control response.
Since the high-angle takeoff and landing fixed-wing aircraft 2 of the present invention employs a unique flight method (approximate hovering flight) that has not been seen in the past, when it is put into practical use, it is considered appropriate to initially target unmanned aircraft, for which it is relatively easy to obtain an aircraft pilot's license.
Figure 2 shows the state of the high-angle takeoff and landing fixed-wing aircraft 2 of the present invention during approximate hovering flight in a high-angle attitude where the pitch angle of the longitudinal axis of the fuselage 3 is a high angle of elevation. The variable landing gear 9 is folded up to reduce air resistance. The high-angle attitude is stably maintained by composite control of the four propulsion means 5 and the variable winglets 8 provided on the horizontal and vertical wings, or by composite feedback control that additionally combines a satellite positioning system 12 and a 9-axis sensor 34. Furthermore, by providing a three-dimensional anemometer 13 and a three-dimensional gust detection means 14, the safety of the approximate hovering flight in stormy weather can be improved.
Figure 3 shows the state of the high angle of attack fixed-wing aircraft 2 of the present invention during horizontal flight. The folded state of the variable landing gear 9 is the same as in Figure 2. During horizontal cruising flight, the thrust-to-weight ratio T/W can be reduced to about 0.1, so some of the four propulsion means 5 may be stopped. The movable winglets arranged on the horizontal wings are at a cruising angle that provides less resistance.
Usually, most of the flight time of an aircraft is spent in horizontal cruising flight. Rotary wing aircraft fly with a thrust-to-weight ratio of more than 1.1 for most of the flight time, whereas the high-angle takeoff and landing fixed-wing aircraft 2 of the present invention can achieve horizontal cruising flight with a thrust-to-weight ratio as low as 0.1 by utilizing the lift of the horizontal wing. Therefore, the high-angle takeoff and landing fixed-wing aircraft 2 of the present invention can achieve low-noise flight for most of the flight time, and has the effect of reducing noise damage around the flight route compared to rotary wing aircraft. Furthermore, the high-angle takeoff and landing fixed-wing aircraft 2 of the present invention is superior in terms of functionality such as flight time, range, and horizontal flight speed compared to rotary wing aircraft.
4(a) and (b) show the state of takeoff and landing of the fixed-wing aircraft 2 with high angle of elevation of the present invention. As can be seen from Fig. 1, the pitch angle of the aircraft 3 can be adjusted to a high angle of elevation by adjusting the four variable-length landing gears 9 arranged in tandem at the front and rear of the aircraft 3 and spaced apart on the left and right.
At takeoff, the four propulsion means are first activated, and the landing gear 9 is adjusted to place the aircraft 3 in a high pitch angle attitude, as shown in Figure 4(a). With the brakes on the landing gear 9 applied, the movable winglet 8 arranged on the horizontal wing 6 is set to a takeoff angle. Next, the power output of the propulsion means 5 is gradually increased, and the brakes on the landing gear 9 are released to start a runway in a high angle of attack attitude. Thereafter, by utilizing the performance of the propulsion means with a high thrust-to-weight ratio T/W, it becomes possible to take off in a high angle of attack attitude with an extremely short runway.
During landing, the aircraft gradually transitions from the horizontal flight state shown in FIG. 3 to a hovering flight with a high elevation angle as shown in FIG. 2. While lowering the altitude, the landing gear 9 is adjusted as shown in the right side of FIG. 4(b) to land in a high elevation angle attitude and approach the planned landing position. If necessary, a landing plan is formulated taking into consideration the wind direction, wind speed, and surrounding obstacles. The aircraft gradually lowers the altitude according to the landing plan, lands as shown in the left side of FIG. 4(b), and stops after an extremely short run. The landing gear 9 is then adjusted to the parking attitude shown in FIG. 1. If necessary, the aircraft moves on the runway in this attitude. The landing gear 9 is equipped with elastic means and damping means, and as can be seen in FIG. 4(b), the landing gear is expanded in the front and rear directions during landing, so that the aircraft can land safely without tipping over even if the high elevation angle attitude is disturbed by a gust of wind or the like. Landing at a high angle of attack can also be automated by using composite control of the four propulsion means 5 and the variable-wing fins 8 on the horizontal and vertical wings, or by using composite feedback control that combines a satellite positioning system 12 and a nine-axis sensor 34 in addition to these.
The run and jump take-off maneuver according to claim 7 is shown in Fig. 5. The landing gear 9 is adjusted to place the aircraft 3 in a high pitch angle attitude as shown in Fig. 5(a). With the brakes on the landing gear 9 applied, the movable winglet 8 arranged on the horizontal wing 6 is set to a take-off angle. The output of the propulsion means 5 is then gradually increased, the brakes on the landing gear 9 are released, and the aircraft begins to run at a high elevation angle. When a predetermined run-off speed is reached, the landing gear 9 is extended to make the aircraft jump and reach the state shown in Fig. 5(b), and immediately after that, the landing gear 9 is flexed to take the same shape as shown in Fig. 5(a). This allows a safe landing even in the event of a take-off failure. With the runway/jump takeoff method of the present invention, the aircraft's center of gravity, as shown in Fig. 5(b), rises once and then tries to move down along a ballistic trajectory (Fig. 5(c)). However, since there is no friction between the landing gear 9 and the runway, the horizontal movement speed of the aircraft's center of gravity increases accordingly, and the lift of the horizontal wing increases. The resultant force of the vertical component of the thrust vector of the propulsion means 5, which faces a high angle of elevation, and the lift of the horizontal wing increases, and once it exceeds the aircraft's weight, the propulsion means with a high thrust-to-weight ratio T/W is able to exert its performance, and the aircraft altitude continues to rise, toward the completion of takeoff. In this way, the runway/jump takeoff method of the present invention enables takeoff with a shorter runway distance than the high angle of elevation takeoff method without jumping shown in Fig. 4(a). The landing gear 9 is designed to use an electromagnetic, conductive polymer, pneumatic or other type of landing gear actuator for controlling the landing gear length. However, if necessary, a spring or explosive type actuator may also be installed to accommodate jump takeoff.
FIG. 6 shows an example of the high-angle takeoff and landing fixed-wing aircraft system 1 of the present invention. This is an example of the high-angle takeoff and landing fixed-wing aircraft system 1 that combines a tanker, a container ship, a frigate equipped with a heliport, or the like, as a command means 18 equipped with a wireless transmission/reception means 21 and an ultra-short runway 11, with a high-angle takeoff and landing fixed-wing aircraft 2. The unmanned high-angle takeoff and landing fixed-wing aircraft 2 takes off and lands on a takeoff and landing plate provided on the deck of the tanker or the top surface of a loaded container. The high-angle takeoff and landing fixed-wing aircraft 2 is equipped with a wireless relay type high-angle takeoff and landing fixed-wing aircraft 24 in addition to a direct action type high-angle takeoff and landing fixed-wing aircraft 23, so that the direct action type high-angle takeoff and landing fixed-wing aircraft 23 can be operated accurately even in distant areas where wireless communication accuracy is reduced. The introduction of this system makes it possible to collect information on the approach of pirate ships in advance, and defense such as firing warning shots at a time when damage to the mother ship is not caused is possible. If the system of this invention is applied to deep-sea fishing, it will be possible to detect in advance the position, direction and speed of fish schools over a wide distance, enabling efficient fishing operations with less fuel consumption.
If the system of the present invention is applied to large ships navigating narrow sea routes such as the Straits of Malacca and Singapore, the Straits of Lombok, and the Straits of Hormuz, collision accidents can be prevented by issuing warning announcements to ships ahead of the ship from the high-elevation fixed-wing aircraft 2. By equipping the high-elevation fixed-wing aircraft 2 with an infrared night-vision imaging device 16 or a low-light surveillance night-vision imaging device 17, economic losses due to slow navigation or changes to navigation plans can be minimized even at night or in stormy weather such as dense fog.
By adding the radio relay type high elevation angle takeoff and landing fixed-wing aircraft 24, it becomes possible to operate the direct action type high elevation angle takeoff and landing fixed-wing aircraft 23 accurately even in airspaces where radio communication accuracy is reduced, such as mountainous areas.
The eastern coastal areas of Japan's main island and remote islands are at risk of tsunami damage from any of the circum-Pacific earthquake zones. In order to minimize tsunami damage, it is important to quickly collect information on the generation and propagation of tsunamis after an earthquake and quickly transmit the information to residents, ships, nuclear power plants, etc. in the expected affected areas. By deploying multiple simple systems of the present invention, which can take off and land on parking lots and paved roads, in coastal areas, it is possible to quickly collect and transmit information over a wide area, thereby minimizing damage. It is said that the survival rate of victims who cannot move on their own drops to less than 10% after 72 hours from the disaster due to dehydration and hypothermia. Therefore, rapid and efficient relief activities are required within 72 hours after the disaster. During the Great East Japan Earthquake in 2011, emergency relief activities for victims on the windward coastline were not carried out appropriately due to insufficient information on the spread of radiation from the accident nuclear power plant. If an unmanned fixed-wing aircraft 2 with a high elevation angle of takeoff and landing equipped with the airborne radiation concentration detection means 27 according to the present invention is used, the radiation diffusion area can be grasped quickly and accurately in the event of a similar accident, enabling appropriate rescue activities while preventing radiation damage to rescue workers. Also, evacuation routes can be provided accurately to residents in the diffusion area, minimizing radiation damage.

本発明による高仰角離着陸固定翼式飛行体の基本構造の一例の説明図である。1 is an explanatory diagram of an example of the basic structure of a fixed-wing aircraft with high angle of elevation takeoff and landing according to the present invention. 本発明による高仰角離着陸固定翼式飛行体の高仰角姿勢による略ホバリング飛行の説明図である。FIG. 2 is an explanatory diagram of a near-hovering flight at a high angle of elevation of a fixed-wing aircraft with high angle of elevation takeoff and landing according to the present invention. 本発明による高仰角離着陸固定翼式飛行体の水平飛行の説明図である。FIG. 2 is an explanatory diagram of horizontal flight of a fixed-wing aircraft with high angle of elevation takeoff and landing according to the present invention. 本発明による高仰角離着陸固定翼式飛行体の離陸および着陸の説明図である。1 is an explanatory diagram of takeoff and landing of a high-angle takeoff and landing fixed-wing air vehicle according to the present invention. 本発明による高仰角離着陸固定翼式飛行体の滑走・跳躍離陸法の説明図である。FIG. 2 is an explanatory diagram of a runway/jump takeoff method for a fixed-wing aircraft with a high angle of elevation takeoff and landing according to the present invention. 本発明による高仰角離着陸固定翼式飛行体システムの一例の説明図である。FIG. 1 is an illustration of an example of a high angle takeoff and landing fixed-wing air vehicle system according to the present invention. 従来技術としてのSTOLとVTOLの例の説明図である。FIG. 1 is an explanatory diagram of examples of STOL and VTOL as prior art. 従来技術としての高仰角失速着陸法による特殊飛行技術の説明図である。FIG. 1 is an explanatory diagram of a special flight technique using a high angle stall landing method as a conventional technique. 従来技術としてのPugachev’s Cobra Maneuverによる特殊飛行技術の説明図である。This is an explanatory diagram of a special flight technique using Pugachev's Cobra Maneuver as prior art.

1 高仰角離着陸固定翼式飛行体システム
2 高仰角離着陸固定翼式飛行体
3 機体
4 胴体
5 推進手段
6 水平翼
7 垂直翼
8 可動小翼
9 脚長可変降着装置
10 大気の温度・湿度・気圧検出手段
11 超短距離滑走路
12 衛星測位システム
13 3次元風速計
14 3次元突風検出手段
15 パン・チルト・ズーム可能な可視光撮像装置
16 パン・チルト・ズーム可能な赤外線型暗視撮像装置
17 パン・チルト・ズーム可能な微光監視型暗視撮像装置
18 指令手段
19 定置対象物
20 移動対象物
21 無線送受信手段
22 浮遊微粒子検出手段
23 直接行動型高仰角離着陸固定翼式飛行体
24 無線中継型高仰角離着陸固定翼式飛行体
25 無線中継手段
26 事象変化手段
27 空中放射線濃度検出手段
28 化学兵器検出手段
29 発電手段
30 熱電変換手段
31 ヒートパイプ
32 高仰角離着陸固定翼式有人飛行体
33 高仰角離着陸固定翼式無人飛行体
34 9軸センサー
35 レーザースキャニング装置
1 High-angle takeoff and landing fixed-wing aircraft system 2 High-angle takeoff and landing fixed-wing aircraft 3 Aircraft 4 Fuselage 5 Propulsion means 6 Horizontal wing 7 Vertical wing 8 Movable winglet 9 Variable landing gear 10 Atmospheric temperature, humidity, and pressure detection means 11 Ultra-short runway 12 Satellite positioning system 13 Three-dimensional anemometer 14 Three-dimensional gust detection means 15 Pan-tilt-zoom visible light imaging device 16 Pan-tilt-zoom infrared night vision imaging device 17 Pan-tilt-zoom low-light surveillance night vision imaging device 18 Command means 19 Fixed object 20 Moving object 21 Wireless transmission and reception means 22 Suspended particle detection means 23 Direct action high-angle takeoff and landing fixed-wing aircraft 24 Wireless relay high-angle takeoff and landing fixed-wing aircraft 25 Wireless relay means 26 Event change means 27 Airborne radiation concentration detection means 28 Chemical weapon detection means 29 Power generation means 30 Thermoelectric conversion means 31 Heat pipe 32 High-angle takeoff and landing fixed-wing manned aircraft 33 High-angle takeoff and landing fixed-wing unmanned aircraft 34 9-axis sensor 35 Laser scanning device

Claims (8)

高仰角の機体姿勢の状態で安定した略ホバリング飛行および超短距離滑走での安全な離着陸が可能な固定翼式飛行体である高仰角離着陸固定翼式飛行体であって、該高仰角離着陸固定翼式飛行体は1基以上の推進手段と、1以上の胴体を備えた機体と、タンデム配置の2葉の水平翼と、2葉以上の垂直翼と、5以上の可動小翼と、前後方向および左右方向に離間配置された4脚以上の脚長調整機能を有する降着装置である脚長可変降着装置と、少なくとも該推進手段と該可動小翼と該脚長可変降着装置を制御するCPUとを含んで構成され、該水平翼および該垂直翼の各々は機体のロール・ピッチ・ヨーの姿勢を制御可能な該可動小翼を備え、各々の該水平翼の面積をSとし、翼幅(左右方向の長さ)をbとしたときのアスペクト比AR(=b^2/S)を0.5~20の範囲とし、該水平翼の翼端を翼根より上げる角度である上反角を5~40度の範囲とし、該推進手段は総推力と離陸重量との比T/Wtおよび総推力と着陸重量との比T/Wlを0.5~1.2の範囲とすることを可能とし、該脚長可変降着装置は機体の仰角(ピッチ角)を10~90度の範囲の高仰角姿勢の状態で離着陸させることを可能とすると共に左右の間隔を0.4*b以上とすることを特徴とする高仰角離着陸固定翼式飛行体。 A high-angle takeoff and landing fixed-wing aircraft capable of stable near-hovering flight and safe takeoff and landing with an ultra-short runway while in a high-angle aircraft attitude, the high-angle takeoff and landing fixed-wing aircraft is comprised of one or more propulsion means, an aircraft with one or more fuselages, two horizontal wings in tandem, two or more vertical wings, five or more movable winglets, a variable-leg landing gear that is a landing gear with a leg length adjustment function for four or more legs spaced apart in the front-rear and left-right directions, and a CPU that controls at least the propulsion means, the movable winglets, and the variable-leg landing gear, and each of the horizontal and vertical wings is adapted to adjust the roll, pitch, and yaw of the aircraft. A high-angle takeoff and landing fixed-wing aircraft equipped with the movable winglets capable of controlling the attitude, with the aspect ratio AR (= b^2/S) in the range of 0.5 to 20 when the area of each horizontal wing is S and the wingspan (length in the left-right direction) is b, the dihedral angle, which is the angle at which the wing tip of the horizontal wing is raised above the wing root, is in the range of 5 to 40 degrees, the propulsion means makes it possible to set the ratio T/Wt of total thrust to takeoff weight and the ratio T/Wl of total thrust to landing weight in the range of 0.5 to 1.2, and the variable landing gear makes it possible to take off and land in a high-angle attitude with the aircraft's elevation angle (pitch angle) in the range of 10 to 90 degrees, and the left-right spacing is 0.4*b or more. 高仰角の機体姿勢の状態で安定した略ホバリング飛行および超短距離滑走での安全な離着陸が可能な固定翼式飛行体である高仰角離着陸固定翼式飛行体であって、該高仰角離着陸固定翼式飛行体は左右対称位置に配設された2基以上の偶数基の推進手段と、1以上の胴体を備えた機体と、タンデム配置の2葉の水平翼と、2葉以上の垂直翼と、6以上の可動小翼と、前後方向および左右方向に離間配置された4脚以上の脚長調整機能を有する降着装置である脚長可変降着装置と、少なくとも該推進手段と該可動小翼と該脚長可変降着装置を制御するCPUとを含んで構成され、該水平翼および該垂直翼の各々は機体のロール・ピッチ・ヨーの姿勢を制御可能な可動小翼を備え、左右対称位置に配設された推進手段の回転方向を互いに逆方向とし、各々の該水平翼の面積をSとし、翼幅(左右方向の長さ)をbとしたときのアスペクト比AR(=b^2/S)を0.5~20の範囲とし、該水平翼の翼端を翼根より上げる角度である上反角を5~40度の範囲とし、該推進手段は総推力と離陸重量との比T/Wtおよび総推力と着陸重量との比T/Wlを0.5~1.2の範囲とすることを可能とし、該脚長可変降着装置は機体の仰角を10~90度の範囲の高仰角姿勢の状態で離着陸させることを可能とすると共に左右の間隔を0.4*b以上とすることを特徴とする高仰角離着陸固定翼式飛行体。 A high-angle takeoff and landing fixed-wing aircraft capable of stable near-hovering flight and safe takeoff and landing with an ultra-short runway while in a high-angle aircraft attitude, the high-angle takeoff and landing fixed-wing aircraft is composed of an even number of propulsion means (two or more) arranged symmetrically on the left and right, an aircraft with one or more fuselages, two horizontal wings arranged in tandem, two or more vertical wings, six or more movable winglets, a variable-leg landing gear that is a landing gear with a leg length adjustment function for four or more legs arranged at a distance in the front-rear and left-right directions, and a CPU that controls at least the propulsion means, the movable winglets, and the variable-leg landing gear, and each of the horizontal wings and the vertical wings controls the roll, pitch, and yaw attitude of the aircraft. A high-angle takeoff and landing fixed-wing aircraft having controllable movable winglets, the propulsion means arranged at symmetrical positions rotate in opposite directions, the aspect ratio AR (= b^2/S) is in the range of 0.5 to 20 when the area of each horizontal wing is S and the wingspan (length in the left-right direction) is b, the dihedral angle, which is the angle at which the wing tip of the horizontal wing is raised above the wing root, is in the range of 5 to 40 degrees, the propulsion means allows the ratio of total thrust to takeoff weight T/Wt and the ratio of total thrust to landing weight T/Wl to be in the range of 0.5 to 1.2, and the variable landing gear allows the aircraft to take off and land in a high-angle attitude with an elevation angle of 10 to 90 degrees, and the left-right spacing is 0.4*b or more. 該高仰角離着陸固定翼式飛行体が、機体の3次元位置の測定が可能な衛星測位システムおよび機体の姿勢の測定が可能な9軸センサーを備えると共に、機体周辺の風速及び風向の測定が可能な3次元風速計あるいは及び3次元突風検出手段、パン・チルト・ズーム可能な1個以上の可視光撮像装置、パン・チルト・ズーム可能な1個以上の赤外線型暗視撮像装置、パン・チルト・ズーム可能な1個以上の微光監視型暗視撮像装置、測距機能を有するレーザースキャニング装置の少なくとも1種の測定手段と少なくとも該測定手段が収集した測定データを該CPUのメモリーに格納するデータ格納手段を備え、該可視光撮像装置、該赤外線型暗視撮像装置、該微光監視型暗視撮像装置及び該レーザースキャニング装置は該高仰角離着陸固定翼式飛行体の機体の仰角が10~90度の高仰角姿勢の状態であっても該機体の鉛直下方向の撮像あるいは測距が可能であることを特徴とする請求項1ないし2記載の高仰角離着陸固定翼式飛行体。 The high-angle takeoff and landing fixed-wing aircraft according to claims 1 and 2, characterized in that the high-angle takeoff and landing fixed-wing aircraft is equipped with a satellite positioning system capable of measuring the three-dimensional position of the aircraft and a nine-axis sensor capable of measuring the attitude of the aircraft, a three-dimensional anemometer capable of measuring the wind speed and direction around the aircraft and/or a three-dimensional gust detection means, at least one measuring means including one or more visible light imaging devices capable of panning, tilting and zooming, one or more infrared night vision imaging devices capable of panning, tilting and zooming, one or more low-light surveillance night vision imaging devices capable of panning, tilting and zooming, and a laser scanning device with distance measurement function, and a data storage means for storing at least the measurement data collected by the measuring means in the memory of the CPU, and the visible light imaging devices, the infrared night vision imaging devices, the low-light surveillance night vision imaging devices, and the laser scanning devices are capable of imaging or measuring the distance vertically downward from the aircraft even when the aircraft is in a high-angle attitude with an elevation angle of 10 to 90 degrees. 該高仰角離着陸固定翼式飛行体が、大気の温度・湿度・気圧検出手段、浮遊微粒子物体の粒度及び濃度の検出が可能な浮遊微粒子検出手段、放射性物質検出手段、化学性物質検出手段の少なくとも1種を備えることを特徴とする請求項3記載の高仰角離着陸固定翼式飛行体。 The high-angle takeoff and landing fixed-wing aircraft according to claim 3, characterized in that the high-angle takeoff and landing fixed-wing aircraft is equipped with at least one of the following: atmospheric temperature, humidity, and pressure detection means; suspended particulate matter detection means capable of detecting the particle size and concentration of suspended particulate matter; radioactive material detection means; and chemical material detection means. 該脚長可変降着装置の調整により該脚長可変降着装置を流体抵抗の低い状態に畳み込み、該推進手段と該可動小翼との複合制御により、機体の仰角を10~90度の範囲の高仰角姿勢とした状態で所定時間範囲内において所定高度範囲および所定水平速度以下の略ホバリング飛行を可能とせしめることを特徴とする請求項1ないし4記載の高仰角離着陸固定翼式飛行体による略ホバリング飛行方法。 A method of near-hovering flight by a high-angle takeoff and landing fixed-wing aircraft as described in any one of claims 1 to 4, characterized in that the landing gear is adjusted to fold the landing gear into a state of low fluid resistance, and the propulsion means and the movable winglet are controlled in combination to enable near-hovering flight at a predetermined altitude range and at a predetermined horizontal speed or less within a predetermined time range with the aircraft in a high-angle attitude with an elevation angle of 10 to 90 degrees. 該脚長可変降着装置の調整により機体の仰角を10~90度の範囲の高仰角姿勢とし、該推進手段と該可動小翼との複合制御により、高仰角姿勢の状態で、超短距離滑走で安全な離着陸を可能とせしめることを特徴とする請求項1ないし4記載の高仰角離着陸固定翼式飛行体による超短距離離着陸方法。 A method for ultra-short distance takeoff and landing by a fixed-wing aircraft with high angle of elevation described in any one of claims 1 to 4, characterized in that the angle of elevation of the aircraft is adjusted to a high angle of elevation in the range of 10 to 90 degrees by adjusting the variable landing gear, and safe takeoff and landing with an ultra-short distance runway is made possible in a high angle of elevation attitude by combined control of the propulsion means and the movable winglet. 該脚長可変降着装置の調整により機体の仰角を10~90度の範囲の高仰角姿勢とし、該推進手段と該可動小翼と該脚長可変降着装置の伸展操作との複合制御により、高仰角姿勢の状態で、超短距離滑走で安全な滑走・跳躍離陸を可能とせしめると共に、該推進手段と該可動小翼と該脚長可変降着装置の屈曲操作との複合制御により、高仰角姿勢の状態で、超短距離滑走で安全な屈み込み・滑走着陸を可能とせしめることを特徴とする請求項1ないし4記載の高仰角離着陸固定翼式飛行体による超短距離離着陸方法。 The method for ultra-short distance takeoff and landing by a fixed-wing aircraft with high angle of elevation as described in any one of claims 1 to 4, characterized in that the elevation angle of the aircraft is adjusted to a high angle of elevation in the range of 10 to 90 degrees by adjusting the landing gear, and the combined control of the propulsion means, the movable winglet, and the extending operation of the landing gear enables a safe runway or jump takeoff with an ultra-short runway in the high angle of elevation attitude, and the combined control of the propulsion means, the movable winglet, and the bending operation of the landing gear enables a safe crouching or runway landing with an ultra-short runway in the high angle of elevation attitude. 請求項1ないし4のいずれかに記載の1機以上の高仰角離着陸固定翼式飛行体と定置型あるいは移動型の1個以上の指令手段を含んで構成される高仰角離着陸固定翼式飛行体システムであって、該高仰角離着陸固定翼式飛行体は該指令手段と無線交信可能な無線送受信手段を備えており、該指令手段は該高仰角離着陸固定翼式飛行体が離着陸可能な超短距離滑走手段と、該高仰角離着陸固定翼式飛行体に動力エネルギーを補給するエネルギー補給手段と、該高仰角離着陸固定翼式飛行体を補修整備する補修整備手段と、該高仰角離着陸固定翼式飛行体を格納する飛行体格納手段と、該高仰角離着陸固定翼式飛行体と無線交信可能な無線送受信手段と、該高仰角離着陸固定翼式飛行体から受信した該推進手段と該可動小翼と該脚長可変降着装置の作動情報および衛星測位システム、9軸センサー、3次元風速計、3次元突風検出手段、パン・チルト・ズーム可能な1個以上の可視光撮像装置、パン・チルト・ズーム可能な1個以上の赤外線型暗視撮像装置、パン・チルト・ズーム可能な1個以上の微光監視型暗視撮像装置、測距機能を有するレーザースキャニング装置、大気の温度・湿度・気圧検出手段、浮遊微粒子検出手段、放射性物質検出手段、化学性物質検出手段が収集した検出データの少なくとも一部を解析することが可能なデータ解析手段を備えており、該高仰角離着陸固定翼式飛行体は現在の3次元位置と機体姿勢、および推進手段、可変小翼、脚長可変降着装置の作動情報、更に搭載している各種センサーにより収集した検出データを該指令手段に無線送信可能であり、定置対象物の3次元位置を特定する機能および移動対象物を追尾する機能を有し、該指令手段から受信する指令情報に基づいて、機体操縦制御、各種センサーの情報収集制御、該定置対象物あるいは該移動対象物に対してその現在事象を変化させる事象変化手段を備え、該高仰角離着陸固定翼式飛行体は1機以上の直接行動型高仰角離着陸固定翼式飛行体と、該指令手段と該直接行動型高仰角離着陸固定翼式飛行体との間の無線交信を中継する無線中継手段を備えた0機以上の無線中継型高仰角離着陸固定翼式飛行体を含むことを特徴とする高仰角離着陸固定翼式飛行体システム。 A high-angle takeoff and landing fixed-wing aircraft system comprising one or more high-angle takeoff and landing fixed-wing aircraft according to any one of claims 1 to 4 and one or more stationary or mobile command means, wherein the high-angle takeoff and landing fixed-wing aircraft is equipped with a radio transmission/reception means capable of radio communication with the command means, and the command means is provided with an ultra-short distance runway means by which the high-angle takeoff and landing fixed-wing aircraft can take off and land, an energy supply means for supplying power energy to the high-angle takeoff and landing fixed-wing aircraft, and a maintenance means for repairing and maintaining the high-angle takeoff and landing fixed-wing aircraft. a satellite positioning system, a 9-axis sensor, a three-dimensional anemometer, a three-dimensional gust detection means, one or more visible light imaging devices capable of pan-tilt-zooming, one or more infrared night vision imaging devices capable of pan-tilt-zooming, one or more low light surveillance night vision imaging devices capable of pan-tilt-zooming, a distance measuring function, and a wireless transmission/reception means capable of wireless communication with the high elevation angle take-off and landing fixed wing aircraft. The high-angle takeoff and landing fixed-wing aircraft is equipped with a laser scanning device having a laser scanning function, a data analysis means capable of analyzing at least a part of the detection data collected by the atmospheric temperature, humidity, and pressure detection means, the suspended particulate detection means, the radioactive material detection means, and the chemical material detection means, and the high-angle takeoff and landing fixed-wing aircraft is capable of wirelessly transmitting to the command means the current three-dimensional position and aircraft attitude, as well as operation information of the propulsion means, the variable winglets, and the variable landing gear, and further detection data collected by various sensors mounted thereon, and has a function of identifying the three-dimensional position of a stationary object and a function of tracking a moving object. A high-angle takeoff and landing fixed-wing aircraft system having the function of controlling the aircraft, controlling the collection of information from various sensors, and changing the current events of the stationary object or the moving object based on command information received from the command means, characterized in that the high-angle takeoff and landing fixed-wing aircraft system includes one or more direct action type high-angle takeoff and landing fixed-wing aircraft, and zero or more radio relay type high-angle takeoff and landing fixed-wing aircraft equipped with radio relay means for relaying radio communication between the command means and the direct action type high-angle takeoff and landing fixed-wing aircraft.
JP2022202536A 2022-12-19 2022-12-19 Fixed-wing aircraft with high angle of elevation take-off and landing, near-hovering flight method and ultra-short distance take-off and landing method using said aircraft, and high angle of elevation take-off and landing fixed-wing aircraft system Pending JP2024087615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022202536A JP2024087615A (en) 2022-12-19 2022-12-19 Fixed-wing aircraft with high angle of elevation take-off and landing, near-hovering flight method and ultra-short distance take-off and landing method using said aircraft, and high angle of elevation take-off and landing fixed-wing aircraft system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022202536A JP2024087615A (en) 2022-12-19 2022-12-19 Fixed-wing aircraft with high angle of elevation take-off and landing, near-hovering flight method and ultra-short distance take-off and landing method using said aircraft, and high angle of elevation take-off and landing fixed-wing aircraft system

Publications (1)

Publication Number Publication Date
JP2024087615A true JP2024087615A (en) 2024-07-01

Family

ID=91671659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022202536A Pending JP2024087615A (en) 2022-12-19 2022-12-19 Fixed-wing aircraft with high angle of elevation take-off and landing, near-hovering flight method and ultra-short distance take-off and landing method using said aircraft, and high angle of elevation take-off and landing fixed-wing aircraft system

Country Status (1)

Country Link
JP (1) JP2024087615A (en)

Similar Documents

Publication Publication Date Title
US8540183B2 (en) Aerovehicle system including plurality of autogyro assemblies
US9187173B2 (en) Towable autogyro having a re-positionable mast
ES2766900T3 (en) Combination of unmanned aerial vehicles and method and system to participate in multiple applications
US8366037B2 (en) Towable aerovehicle system with automated tow line release
CN109843721B (en) Search and rescue unmanned aerial vehicle arrangement
ES2311279T3 (en) PROCEDURE TO ACT ON FOREST FIRE, PESTS OR METEOROLOGICAL PHENOMENA FROM THE AIR.
US11975871B2 (en) Rocket propelled drone
US10112700B1 (en) Multi-mode mobility micro air vehicle
DK3233634T3 (en) Aerodynamically shaped, active towing body
Funaki et al. Outline of a small unmanned aerial vehicle (Ant-Plane) designed for Antarctic research
JP6764207B1 (en) Multicopter
Hasan et al. Development of resilient drones for harsh Arctic environment: challenges, opportunities, and enabling technologies
JP2024087615A (en) Fixed-wing aircraft with high angle of elevation take-off and landing, near-hovering flight method and ultra-short distance take-off and landing method using said aircraft, and high angle of elevation take-off and landing fixed-wing aircraft system
Sasa et al. Ongoing research on disaster monitoring UAV at JAXA’s Aviation Program Group
CA3006445A1 (en) Rocket propelled drone
Subramaniam et al. Design of a fire-fighting unmanned air vehicle
RU2652373C1 (en) Aerostat
RU98394U1 (en) COMBINED UNMANNED AIRCRAFT
RU71960U1 (en) UNMANNED AIRCRAFT WITH FOUR TURNING ENGINES
Devalla et al. Performance analysis of a powered parafoil unmanned aerial vehicle using open loop flight test results and analytical results
Windischbauer et al. Is there another chance for lighter‐than‐air vehicles?
RU69838U1 (en) COMBINED UNMANNED AIRCRAFT
Azeem Autonomous unmanned aerial vehicles
Baliarda et al. Study of the Viability of a Glider Drone for the Return of Experiments Carried by Weather Balloons
Melkert Delft Aerospace Design Projects 2014: New Designs in Aeronautics, Astronautics and Wind Energy