JP2024040794A - Exhaust gas treatment system and exhaust gas treatment method - Google Patents

Exhaust gas treatment system and exhaust gas treatment method Download PDF

Info

Publication number
JP2024040794A
JP2024040794A JP2022145380A JP2022145380A JP2024040794A JP 2024040794 A JP2024040794 A JP 2024040794A JP 2022145380 A JP2022145380 A JP 2022145380A JP 2022145380 A JP2022145380 A JP 2022145380A JP 2024040794 A JP2024040794 A JP 2024040794A
Authority
JP
Japan
Prior art keywords
exhaust gas
outside air
differential pressure
dust collector
type dust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022145380A
Other languages
Japanese (ja)
Inventor
滋敏 ▲高▼橋
弘樹 藤平
健一 宍田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2022145380A priority Critical patent/JP2024040794A/en
Publication of JP2024040794A publication Critical patent/JP2024040794A/en
Pending legal-status Critical Current

Links

Images

Abstract

【課題】ろ過式集塵機において除塵動作を連続的に行っても圧力損失の急上昇を抑制することができる排ガス処理システムを提供する。【解決手段】焼却炉3での燃焼に伴い発生した排ガスが流れる排ガス流路15の途中に配設されるろ過式集塵機25によって除塵するようにした排ガス処理システム10Aであって、排ガス流路15を流れる排ガスに関する、ろ過式集塵機25の上流側と下流側との差圧に関連した排ガス情報を取得する排ガス情報取得手段(50,71,72,73,91,92)と、ろ過式集塵機25の上流側の排ガス流路15に外気を導入する外気導入手段80と、外気導入手段80によって導入される外気量を排ガス情報に基づいて制御する外気量制御手段(93,94,95)とを備えるものとする。【選択図】図1[Problem] To provide an exhaust gas treatment system capable of suppressing a sudden rise in pressure loss even when the dust removal operation is performed continuously in a filter type dust collector. [Solution] An exhaust gas treatment system 10A in which dust is removed by a filter type dust collector 25 disposed midway through an exhaust gas flow path 15 through which exhaust gas generated by combustion in an incinerator 3 flows, the system is equipped with exhaust gas information acquisition means (50, 71, 72, 73, 91, 92) for acquiring exhaust gas information related to the differential pressure between the upstream and downstream sides of the filter type dust collector 25 with respect to the exhaust gas flow path 15, outside air introduction means 80 for introducing outside air into the exhaust gas flow path 15 on the upstream side of the filter type dust collector 25, and outside air amount control means (93, 94, 95) for controlling the amount of outside air introduced by the outside air introduction means 80 based on the exhaust gas information. [Selected Figure] Figure 1

Description

本発明は、焼却炉での燃焼に伴い発生した排ガスが流れる排ガス流路の途中に配設されるろ過式集塵機によって除塵するようにした排ガス処理システム、及び排ガス処理方法に関する。 The present invention relates to an exhaust gas treatment system and an exhaust gas treatment method in which dust is removed by a filtration type dust collector disposed in the middle of an exhaust gas flow path through which exhaust gas generated due to combustion in an incinerator flows.

例えば、汚泥を燃焼した際に発生する排ガスに含まれる飛灰を、ろ過式集塵機のろ布で捕集するようにした設備において、リン成分を比較的多く含む飛灰が排ガス中の水分を吸収した場合、吸湿した飛灰は付着力が強く、圧縮空気等によってもろ布から払い落とすことが難しくなり、ろ布が目詰まりして、ろ過式集塵機の圧力損失が急上昇し、正常な運転が続けられない場合がある。 For example, in equipment where the fly ash contained in the exhaust gas generated when sludge is burned is collected using the filter cloth of a filter dust collector, the fly ash, which contains a relatively high phosphorus component, absorbs moisture in the exhaust gas. In this case, the fly ash that has absorbed moisture has a strong adhesive force, making it difficult to blow it off the filter cloth with compressed air, etc., and the filter cloth becomes clogged, causing a sudden increase in the pressure loss of the filter dust collector and preventing it from continuing to operate normally. may not be possible.

特許文献1には、排ガス流路に対し複数基のろ過式集塵機を並列に設置し、これらろ過式集塵機のろ布を乾燥させるための加熱空気を各ろ過式集塵機に送給可能に乾燥空気源を設け、各ろ過式集塵機の差圧を検出する差圧計の検出量に基づいてろ布の目詰まり度を判断し、各ろ過式集塵機に対して除塵動作と加熱空気によるろ布の乾燥動作とをバルブ制御装置によって自動的に交互に行うようにした装置が開示されている。 Patent Document 1 discloses a dry air source in which a plurality of filtration type dust collectors are installed in parallel in an exhaust gas flow path, and heated air for drying the filter cloth of these filtration type dust collectors can be sent to each filtration type dust collector. The system determines the degree of clogging of the filter cloth based on the amount detected by the differential pressure gauge that detects the differential pressure of each filter dust collector, and performs dust removal operation and filter cloth drying operation using heated air for each filter dust collector. A device is disclosed in which the alternation is automatically performed by a valve controller.

特許文献1に開示された装置によれば、飛灰中にリン成分が比較的多く含まれていたとしても、各ろ過式集塵機において加熱空気によるろ布の乾燥動作が行われることにより、吸湿した飛灰に起因するろ布の目詰まりを防止することができると考えられる。 According to the device disclosed in Patent Document 1, even if the fly ash contains a relatively large amount of phosphorus, the drying operation of the filter cloth using heated air in each filtration type dust collector removes moisture from the fly ash. It is thought that clogging of the filter cloth caused by fly ash can be prevented.

実開昭50-81480号公報Utility Model Publication No. 50-81480

特許文献1に開示された装置では、各ろ過式集塵機において除塵動作と乾燥動作とを交互に行わずに、各ろ過式集塵機において連続的に除塵動作を行った場合、吸湿した飛灰によってろ布が目詰まりし、圧力損失出が急上昇してしまうため、各ろ過式集塵機において除塵動作と乾燥動作とを交互に行うように構成する必要がある。この場合、全体として除塵動作を連続的に行うにはろ過式集塵機を複数基設けることが必須であり、しかも複数基のろ過式集塵機のうちの何れか1基が常に除塵動作を行うように、各ろ過式集塵機に対して除塵動作と乾燥動作とを交互に行うように切り替えるバルブ制御装置を設けなければならず、装置が大がかりで複雑になる。 In the device disclosed in Patent Document 1, when the dust removal operation is performed continuously in each filter type dust collector without alternately performing the dust removal operation and the drying operation in each filter type dust collector, the filter cloth is damaged by the absorbed fly ash. Since the dust collectors become clogged and the pressure loss suddenly increases, it is necessary to configure each filtration type dust collector so that the dust removal operation and the drying operation are performed alternately. In this case, in order to perform the dust removal operation continuously as a whole, it is essential to provide a plurality of filtration type dust collectors, and in addition, so that one of the plurality of filtration type dust collectors always performs the dust removal operation. A valve control device must be provided for each filtration type dust collector to alternately perform the dust removal operation and the drying operation, making the device large-scale and complicated.

本発明は、上記の課題に鑑みてなされたものであり、ろ過式集塵機において除塵動作を連続的に行っても圧力損失の急上昇を抑制することができる排ガス処理システム、及び排ガス処理方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and provides an exhaust gas treatment system and an exhaust gas treatment method that can suppress a sudden increase in pressure loss even when the dust removal operation is performed continuously in a filtration type dust collector. The purpose is to

上記課題を解決するための本発明に係る排ガス処理システムの特徴構成は、
焼却炉での燃焼に伴い発生した排ガスが流れる排ガス流路の途中に配設されるろ過式集塵機によって除塵するようにした排ガス処理システムであって、
前記排ガス流路を流れる排ガスに関する、前記ろ過式集塵機の上流側と下流側との差圧に関連した排ガス情報を取得する排ガス情報取得手段と、
前記ろ過式集塵機の上流側の前記排ガス流路に外気を導入する外気導入手段と、
前記外気導入手段によって導入される外気量を前記排ガス情報に基づいて制御する外気量制御手段と、
を備えることにある。
The characteristic configuration of the exhaust gas treatment system according to the present invention for solving the above problems is as follows:
An exhaust gas treatment system in which dust is removed by a filtration type dust collector installed in the middle of an exhaust gas flow path through which exhaust gas generated due to combustion in an incinerator flows,
Exhaust gas information acquisition means for acquiring exhaust gas information related to the differential pressure between the upstream side and the downstream side of the filtration type dust collector regarding the exhaust gas flowing through the exhaust gas flow path;
an outside air introducing means for introducing outside air into the exhaust gas flow path on the upstream side of the filter type dust collector;
outside air amount control means for controlling the amount of outside air introduced by the outside air introducing means based on the exhaust gas information;
The goal is to prepare for

本構成の排ガス処理システムによれば、ろ過式集塵機の上流側と下流側との差圧に関連した排ガス情報に基づいて、ろ過式集塵機の上流側の排ガス流路に導入される外気量が制御されるので、差圧の上昇と比例関係にある飛灰の付着力増加を抑制するように外気量を制御することができる。こうして、導入される外気量の制御によって飛灰の付着力増加を抑制することができる。その結果、ろ過式集塵機のろ布に付着した飛灰を圧縮空気等による払落し動作で払い落とすことができ、ろ布の目詰まりを防ぐことができる。従って、ろ過式集塵機において除塵動作を連続的に行っても圧力損失の急上昇を抑制することができる。 According to the exhaust gas treatment system with this configuration, the amount of outside air introduced into the exhaust gas flow path on the upstream side of the filtration type dust collector is controlled based on exhaust gas information related to the differential pressure between the upstream side and the downstream side of the filtration type dust collector. Therefore, the amount of outside air can be controlled so as to suppress the increase in adhesion force of fly ash, which is proportional to the increase in differential pressure. In this way, an increase in the adhesion force of fly ash can be suppressed by controlling the amount of outside air introduced. As a result, fly ash adhering to the filter cloth of the filtration type dust collector can be brushed off by a blowing operation using compressed air or the like, and clogging of the filter cloth can be prevented. Therefore, even if the dust removal operation is performed continuously in the filtration type dust collector, a sudden increase in pressure loss can be suppressed.

本発明に係る排ガス処理システムにおいて、
前記外気量制御手段は、前記差圧の上昇率が増大した場合、前記差圧の上昇率が所定範囲となるように、前記外気量を制御することが好ましい。
In the exhaust gas treatment system according to the present invention,
Preferably, the outside air amount control means controls the outside air amount so that when the rate of increase in the differential pressure increases, the rate of increase in the differential pressure falls within a predetermined range.

本構成の排ガス処理システムによれば、差圧の上昇率が増大した場合、飛灰が排ガス中の水分を吸収することによる付着力増加が通常よりもかなり進行している可能性が高いと判断して、差圧の上昇率が所定範囲となるように、外気量制御手段によって外気量が制御される。これにより、圧力損失の急上昇を確実に抑制することができる。 According to the exhaust gas treatment system with this configuration, if the rate of increase in differential pressure increases, it is determined that there is a high possibility that the increase in adhesion due to fly ash absorbing moisture in the exhaust gas is progressing much more than usual. Then, the outside air amount is controlled by the outside air amount control means so that the rate of increase in the differential pressure is within a predetermined range. Thereby, a sudden increase in pressure loss can be reliably suppressed.

本発明に係る排ガス処理システムにおいて、
前記排ガス情報は、前記排ガス流路を流れる排ガスの温度及び水分率の少なくとも一つをさらに含み、
前記外気量制御手段は、前記排ガス情報に基づいて前記差圧の上昇率が増大することが予測される場合、前記差圧の上昇率が所定範囲に維持されるように、前記外気量を制御することが好ましい。
In the exhaust gas treatment system according to the present invention,
The exhaust gas information further includes at least one of the temperature and moisture content of the exhaust gas flowing through the exhaust gas flow path,
The outside air amount control means controls the outside air amount so that the rate of increase in the differential pressure is maintained within a predetermined range when it is predicted that the rate of increase in the differential pressure will increase based on the exhaust gas information. It is preferable to do so.

本構成の排ガス処理システムによれば、排ガス流路を流れる排ガスの温度及び水分率の少なくとも一つをさらに含む排ガス情報に基づいて差圧の上昇率が増大することが予測される場合、飛灰が排ガス中の水分を吸収することによる付着力増加が通常よりもかなり進行する可能性が高いと判断して、差圧の上昇率が所定範囲に維持されるように、外気量制御手段によって外気量が制御される。これにより、圧力損失の急上昇を未然に抑制することができる。 According to the exhaust gas treatment system with this configuration, if the rate of increase in differential pressure is predicted to increase based on exhaust gas information that further includes at least one of the temperature and moisture content of the exhaust gas flowing through the exhaust gas flow path, the fly ash Judging that there is a high possibility that the increase in adhesion due to absorption of moisture in the exhaust gas will progress considerably more than usual, the outside air amount control means is used to maintain the rate of increase in differential pressure within a predetermined range. Amount controlled. This makes it possible to prevent a sudden increase in pressure loss.

次に、上記課題を解決するための本発明に係る排ガス処理方法の特徴構成は、
焼却炉での燃焼に伴い発生した排ガスが流れる排ガス流路の途中に配設されるろ過式集塵機によって除塵するようにした排ガス処理方法であって、
前記排ガス流路を流れる排ガスに関する、前記ろ過式集塵機の上流側と下流側との差圧に関連した排ガス情報を取得する排ガス情報取得工程と、
前記ろ過式集塵機の上流側の前記排ガス流路に外気を導入する外気導入工程と、
前記外気導入工程において導入される外気量を前記排ガス情報に基づいて制御する外気量制御工程と、
を包含することにある。
Next, the characteristic configuration of the exhaust gas treatment method according to the present invention for solving the above problems is as follows:
An exhaust gas treatment method in which dust is removed by a filtration type dust collector installed in the middle of an exhaust gas flow path through which exhaust gas generated due to combustion in an incinerator flows,
an exhaust gas information acquisition step of acquiring exhaust gas information related to the differential pressure between the upstream side and the downstream side of the filtration type dust collector regarding the exhaust gas flowing through the exhaust gas flow path;
an outside air introduction step of introducing outside air into the exhaust gas flow path on the upstream side of the filtration type dust collector;
an outside air amount control step of controlling the amount of outside air introduced in the outside air introduction step based on the exhaust gas information;
The goal is to include the following.

本構成の排ガス処理方法によれば、ろ過式集塵機の上流側と下流側との差圧に関連した排ガス情報に基づいて、ろ過式集塵機の上流側の排ガス流路に導入される外気量が制御されるので、差圧の上昇と比例関係にある飛灰の付着力増加を抑制するように外気量を制御することができる。こうして、導入される外気量の制御によって飛灰の付着力増加を抑制することができる。その結果、ろ過式集塵機のろ布に付着した飛灰を圧縮空気等による払落し動作で払い落とすことができ、ろ布の目詰まりを防ぐことができる。従って、ろ過式集塵機において除塵動作を連続的に行っても圧力損失の急上昇を抑制することができる。 According to the exhaust gas treatment method of this configuration, the amount of outside air introduced into the exhaust gas flow path on the upstream side of the filtration type dust collector is controlled based on the exhaust gas information related to the differential pressure between the upstream side and the downstream side of the filtration type dust collector. Therefore, the amount of outside air can be controlled so as to suppress the increase in adhesion force of fly ash, which is proportional to the increase in differential pressure. In this way, an increase in the adhesion force of fly ash can be suppressed by controlling the amount of outside air introduced. As a result, fly ash adhering to the filter cloth of the filtration type dust collector can be brushed off by a blowing operation using compressed air or the like, and clogging of the filter cloth can be prevented. Therefore, even if the dust removal operation is performed continuously in the filtration type dust collector, a sudden increase in pressure loss can be suppressed.

図1は、本発明の第一実施形態に係る排ガス処理システムが適用される焼却処理施設の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of an incineration facility to which an exhaust gas treatment system according to a first embodiment of the present invention is applied. 図2は、排ガス温度/排ガス水分率と飛灰吸湿量との関係を示すグラフである。FIG. 2 is a graph showing the relationship between exhaust gas temperature/exhaust gas moisture content and fly ash moisture absorption. 図3は、ろ過式集塵機における差圧の経時変化の一例を示すグラフである。FIG. 3 is a graph showing an example of a change in differential pressure over time in a filtration type dust collector. 図4は、ろ過式集塵機の差圧上昇率が増大した場合の処理の手順を示すフローチャートである。FIG. 4 is a flowchart showing the processing procedure when the differential pressure increase rate of the filter type dust collector increases. 図5は、本発明の第二実施形態に係る排ガス処理システムが適用される焼却処理施設の概略構成を示すブロック図である。FIG. 5 is a block diagram showing a schematic configuration of an incineration facility to which an exhaust gas treatment system according to a second embodiment of the present invention is applied. 図6は、ろ過式集塵機の差圧上昇率が増大することが予測される場合の処理の手順を示すフローチャートである。FIG. 6 is a flowchart showing the processing procedure when it is predicted that the rate of increase in the differential pressure of the filter type dust collector will increase.

以下、本発明について、図面を参照しながら説明する。なお、以下の実施形態では、リン成分を比較的多く含む汚泥を被燃焼物として焼却処理する焼却処理施設に本発明の排ガス処理システム、及び排ガス処理方法が適用された場合を例に挙げて説明する。ただし、本発明は、以下に説明する実施形態や図面に記載される構成に限定されることは意図しない。例えば、リン成分を比較的多く含む一般廃棄物や産業廃棄物を被燃焼物として焼却処理する焼却処理施設においても、本発明の排ガス処理システム、及び排ガス処理方法を適用することができる。 The present invention will be described below with reference to the drawings. In the following embodiments, an example will be described in which the exhaust gas treatment system and exhaust gas treatment method of the present invention are applied to an incineration facility that incinerates sludge containing a relatively large amount of phosphorus as a combustible material. do. However, the present invention is not intended to be limited to the embodiments described below or the configurations described in the drawings. For example, the exhaust gas treatment system and exhaust gas treatment method of the present invention can be applied to an incineration facility that incinerates general waste or industrial waste containing relatively large amounts of phosphorus components as combustible materials.

〔第一実施形態〕
<全体構成>
図1は、本発明の第一実施形態に係る排ガス処理システム10Aが適用される焼却処理施設1Aの概略構成を示すブロック図である。図1に示すように、焼却処理施設1Aは、脱水汚泥乾燥機2と、焼却炉3と、排ガス処理設備4及び制御装置5を含む排ガス処理システム10Aとを備えている。
[First embodiment]
<Overall configuration>
FIG. 1 is a block diagram showing a schematic configuration of an incineration facility 1A to which an exhaust gas treatment system 10A according to the first embodiment of the present invention is applied. As shown in FIG. 1, the incineration facility 1A includes a dewatered sludge dryer 2, an incinerator 3, and an exhaust gas treatment system 10A including an exhaust gas treatment facility 4 and a control device 5.

<脱水汚泥乾燥機>
脱水汚泥乾燥機2では、汚泥を脱水した脱水汚泥が投入され、乾燥されて乾燥汚泥が生成される。本明細書において、「汚泥」とは、排水処理や下水処理の過程で出てくる泥状の物質であり、有機物と無機物との集合体のことである(消化汚泥も含む)。なお、以下の説明において、脱水汚泥及び乾燥汚泥を総称して単に「汚泥」と称する場合がある。
<Dehydrated sludge dryer>
In the dewatered sludge dryer 2, dehydrated sludge obtained by dewatering sludge is input and dried to produce dried sludge. In this specification, "sludge" is a muddy substance produced during the process of wastewater treatment or sewage treatment, and is an aggregate of organic matter and inorganic matter (including digested sludge). In addition, in the following description, dehydrated sludge and dried sludge may be collectively referred to simply as "sludge."

<焼却炉>
焼却炉3では、脱水汚泥乾燥機2から排出された乾燥汚泥が燃焼される。焼却炉3としては、例えば、砂層の下から高温、高圧の空気を吹き込んで砂と汚泥とを流動させながら燃焼させる流動床式焼却炉や、ストーカ上に供給された汚泥に対しストーカ下部から空気を供給して緩やかに燃焼させるストーカ式焼却炉などを用いることができる。焼却炉3において、汚泥焼却灰の大部分は主灰として焼却炉3に設けられた排出口から排出され、残部の微細な灰は飛灰として後述するろ過式集塵機25において捕集される。
<Incinerator>
In the incinerator 3, the dried sludge discharged from the dewatered sludge dryer 2 is burned. Examples of the incinerator 3 include a fluidized bed incinerator that blows high-temperature, high-pressure air from below the sand layer to fluidize and burn the sand and sludge, or a fluidized bed incinerator that blows high-temperature, high-pressure air from below the sand layer to combust the sand and sludge while fluidizing it; A stoker-type incinerator, etc., which supplies fuel and burns it slowly, can be used. In the incinerator 3, most of the sludge incineration ash is discharged as bottom ash from an outlet provided in the incinerator 3, and the remaining fine ash is collected as fly ash in a filtration type dust collector 25, which will be described later.

<排ガス処理設備>
排ガス処理設備4は、焼却炉3での燃焼に伴い発生した排ガスが流れる排ガス流路15の途中に配設される、熱回収装置20、ろ過式集塵機25、誘引通風機30及び排気筒35を含む。排ガス処理設備4においては、焼却炉3での燃焼に伴い発生した排ガスが、誘引通風機30の誘引作用により、熱回収装置20及びろ過式集塵機25にそれぞれ順に送り込まれ、所定の処理が行われた後、排気筒35を介して外部へと排気される。なお、排ガス処理設備4は、図示省略される排ガス無害化処理装置をさらに含んでいてもよい。排ガス無害化処理装置は、アルカリ剤等の薬剤や、活性炭、触媒、洗浄水等を用いて、乾式及び/又は湿式処理により、排ガス中の酸性ガス成分や硫黄酸化物、ダイオキシン、重金属類等の有害物質を分離・除去する。
<Exhaust gas treatment equipment>
The exhaust gas treatment equipment 4 includes a heat recovery device 20, a filtration type dust collector 25, an induced draft fan 30, and an exhaust stack 35, which are arranged in the middle of an exhaust gas flow path 15 through which exhaust gas generated due to combustion in the incinerator 3 flows. include. In the exhaust gas treatment equipment 4, the exhaust gas generated due to combustion in the incinerator 3 is sent to a heat recovery device 20 and a filtration type dust collector 25 in sequence by the induced draft fan 30, and is subjected to predetermined treatment. After that, it is exhausted to the outside via the exhaust pipe 35. Note that the exhaust gas treatment equipment 4 may further include an exhaust gas detoxification treatment device, which is not shown. Exhaust gas detoxification treatment equipment removes acid gas components, sulfur oxides, dioxins, heavy metals, etc. from exhaust gas through dry and/or wet processing using chemicals such as alkaline agents, activated carbon, catalysts, cleaning water, etc. Separate and remove harmful substances.

<熱回収装置>
熱回収装置20は、例えば、ボイラやエコノマイザ、減温塔等を含む。ボイラでは、排ガスの熱を利用して蒸気を発生させ、エコノマイザでは、ボイラに供給する水を排ガスの余熱を利用して加熱し、減温塔では、エコノマイザからの排ガスを所定温度まで冷却する。
<Heat recovery device>
The heat recovery device 20 includes, for example, a boiler, an economizer, a cooling tower, and the like. The boiler uses the heat of the exhaust gas to generate steam, the economizer uses the residual heat of the exhaust gas to heat the water supplied to the boiler, and the cooling tower cools the exhaust gas from the economizer to a predetermined temperature.

<ろ過式集塵機>
ろ過式集塵機25は、ケーシング40の内部に、所要のろ布41が組み込まれてなるものである。なお、ろ過式集塵機25で捕集された飛灰等は、図示されないスクリューコンベヤやロータリーバルブ等を介して順次排出されて飛灰処理設備へと搬送される。
<Filtering type dust collector>
The filtration type dust collector 25 has a necessary filter cloth 41 incorporated inside a casing 40. The fly ash and the like collected by the filtration type dust collector 25 are sequentially discharged via a screw conveyor, a rotary valve, etc. (not shown), and are transported to a fly ash processing facility.

ケーシング40の内部は、ケージプレート43によって上下に仕切られており、ケーシング40の内部には、ケージプレート43の下側にろ過処理前排ガス室44が、ケージプレート43の上側にろ過処理後排ガス室45が、それぞれ区画形成されている。ろ過処理前排ガス室44は、ダクト17を介して熱回収装置20に接続されている。ろ過処理後排ガス室45は、ダクト18を介して誘引通風機30に接続されている。ケージプレート43には、ろ布41の吊り下げ用の開口部が所要個数設けられており、各開口部からは、ろ布41がろ過処理前排ガス室44内に配されるように吊り下げ支持されている。 The inside of the casing 40 is partitioned into upper and lower parts by a cage plate 43. Inside the casing 40, a pre-filtration exhaust gas chamber 44 is provided below the cage plate 43, and a post-filtration exhaust gas chamber is provided above the cage plate 43. 45 are each formed into sections. The pre-filtration exhaust gas chamber 44 is connected to the heat recovery device 20 via the duct 17. The filtered exhaust gas chamber 45 is connected to the induced draft fan 30 via the duct 18 . The cage plate 43 is provided with a required number of openings for hanging the filter cloth 41, and from each opening, the filter cloth 41 is suspended and supported so as to be placed in the pre-filtration exhaust gas chamber 44. has been done.

ろ布41は、円筒状の袋体であり、閉鎖された一端側(下端側)がろ過処理前排ガス室44内に差し込まれる一方で、開放された他端側(上端側)がろ過処理後排ガス室45に臨ませて配され、該ろ布41の内部には、その円筒形状を維持するための骨材(図示省略)が組み込まれている。なお、ろ布41の構成材としては、例えば、ガラス繊維やPTFE繊維からなる二重織り、綾織り、平織り等の織布又はフェルトなどが好適に用いられる。なお、ろ布41に代えて、有害物質を分解する触媒をろ布に担持させてなる触媒担持ろ布や、触媒粉末をろ布に付着させてなる触媒プレコートろ布を採用してもよい。 The filter cloth 41 is a cylindrical bag, and one closed end (lower end) is inserted into the pre-filtration exhaust gas chamber 44, while the other open end (upper end) is inserted into the pre-filtration exhaust gas chamber 44. The filter cloth 41 is disposed facing the exhaust gas chamber 45, and aggregate (not shown) is incorporated inside the filter cloth 41 to maintain its cylindrical shape. Note that, as the constituent material of the filter cloth 41, for example, woven cloth such as double weave, twill weave, or plain weave made of glass fiber or PTFE fiber, or felt is suitably used. Note that instead of the filter cloth 41, a catalyst-supported filter cloth in which a catalyst for decomposing harmful substances is supported on the filter cloth, or a catalyst pre-coated filter cloth in which catalyst powder is adhered to the filter cloth may be employed.

ろ過式集塵機25の上流側(入口側)におけるダクト17の内部の圧力と、ろ過式集塵機25の下流側(出口側)におけるダクト18の内部の圧力との差圧は、差圧計50によって測定され、この差圧計50の測定信号は制御装置5へと送られる。 The pressure difference between the pressure inside the duct 17 on the upstream side (inlet side) of the filtering type dust collector 25 and the pressure inside the duct 18 on the downstream side (outlet side) of the filtering type dust collector 25 is measured by the differential pressure gauge 50. The measurement signal of this differential pressure gauge 50 is sent to the control device 5.

<払落し装置>
ろ過式集塵機25には、払落し装置60が付設されている。払落し装置60は、エアコンプレッサ61と、エアコンプレッサ61からの圧縮空気が流通される主供給管62と、主供給管62に介設される減圧弁63と、主供給管62から分岐して各ろ布41のグループへと繋がる分岐供給管64と、分岐供給管64の管路を開閉する開閉弁65と、分岐供給管64の先端側に配される噴射ノズル66とを備えている。払落し装置60は、制御装置5からの開信号を受けて開閉弁65が開かれると、エアコンプレッサ61からの圧縮空気が主供給管62、分岐供給管64及び噴射ノズル66を介してろ布41の内表面側へと噴射され、圧縮空気をろ布41の内周側から外周側へと通過させることでろ布41の外表面側に付着堆積した飛灰等を吹き飛ばすことができるように構成されている。なお、ろ布41の内表面側へと噴射される圧縮空気(逆洗空気)の空気圧は、制御装置5からの減圧信号を受ける減圧弁63によって調整される。また、逆洗空気の噴射の間隔は、制御装置5からの開閉信号を受ける開閉弁65によって調整される。
<Brushing device>
The filtration type dust collector 25 is attached with a dust removal device 60. The removal device 60 includes an air compressor 61, a main supply pipe 62 through which compressed air from the air compressor 61 flows, a pressure reducing valve 63 interposed in the main supply pipe 62, and a main supply pipe 62 branched from the main supply pipe 62. It includes a branch supply pipe 64 that connects to each group of filter cloths 41, an on-off valve 65 that opens and closes the channel of the branch supply pipe 64, and an injection nozzle 66 arranged at the tip side of the branch supply pipe 64. When the on-off valve 65 is opened in response to an opening signal from the control device 5 , compressed air from the air compressor 61 passes through the main supply pipe 62 , the branch supply pipe 64 , and the injection nozzle 66 to the filter cloth 41 . The compressed air is injected toward the inner surface of the filter cloth 41, and by passing the compressed air from the inner circumferential side to the outer circumferential side of the filter cloth 41, it is possible to blow away fly ash, etc. that have adhered and accumulated on the outer surface side of the filter cloth 41. ing. Note that the air pressure of the compressed air (backwash air) injected toward the inner surface of the filter cloth 41 is adjusted by a pressure reduction valve 63 that receives a pressure reduction signal from the control device 5. Further, the interval between injections of backwash air is adjusted by an on-off valve 65 that receives an on-off signal from the control device 5.

<ガス温度計>
排ガス処理設備4においては、熱回収装置20とろ過式集塵機25とを接続するダクト17の内部を流れる排ガスの温度を測定するガス温度計71が配設されている。ガス温度計71の測定信号は、制御装置5へと送られる。
<Gas thermometer>
In the exhaust gas treatment equipment 4, a gas thermometer 71 is provided to measure the temperature of the exhaust gas flowing inside the duct 17 that connects the heat recovery device 20 and the filtration type dust collector 25. A measurement signal from the gas thermometer 71 is sent to the control device 5.

<ガス水分計>
排ガス処理設備4においては、ろ過式集塵機25と誘引通風機30とを接続するダクト18の内部を流れる排ガスの水分率を測定するガス水分計72が配設されている。ガス水分計72の測定信号は、制御装置5へと送られる。なお、ガス水分計72は、熱回収装置20とろ過式集塵機25とを接続するダクト17の内部を流れる排ガスの水分率を測定するように配設してもよい。ただし、ダクト17の内部を流れる排ガスはろ過式集塵機25によって除塵する前の排ガスであるため、排ガス中の飛灰によって測定結果に影響を及ぼす虞がある場合には、図1に示すように、ダクト18の内部を流れる、ろ過式集塵機25によって除塵された後の排ガスの水分率を測定するようにガス水分計72を配設するのが好ましい。
<Gas moisture meter>
In the exhaust gas treatment facility 4, a gas moisture meter 72 is provided to measure the moisture content of the exhaust gas flowing inside the duct 18 that connects the filtration type dust collector 25 and the induced draft fan 30. A measurement signal from the gas moisture meter 72 is sent to the control device 5. Note that the gas moisture meter 72 may be arranged to measure the moisture content of the exhaust gas flowing inside the duct 17 that connects the heat recovery device 20 and the filtration type dust collector 25. However, since the exhaust gas flowing inside the duct 17 is the exhaust gas before dust removal by the filtration type dust collector 25, if there is a possibility that the measurement results are affected by fly ash in the exhaust gas, as shown in FIG. It is preferable to arrange the gas moisture meter 72 to measure the moisture content of the exhaust gas flowing inside the duct 18 and after dust removal by the filtration type dust collector 25.

<ガス量計>
排ガス処理設備4においては、誘引通風機30と排気筒35とを接続するダクト19の内部を流れる排ガスの流量を測定するガス量計73が配設されている。ガス量計73の測定信号は、制御装置5へと送られる。
<Gas meter>
The exhaust gas treatment equipment 4 is provided with a gas meter 73 that measures the flow rate of exhaust gas flowing inside the duct 19 that connects the induced draft fan 30 and the exhaust stack 35 . The measurement signal from the gas meter 73 is sent to the control device 5.

<外気導入手段>
排ガス処理設備4は、ろ過式集塵機25の上流側の排ガス流路15を構成するダクト17の内部に外気(大気)を導入する外気導入手段80をさらに備えている。外気導入手段80は、取り込んだ外気を強制的に送り出すブロワ81と、ブロワ81から送り出される外気をダクト17の内部へと導く外気導入管83と、外気導入管83に介設される流量調節ダンパ85とを備え、ブロワ81からの外気を、外気導入管83を通して、ろ過式集塵機25の上流側に接続されるダクト17の内部に導入するように構成されている。外気導入手段80においては、制御装置5からブロワ81及び/又は流量調節ダンパ85へと送られる制御信号により、ブロワ81の送風量及び/又は流量調節ダンパ85の開度が制御されることによって外気導入管83を通してダクト17の内部に導入される外気量が制御される。
<Outside air introduction means>
The exhaust gas treatment equipment 4 further includes an outside air introducing means 80 that introduces outside air (atmospheric air) into the inside of the duct 17 that constitutes the exhaust gas passage 15 on the upstream side of the filtration type dust collector 25. The outside air introduction means 80 includes a blower 81 that forcibly sends out the outside air taken in, an outside air introduction pipe 83 that guides the outside air sent out from the blower 81 into the inside of the duct 17, and a flow rate adjustment damper interposed in the outside air introduction pipe 83. 85, and is configured to introduce outside air from the blower 81 into the inside of the duct 17 connected to the upstream side of the filtration type dust collector 25 through the outside air introduction pipe 83. In the outside air introduction means 80, the amount of air blown by the blower 81 and/or the opening degree of the flow rate adjustment damper 85 are controlled by a control signal sent from the control device 5 to the blower 81 and/or the flow rate adjustment damper 85, thereby introducing outside air. The amount of outside air introduced into the duct 17 through the introduction pipe 83 is controlled.

制御装置5は、コンピュータを主体に構成されており、計測部91、差圧上昇率算出部92、外気量算出部93、ブロワ制御部94、ダンパ制御部95及び弁制御部96の各機能部を備え、CPUにおいて所定プログラムが実行されることにより、各機能部の機能が発揮されるように構成されている。 The control device 5 is mainly composed of a computer and has the following functional parts: a measuring unit 91, a differential pressure rise rate calculation unit 92, an outside air volume calculation unit 93, a blower control unit 94, a damper control unit 95, and a valve control unit 96. The control device 5 is configured so that the functions of each functional part are exercised by executing a predetermined program in the CPU.

<排ガス情報、排ガス情報取得手段>
計測部91は、差圧計50の測定信号に基づいて、ろ過式集塵機25の上流側と下流側との差圧を計測する。計測部91は、ガス温度計71の測定信号に基づいて、熱回収装置20とろ過式集塵機25とを接続するダクト17の内部を流れる排ガスの温度を計測する。計測部91は、ガス水分計72の測定信号に基づいて、ろ過式集塵機25と誘引通風機30とを接続するダクト18の内部を流れる排ガスの水分率を計測する。計測部91は、ガス量計73の測定信号に基づいて、誘引通風機30と排気筒35とを接続するダクト19の内部を流れる排ガスの流量を計測する。差圧上昇率算出部92は、計測部91の計測結果に基づいて、ろ過式集塵機25の上流側と下流側との差圧の上昇率を算出する。上記の差圧、排ガスの温度、排ガスの水分率、排ガスの流量及び差圧の上昇率は、何れも排ガス流路15を流れる排ガスに関する情報である。本実施形態において、排ガス情報を取得する排ガス情報取得手段は、測定手段(差圧計50、ガス温度計71、ガス水分計72及びガス量計73)と、計測部91と、差圧上昇率算出部92とによって構成されている。
<Exhaust gas information, means of acquiring exhaust gas information>
The measuring unit 91 measures the pressure difference between the upstream side and the downstream side of the filtering dust collector 25 based on the measurement signal of the differential pressure gauge 50. The measuring unit 91 measures the temperature of the exhaust gas flowing inside the duct 17 connecting the heat recovery device 20 and the filtering dust collector 25 based on the measurement signal of the gas thermometer 71. The measuring unit 91 measures the moisture content of the exhaust gas flowing inside the duct 18 connecting the filtering dust collector 25 and the induced draft fan 30 based on the measurement signal of the gas moisture meter 72. The measuring unit 91 measures the flow rate of the exhaust gas flowing inside the duct 19 connecting the induced draft fan 30 and the exhaust stack 35 based on the measurement signal of the gas amount meter 73. The differential pressure increase rate calculation unit 92 calculates the increase rate of the differential pressure between the upstream side and the downstream side of the filtering dust collector 25 based on the measurement result of the measuring unit 91. The above-mentioned differential pressure, exhaust gas temperature, exhaust gas moisture percentage, exhaust gas flow rate, and differential pressure increase rate are all information related to the exhaust gas flowing through the exhaust gas flow path 15. In this embodiment, the exhaust gas information acquisition means for acquiring exhaust gas information is composed of measurement means (differential pressure meter 50, gas thermometer 71, gas moisture meter 72, and gas volume meter 73), a measurement unit 91, and a differential pressure increase rate calculation unit 92.

<外気量制御手段>
外気量算出部93は、測定手段(差圧計50、ガス温度計71、ガス水分計72及びガス量計73)、並びに計測部91によって取得された排ガス情報に基づいて、排ガスの温度を過度に低下させることなく、排ガス中の水分率を低く抑え、且つろ過式集塵機25の上流側と下流側との差圧の上昇率が所定範囲となるような外気量を算出する。ブロワ制御部94は、外気量算出部93の算出結果に基づく所定の制御信号をブロワ81に送信してブロワ81の送風量を制御する。ダンパ制御部95は、外気量算出部93の算出結果に基づく所定の制御信号を流量調節ダンパ85に送信して流量調節ダンパ85の開度を制御する。本実施形態において、外気導入手段80によって導入される外気量を排ガス情報に基づいて制御する外気量制御手段は、外気量算出部93、並びにブロワ制御部94及び/又はダンパ制御部95を含む機能部によって構成されている。
<Outside air amount control means>
The outside air amount calculation section 93 determines whether the temperature of the exhaust gas is excessively high based on the exhaust gas information acquired by the measurement means (differential pressure gauge 50, gas thermometer 71, gas moisture meter 72, and gas amount meter 73) and the measurement section 91. The amount of outside air is calculated so that the moisture content in the exhaust gas is kept low without decreasing it, and the rate of increase in the differential pressure between the upstream side and the downstream side of the filtration type dust collector 25 is within a predetermined range. The blower control unit 94 controls the amount of air blown by the blower 81 by transmitting a predetermined control signal based on the calculation result of the outside air amount calculation unit 93 to the blower 81 . The damper control unit 95 controls the opening degree of the flow rate adjustment damper 85 by transmitting a predetermined control signal based on the calculation result of the outside air amount calculation unit 93 to the flow rate adjustment damper 85 . In this embodiment, the outside air amount control means that controls the outside air amount introduced by the outside air introduction means 80 based on exhaust gas information has a function including an outside air amount calculation section 93, and a blower control section 94 and/or a damper control section 95. It is made up of several departments.

図2は、排ガス温度/排ガス水分率と飛灰吸湿量との関係を示すグラフである。図2(a)は、排ガス水分率が一定のときの排ガス温度と飛灰吸湿量との関係を示し、図2(b)は、排ガス温度が一定のときの排ガス水分率(湿度)と飛灰吸湿量との関係を示している。 FIG. 2 is a graph showing the relationship between exhaust gas temperature/exhaust gas moisture content and fly ash moisture absorption. Figure 2 (a) shows the relationship between exhaust gas temperature and fly ash moisture absorption when the exhaust gas moisture content is constant, and Figure 2 (b) shows the relationship between the exhaust gas moisture content (humidity) and fly ash moisture absorption when the exhaust gas temperature is constant. It shows the relationship with the amount of ash moisture absorption.

図2(a)に示すように、排ガス水分率が一定の場合、排ガスの温度が低いほど飛灰の吸湿量が増加する。一方、図2(b)に示すように、排ガス温度が一定の場合、排ガス中の水分率が高いほど飛灰の吸湿量が増加する。排ガス中に外気を導入すると、排ガス中の水分率が低くなると同時に、排ガスの温度も低下するため、飛灰の吸湿量の増加を抑えるためには、排ガスの温度を過度に低下させることなく、排ガス中の水分率を低く抑えるように外気量を制御する必要がある。 As shown in FIG. 2(a), when the moisture content of the exhaust gas is constant, the lower the temperature of the exhaust gas, the more the amount of moisture absorbed by the fly ash increases. On the other hand, as shown in FIG. 2(b), when the exhaust gas temperature is constant, the higher the moisture content in the exhaust gas, the more the amount of moisture absorbed by the fly ash increases. Introducing outside air into the exhaust gas lowers the moisture content in the exhaust gas and at the same time lowers the temperature of the exhaust gas, so in order to suppress the increase in the amount of moisture absorbed by fly ash, it is necessary to avoid excessively lowering the temperature of the exhaust gas. It is necessary to control the amount of outside air to keep the moisture content in exhaust gas low.

図3は、ろ過式集塵機25における差圧の経時変化の一例を示すグラフである。図3のグラフにおいて、横軸は時間を示し、縦軸は差圧計50からの測定信号に基づいて計測部91により算出されるろ過式集塵機25の入口側と出口側との差圧を示す。差圧と圧力損失とは比例し、差圧が大きいほど圧力損失が大きくなる。図3のグラフにおける時刻tからtの間においては、所定のサイクルタイムで実施される払落し装置60による飛灰(ダスト)の払落し動作により、差圧が上下動を繰り返しながら、時刻tからtにおける差圧全体の上昇率を示す傾きラインLに沿って、全体として差圧が徐々に上昇している。このような傾きラインLに沿って差圧全体が徐々に上昇するのは、ろ過式集塵機25の運転として正常な状態にある。 FIG. 3 is a graph showing an example of a change in differential pressure over time in the filtration type dust collector 25. As shown in FIG. In the graph of FIG. 3, the horizontal axis represents time, and the vertical axis represents the differential pressure between the inlet side and the outlet side of the filtration type dust collector 25, which is calculated by the measurement unit 91 based on the measurement signal from the differential pressure gauge 50. Differential pressure and pressure loss are proportional, and the greater the differential pressure, the greater the pressure loss. Between time t 1 and t 2 in the graph of FIG. 3, due to the operation of removing fly ash (dust) by the removal device 60 performed at a predetermined cycle time, the differential pressure repeatedly moves up and down, and The differential pressure as a whole gradually increases along the slope line L1 indicating the rate of increase in the overall differential pressure from t1 to t2 . It is a normal operation of the filtration type dust collector 25 that the entire differential pressure gradually increases along the slope line L1 .

しかしながら、図3のグラフにおける時刻tからtの間においては、所定のサイクルタイムで実施される払落し装置60による飛灰の払落し動作により、差圧が上下動を繰り返しながら、時刻tからtにおける差圧全体の上昇率を示す傾きラインLに沿って、全体として差圧が急激に増大している。このような傾きラインLに沿って差圧全体が急激に増大するのは、ろ過式集塵機25の運転として異常な状態にある。これは、ろ過式集塵機25のろ布41の目詰まりが通常よりもかなり進行している可能性が高い。 However, between time t 2 and t 3 in the graph of FIG. The differential pressure as a whole increases rapidly along the slope line L2 indicating the rate of increase in the overall differential pressure from t2 to t3 . The sudden increase in the entire differential pressure along the slope line L2 is an abnormal operation of the filtration type dust collector 25. This is likely because the filter cloth 41 of the filter dust collector 25 is becoming more clogged than usual.

図4は、ろ過式集塵機25の差圧上昇率が増大した場合の処理の手順を示すフローチャートである。なお、図4中記号「S」はステップを表す(図6においても同様)。 FIG. 4 is a flowchart showing the processing procedure when the differential pressure increase rate of the filtration type dust collector 25 increases. Note that the symbol "S" in FIG. 4 represents a step (the same applies to FIG. 6).

<S1~S3:排ガス情報取得工程>
計測部91は、各測定手段(差圧計50、ガス温度計71、ガス水分計72及びガス量計73)からの測定信号を取り込む(S1)。計測部91は、取り込んだ測定信号に基づいて、ろ過式集塵機25の上流側と下流側との差圧、ダクト17の内部を流れる排ガスの温度、ダクト18の内部を流れる排ガスの水分率、及びダクト19の内部を流れる排ガスの流量をそれぞれ計測する(S2)。差圧上昇率算出部92は、計測部91の計測結果に基づいて、リアルタイムでろ過式集塵機25の差圧の上昇率(差圧変化量/時間変化量)を算出する(S3)。こうして、各測定手段(差圧計50、ガス温度計71、ガス水分計72及びガス量計73)と、計測部91と、差圧上昇率算出部92とにより、排ガス情報を取得する排ガス情報取得工程を実施する。
<S1 to S3: Exhaust gas information acquisition process>
The measurement unit 91 takes in measurement signals from each measurement means (differential pressure gauge 50, gas thermometer 71, gas moisture meter 72, and gas amount meter 73) (S1). Based on the captured measurement signals, the measurement unit 91 measures the differential pressure between the upstream side and the downstream side of the filtration type dust collector 25, the temperature of the exhaust gas flowing inside the duct 17, the moisture content of the exhaust gas flowing inside the duct 18, and The flow rate of exhaust gas flowing inside the duct 19 is measured (S2). The differential pressure increase rate calculation unit 92 calculates the rate of increase in the differential pressure (differential pressure change amount/time change amount) of the filtration type dust collector 25 in real time based on the measurement result of the measurement unit 91 (S3). In this way, each measuring means (differential pressure gauge 50, gas thermometer 71, gas moisture meter 72, and gas amount meter 73), the measurement section 91, and the differential pressure increase rate calculation section 92 acquire exhaust gas information. Implement the process.

ろ過式集塵機25においては、制御装置5に内蔵された図示されないタイマーにより所定のサイクルタイムで払落し装置60による払落し動作が実施される。払落し動作を実施する際、弁制御部96は、所定の制御信号を減圧弁63に送信し、エアコンプレッサ61からの圧縮空気の空気圧を制御して、ろ過式集塵機25におけるろ布41に対する逆洗空気の空気圧を調整する。また、弁制御部96は、所定の制御信号を開閉弁65に送信し、開閉弁65の弁開閉動作を制御して、ろ過式集塵機25におけるろ布41に対する逆洗空気の噴射の間隔を調整する。払落し装置60では、ろ過式集塵機25の差圧が上昇した場合、ろ過式集塵機25におけるろ布41に対する逆洗空気の空気圧、及び逆洗空気の噴射の間隔のうちの少なくとも一つを調整することにより、本例の場合、逆洗空気の空気圧を段階的に増加する、及び/又は、逆洗空気の噴射の間隔を段階的に短縮することにより、ろ布41の表面側に付着・成長した飛灰を、逆洗空気の作用によって払い落とすようにしている。それでも、ろ過式集塵機25の差圧の上昇率が増大する場合がある。 In the filtration type dust collector 25, a timer (not shown) built into the control device 5 causes the dust removal device 60 to perform a dusting operation at a predetermined cycle time. When performing the dust removal operation, the valve control unit 96 sends a predetermined control signal to the pressure reducing valve 63, controls the air pressure of the compressed air from the air compressor 61, and controls the air pressure of the compressed air from the air compressor 61 to reverse the dust removal operation against the filter cloth 41 in the filter type dust collector 25. Adjust the air pressure of the washing air. Further, the valve control unit 96 sends a predetermined control signal to the on-off valve 65, controls the valve opening/closing operation of the on-off valve 65, and adjusts the interval of injection of backwash air to the filter cloth 41 in the filtration type dust collector 25. do. In the dust removal device 60, when the differential pressure of the filtering type dust collector 25 increases, at least one of the air pressure of the backwashing air against the filter cloth 41 in the filtering type dust collector 25 and the injection interval of the backwashing air is adjusted. In this example, by increasing the air pressure of the backwash air stepwise and/or reducing the jetting interval of the backwash air stepwise, it is possible to reduce the adhesion and growth on the surface side of the filter cloth 41. The generated fly ash is removed by backwashing air. Even so, the rate of increase in the differential pressure of the filtration type dust collector 25 may increase.

<S4>
ステップS4においては、差圧上昇率算出部92によって算出される差圧上昇率が増大したか否かを判断する。
<S4>
In step S4, it is determined whether the differential pressure increase rate calculated by the differential pressure increase rate calculating section 92 has increased.

<S5~S8:外気導入工程、外気量制御工程>
差圧上昇率が増大した場合(ステップS4において「YES」)には、すなわち、図3において傾きラインLで示す上昇率から傾きラインLで示す上昇率に変化した場合には、外気量算出部93は、各測定手段(差圧計50、ガス温度計71、ガス水分計72及びガス量計73)と、計測部91と、差圧上昇率算出部92とによって取得される排ガス情報に基づいて、排ガスの温度を過度に低下させることなく、排ガス中の水分率を低く抑え、且つろ過式集塵機25の差圧の上昇率が所定範囲、本例の場合、傾きラインLで示す上昇率より小さく、傾きラインLで示す上昇率以上の範囲となるような外気量を、過去の運転データ等に基づく所定の演算式等を用いて算出する(S5)。ブロワ制御部94及び/又はダンパ制御部95は、外気量算出部93によって算出された外気量となるようにするための所定の制御信号をブロワ81及び/又は流量調節ダンパ85に送信してブロワ81の送風量及び/又は流量調節ダンパ85の開度を制御する(S6)。なお、外気導入量は、ガス温度計71を用いて計測部91により計測される排ガスの温度がろ布41の耐熱温度(例えば、200℃程度)以下で、且つガス量計73を用いて計測部91により計測される排ガス流量の数十%(例えば、20%程度)を上限として制御する(後述する第二実施形態においても同様)。差圧上昇率算出部92によって算出される差圧上昇率が傾きラインLで示す上昇率より小さく、傾きラインLで示す上昇率以上の範囲となった場合(ステップS7において「YES」)、ブロワ制御部94は、ブロワ81を停止させる制御信号をブロワ81に送信するとともに、ダンパ制御部95は、流量調節ダンパ85を閉じる制御信号を流量調節ダンパ85に送信して、ブロワ81を停止させるとともに、流量調節ダンパ85を閉じて、外気の導入を止める(S8)。第一実施形態においては、外気導入手段80により、ろ過式集塵機25の上流側に接続されるダクト17に外気を導入する外気導入工程を実施する(後述する第二実施形態においても同様)。また、第一実施形態においては、外気量算出部93、ブロワ制御部94及びダンパ制御部95を含む機能部により、外気導入手段80によって導入される外気量を排ガス情報に基づいて制御する外気量制御工程を実施する(後述する第二実施形態においても同様)。
<S5 to S8: Outside air introduction process, outside air amount control process>
When the differential pressure increase rate increases ("YES" in step S4), that is, when the rate of increase changes from the rate of increase indicated by slope line L1 to the rate of increase indicated by slope line L2 in FIG. The calculation unit 93 calculates exhaust gas information obtained by each measurement means (differential pressure gauge 50, gas thermometer 71, gas moisture meter 72, and gas amount meter 73), the measurement unit 91, and the differential pressure increase rate calculation unit 92. Based on this, the moisture content in the exhaust gas is kept low without excessively lowering the temperature of the exhaust gas, and the rate of increase in the differential pressure of the filtration type dust collector 25 is within a predetermined range, in the case of this example, the increase shown by the slope line L2 . An amount of outside air that is smaller than the rate of increase and greater than or equal to the rate of increase indicated by the slope line L1 is calculated using a predetermined calculation formula based on past driving data, etc. (S5). The blower control unit 94 and/or the damper control unit 95 sends a predetermined control signal to the blower 81 and/or the flow rate adjustment damper 85 to adjust the amount of outside air to the amount calculated by the amount of outside air calculation unit 93, and controls the blower. The amount of air blown 81 and/or the opening degree of the flow rate adjusting damper 85 is controlled (S6). Note that the amount of outside air introduced is determined when the temperature of the exhaust gas measured by the measuring unit 91 using the gas thermometer 71 is below the heat resistance temperature of the filter cloth 41 (for example, about 200° C.), and when it is measured using the gas flow meter 73. Control is performed with an upper limit of several tens of percent (for example, about 20%) of the exhaust gas flow rate measured by the section 91 (the same applies to the second embodiment described later). When the differential pressure increase rate calculated by the differential pressure increase rate calculation unit 92 is smaller than the increase rate indicated by the slope line L2 and is within the range of the increase rate indicated by the slope line L1 (“YES” in step S7). The blower control unit 94 sends a control signal to the blower 81 to stop the blower 81, and the damper control unit 95 sends a control signal to the flow rate adjustment damper 85 to close the flow rate adjustment damper 85 to stop the blower 81. At the same time, the flow rate adjustment damper 85 is closed to stop the introduction of outside air (S8). In the first embodiment, an outside air introduction step is performed in which outside air is introduced into the duct 17 connected to the upstream side of the filtration type dust collector 25 by the outside air introduction means 80 (the same applies to the second embodiment described later). In addition, in the first embodiment, the outside air amount that is controlled by the functional section including the outside air amount calculation section 93, the blower control section 94, and the damper control section 95 to control the outside air amount introduced by the outside air introducing means 80 based on the exhaust gas information. A control process is carried out (the same applies to the second embodiment described below).

第一実施形態の排ガス処理システム10Aによれば、ろ過式集塵機25の上流側と下流側との差圧の上昇率が増大した場合、排ガスの温度を過度に低下させることなく、排ガス中の水分率を低く抑え、且つろ過式集塵機25の上流側と下流側との差圧の上昇率が図3のラインLで示す上昇率より小さく、ラインLで示す上昇率以上の範囲となるように、ろ過式集塵機25の上流側のダクト17の内部に導入される外気量が制御される。このため、飛灰の付着力増加を抑制することができ、払落し装置60による払落し動作でろ布41に付着した飛灰を払い落とすことができ、圧力損失の急上昇を確実に抑制することができる。 According to the exhaust gas treatment system 10A of the first embodiment, when the rate of increase in the differential pressure between the upstream side and the downstream side of the filtration type dust collector 25 increases, the water content in the exhaust gas can be removed without excessively lowering the temperature of the exhaust gas. In addition, the rate of increase in the differential pressure between the upstream side and the downstream side of the filtration type dust collector 25 is smaller than the rate of increase shown by line L2 in FIG. In addition, the amount of outside air introduced into the duct 17 on the upstream side of the filtration type dust collector 25 is controlled. Therefore, it is possible to suppress an increase in the adhesion force of fly ash, and the fly ash adhering to the filter cloth 41 can be brushed off by the brushing operation by the brushing device 60, and a sudden increase in pressure loss can be reliably suppressed. can.

〔第二実施形態〕
図5は、本発明の第二実施形態に係る排ガス処理システム10Bが適用される焼却処理施設1Bの概略構成を示すブロック図である。なお、第二実施形態において、第一実施形態と同一又は同様のものについては図に同一符号を付すに留めてその詳細な説明を省略することとし、以下においては、第二実施形態に特有の部分を中心に説明することとする。
[Second embodiment]
FIG. 5 is a block diagram showing a schematic configuration of an incineration treatment facility 1B to which an exhaust gas treatment system 10B according to the second embodiment of the present invention is applied. In addition, in the second embodiment, the same or similar parts as in the first embodiment will only be given the same reference numerals in the figures, and detailed explanation thereof will be omitted. I will mainly explain this part.

<ガス温度計>
図5に示すように、排ガス処理システム10Bにおいては、焼却炉3と熱回収装置20とを接続するダクト16の内部を流れる排ガスの温度を測定するガス温度計75が配設されている。ガス温度計75の測定信号は、制御装置5へと送られる。第二実施形態において、排ガス情報を取得する排ガス情報取得手段は、測定手段(差圧計50、ガス温度計71,75、ガス水分計72及びガス量計73)と、計測部91と、差圧上昇率算出部92とによって構成されている。
<Gas thermometer>
As shown in FIG. 5, in the exhaust gas treatment system 10B, a gas thermometer 75 is provided to measure the temperature of the exhaust gas flowing inside the duct 16 that connects the incinerator 3 and the heat recovery device 20. A measurement signal from the gas thermometer 75 is sent to the control device 5. In the second embodiment, the exhaust gas information acquisition means for acquiring exhaust gas information includes measuring means (differential pressure gauge 50, gas thermometers 71, 75, gas moisture meter 72, and gas amount meter 73), a measuring section 91, and a differential pressure and an increase rate calculation section 92.

図6は、ろ過式集塵機25の差圧上昇率が増大することが予測される場合の処理の手順を示すフローチャートである。図6のフローチャートに示す処理の手順は、ろ過式集塵機25が図3に示すグラフにおいて時刻tからtの間で傾きラインLに沿って差圧全体が徐々に上昇するような運転状態にあるときに、排ガス情報により、時刻t以降において差圧全体の上昇率が傾きラインLに沿って急激に増大すると予測される場合に行われる。 FIG. 6 is a flowchart showing the processing procedure when it is predicted that the rate of increase in the differential pressure of the filtration type dust collector 25 will increase. The processing procedure shown in the flowchart of FIG. 6 is such that the filtration type dust collector 25 is in an operating state in which the entire differential pressure gradually increases along the slope line L1 between time t1 and t2 in the graph shown in FIG. This is performed when the exhaust gas information predicts that the rate of increase in the overall differential pressure will increase rapidly along the slope line L2 after time t2 .

<S11~S12:排ガス情報取得工程>
計測部91は、各測定手段(差圧計50、ガス温度計71,75、ガス水分計72及びガス量計73)からの測定信号を取り込む(S11)。計測部91は、取り込んだ測定信号に基づいて、ろ過式集塵機25の上流側と下流側との差圧、ダクト16の内部を流れる排ガスの温度、ダクト17の内部を流れる排ガスの温度、ダクト18の内部を流れる排ガスの水分率、及びダクト19の内部を流れる排ガスの流量をそれぞれ計測する(S12)。差圧上昇率算出部92は、計測部91の計測結果に基づいて、リアルタイムでろ過式集塵機25の差圧の上昇率を算出するとともに、ダクト16の内部を流れる排ガスの温度及びダクト18の内部を流れる排ガスの水分率の排ガス情報をも加味して過去の運転データ等に基づく補正係数を、算出された差圧の上昇率に乗算して差圧の上昇率の予測値を算出する(S13)。
<S11-S12: Exhaust gas information acquisition process>
The measurement unit 91 takes in measurement signals from each measurement means (differential pressure gauge 50, gas thermometers 71, 75, gas moisture meter 72, and gas amount meter 73) (S11). The measurement unit 91 measures the differential pressure between the upstream side and the downstream side of the filtration type dust collector 25, the temperature of the exhaust gas flowing inside the duct 16, the temperature of the exhaust gas flowing inside the duct 17, and the temperature of the exhaust gas flowing inside the duct 18, based on the captured measurement signals. The moisture content of the exhaust gas flowing inside the duct 19 and the flow rate of the exhaust gas flowing inside the duct 19 are measured (S12). The differential pressure increase rate calculation unit 92 calculates the rate of increase in the differential pressure of the filtration type dust collector 25 in real time based on the measurement result of the measurement unit 91, and also calculates the temperature of the exhaust gas flowing inside the duct 16 and the inside of the duct 18. The predicted value of the rate of increase in differential pressure is calculated by multiplying the calculated rate of increase in differential pressure by a correction coefficient based on past operation data, etc., taking into account exhaust gas information on the moisture content of exhaust gas flowing through (S13 ).

例えば、ダクト16の内部を流れる排ガスの温度が通常よりも上昇した場合、これは焼却炉3の炉温が通常よりも上昇したことを示しており、焼却炉3の炉温が上昇すると、焼却炉3での汚泥の燃焼によって揮散するリン成分が増加し、ろ布41の目詰まりがより進行して、ろ過式集塵機25の上流側と下流側との差圧の上昇率が増大することが予測される。そこで、ダクト16の内部を流れる排ガスの温度の変化と、ろ過式集塵機25の差圧上昇率の変化との相関関係を示す過去の運転データ等から排ガス温度に対する差圧上昇率の補正係数を予め求めておき、差圧上昇率算出部92において、算出されたリアルタイムの差圧上昇率に補正係数を乗算することにより、差圧上昇率の予測値を算出することができる。また、ダクト18の内部を流れる排ガスの水分率が上昇した場合、通常よりも含水率が高い汚泥が焼却炉3において燃焼されており、飛灰の吸湿量が増加する傾向が続き、ろ布41の目詰まりがより進行して、ろ過式集塵機25の差圧上昇率が増大することが予測される。そこで、ダクト18の内部を流れる排ガスの水分率の変化と、ろ過式集塵機25の差圧上昇率の変化との相関関係を示す過去の運転データ等から排ガス水分率に対する差圧上昇率の補正係数を予め求めておき、差圧上昇率算出部92において、算出されたリアルタイムの差圧上昇率に補正係数を乗算することにより、差圧上昇率の予測値を算出することができる。 For example, if the temperature of the exhaust gas flowing inside the duct 16 rises above normal, this indicates that the furnace temperature of the incinerator 3 rises above normal; The phosphorus component volatilized by combustion of the sludge in the furnace 3 increases, the filter cloth 41 becomes more clogged, and the rate of increase in the differential pressure between the upstream side and the downstream side of the filter dust collector 25 increases. is expected. Therefore, a correction coefficient for the differential pressure increase rate with respect to the exhaust gas temperature is calculated in advance from past operating data showing the correlation between the change in the temperature of the exhaust gas flowing inside the duct 16 and the change in the differential pressure increase rate of the filtration type dust collector 25. A predicted value of the differential pressure increase rate can be calculated by multiplying the calculated real-time differential pressure increase rate by a correction coefficient in the differential pressure increase rate calculating section 92. Furthermore, when the moisture content of the exhaust gas flowing inside the duct 18 increases, sludge with a higher moisture content than usual is being burned in the incinerator 3, and the moisture absorption of fly ash continues to increase, causing the filter cloth 4 It is predicted that the clogging will progress further and the rate of increase in the differential pressure of the filtration type dust collector 25 will increase. Therefore, based on past operating data showing the correlation between the change in the moisture content of the exhaust gas flowing inside the duct 18 and the change in the rate of increase in differential pressure of the filtration type dust collector 25, a correction coefficient for the rate of increase in differential pressure with respect to the moisture content of the exhaust gas is determined. is determined in advance, and the differential pressure increase rate calculation unit 92 multiplies the calculated real-time differential pressure increase rate by a correction coefficient, thereby calculating a predicted value of the differential pressure increase rate.

<S14>
ステップS14においては、差圧上昇率算出部92によって算出される差圧の上昇率の予測値に基づいて、差圧上昇率が増大することが予測されるか否かを判断する。
<S14>
In step S14, based on the predicted value of the rate of increase in differential pressure calculated by the differential pressure increase rate calculation unit 92, it is determined whether the rate of increase in differential pressure is predicted to increase.

<S15~S18:外気導入工程、外気量制御工程>
差圧上昇率が増大することが予測される場合(ステップS14において「YES」)には、すなわち、図3において傾きラインLで示す上昇率から傾きラインLで示す上昇率に変化することが予測される場合には、外気量算出部93は、各測定手段(差圧計50、ガス温度計71,75、ガス水分計72及びガス量計73)と、計測部91と、差圧上昇率算出部92とによって取得される排ガス情報に基づいて、排ガスの温度を過度に低下させることなく、排ガス中の水分率を低く抑え、且つろ過式集塵機25の差圧の上昇率が所定範囲、本例の場合、傾きラインLで示す差圧上昇率の予測値より小さく、傾きラインLで示す差圧上昇率以上の範囲となるような外気量を、過去の運転データ等に基づく所定の演算式を用いて算出する(S15)。ブロワ制御部94及び/又はダンパ制御部95は、外気量算出部93によって算出された外気量となるようにするための所定の制御信号をブロワ81及び/又は流量調節ダンパ85に送信してブロワ81の送風量及び/又は流量調節ダンパ85の開度を制御する(S16)。差圧上昇率算出部92によって算出される差圧上昇率が傾きラインLで示す差圧上昇率の予測値より小さく、傾きラインLで示す差圧上昇率以上の範囲となった場合(ステップS17において「YES」)、ブロワ制御部94は、ブロワ81を停止させる制御信号をブロワ81に送信するとともに、ダンパ制御部95は、流量調節ダンパ85を閉じる制御信号を流量調節ダンパ85に送信して、ブロワ81を停止させるとともに、流量調節ダンパ85を閉じて、外気の導入を止める(S18)。
<S15 to S18: Outside air introduction process, outside air amount control process>
If it is predicted that the differential pressure increase rate will increase ("YES" in step S14), that is, the rate of increase shown by slope line L1 in FIG. 3 will change to the rate of increase shown by slope line L2 . When the outside air amount calculation unit 93 predicts that Based on the exhaust gas information acquired by the rate calculation unit 92, the moisture content in the exhaust gas is kept low without excessively lowering the temperature of the exhaust gas, and the rate of increase in the differential pressure of the filtration type dust collector 25 is within a predetermined range. In the case of this example, the amount of outside air is set to a predetermined value based on past operating data, etc. so that the rate of increase in differential pressure is smaller than the predicted value of the rate of increase in differential pressure indicated by slope line L2, and greater than or equal to the rate of increase in differential pressure indicated by slope line L1 . It is calculated using the calculation formula (S15). The blower control unit 94 and/or the damper control unit 95 sends a predetermined control signal to the blower 81 and/or the flow rate adjustment damper 85 to adjust the amount of outside air to the amount calculated by the amount of outside air calculation unit 93, and controls the blower. The amount of air blown 81 and/or the opening degree of the flow rate adjusting damper 85 are controlled (S16). If the differential pressure increase rate calculated by the differential pressure increase rate calculation unit 92 is smaller than the predicted value of the differential pressure increase rate indicated by the slope line L2 , and is within the range of the differential pressure increase rate indicated by the slope line L1 ( (“YES” in step S17), the blower control unit 94 sends a control signal to the blower 81 to stop the blower 81, and the damper control unit 95 sends a control signal to the flow rate adjustment damper 85 to close the flow rate adjustment damper 85. Then, the blower 81 is stopped, the flow rate adjustment damper 85 is closed, and the introduction of outside air is stopped (S18).

第二実施形態の排ガス処理システム10Bによれば、排ガス情報に基づいて差圧の上昇率が増大することが予測される場合、飛灰が排ガス中の水分を吸収することによる付着力増加が通常よりもかなり進行する可能性が高いと判断して、差圧の上昇率が所定範囲に維持されるように、外気量制御手段(93,94,95)によって外気量が制御される。これにより、圧力損失の急上昇を未然に抑制することができる。 According to the exhaust gas treatment system 10B of the second embodiment, when it is predicted that the rate of increase in differential pressure will increase based on the exhaust gas information, the adhesion force will usually increase due to the fly ash absorbing moisture in the exhaust gas. It is determined that there is a high possibility that the rate of increase in the differential pressure will progress considerably, and the outside air amount is controlled by the outside air amount control means (93, 94, 95) so that the rate of increase in the differential pressure is maintained within a predetermined range. This makes it possible to prevent a sudden increase in pressure loss.

以上、本発明の排ガス処理システム、及び排ガス処理方法について、複数の実施形態に基づいて説明したが、本発明は上記実施形態に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができる。 As above, the exhaust gas treatment system and exhaust gas treatment method of the present invention have been described based on a plurality of embodiments, but the present invention is not limited to the configurations described in the above embodiments, and within the scope of the invention. The configuration can be changed as appropriate.

(別実施形態)
上記各実施形態の排ガス処理システム10A,10Bでは、誘引通風機30の作動による誘引作用によってろ過式集塵機25において負圧が発生する。このため、ブロワ81によって強制的に外気をダクト17の内部に押し込まなくても、流量調節ダンパ85を開くだけで外気がダクト17の内部に吸い込まれる。従って、ろ過式集塵機25において発生する負圧によって必要十分な外気導入量が確保される場合には、ブロワ81及びブロワ制御部94を省略し、ダンパ制御部95により流量調節ダンパ85の開度を制御することのみで外気導入量を制御するようにしてもよい。このように、ろ過式集塵機25において発生する負圧を利用して外気をろ過式集塵機25の上流側のダクト17に導入するような態様によれば、ブロワ81のような強制的に外気を押込み送風するような特別な動力装置を別途設ける必要がなく、設備のイニシャルコスト及びランニングコストを共に抑えることができる。
(Another embodiment)
In the exhaust gas treatment systems 10A and 10B of each of the embodiments described above, negative pressure is generated in the filtration type dust collector 25 due to the attraction effect caused by the operation of the induced draft fan 30. Therefore, without forcing the outside air into the duct 17 with the blower 81, the outside air is sucked into the duct 17 simply by opening the flow rate adjustment damper 85. Therefore, when the negative pressure generated in the filtration type dust collector 25 secures a necessary and sufficient amount of outside air introduced, the blower 81 and the blower control section 94 are omitted, and the opening degree of the flow rate adjustment damper 85 is controlled by the damper control section 95. The amount of outside air introduced may be controlled only by controlling. In this manner, according to an embodiment in which outside air is introduced into the duct 17 on the upstream side of the filtration type dust collector 25 by using the negative pressure generated in the filtration type dust collector 25, outside air is forced into the duct 17 on the upstream side of the filtration type dust collector 25. There is no need to separately provide a special power device for blowing air, and both the initial cost and running cost of the equipment can be reduced.

本発明の排ガス処理システム、及び排ガス処理方法は、リン成分を比較的多く含む被燃焼物を焼却処理する焼却処理施設での排ガスを処理する用途において利用可能である。 The exhaust gas treatment system and the exhaust gas treatment method of the present invention can be used to treat exhaust gas in an incineration facility that incinerates materials to be combusted that contain a relatively large amount of phosphorus components.

3 焼却炉
10A,10B 排ガス処理システム
15 排ガス流路
25 ろ過式集塵機
41 ろ布
50 差圧計(排ガス情報取得手段)
71,75 ガス温度計(排ガス情報取得手段)
72 ガス水分計(排ガス情報取得手段)
73 ガス量計(排ガス情報取得手段)
80 外気導入手段
91 計測部(排ガス情報取得手段)
92 差圧上昇率算出部(排ガス情報取得手段)
93 外気量算出部(外気量制御手段)
94 ブロワ制御部(外気量制御手段)
95 ダンパ制御部(外気量制御手段)
3 Incinerator 10A, 10B Exhaust gas treatment system 15 Exhaust gas flow path 25 Filter type dust collector 41 Filter cloth 50 Differential pressure gauge (exhaust gas information acquisition means)
71, 75 Gas thermometer (exhaust gas information acquisition means)
72 Gas moisture meter (exhaust gas information acquisition means)
73 Gas meter (exhaust gas information acquisition means)
80 Outside air introduction means 91 Measuring unit (exhaust gas information acquisition means)
92 Differential pressure increase rate calculation unit (exhaust gas information acquisition means)
93 Outside air amount calculation unit (outside air amount control means)
94 Blower control unit (outside air amount control means)
95 Damper control unit (outside air amount control means)

Claims (4)

焼却炉での燃焼に伴い発生した排ガスが流れる排ガス流路の途中に配設されるろ過式集塵機によって除塵するようにした排ガス処理システムであって、
前記排ガス流路を流れる排ガスに関する、前記ろ過式集塵機の上流側と下流側との差圧に関連した排ガス情報を取得する排ガス情報取得手段と、
前記ろ過式集塵機の上流側の前記排ガス流路に外気を導入する外気導入手段と、
前記外気導入手段によって導入される外気量を前記排ガス情報に基づいて制御する外気量制御手段と、
を備える排ガス処理システム。
An exhaust gas treatment system in which dust is removed by a filtration type dust collector installed in the middle of an exhaust gas flow path through which exhaust gas generated due to combustion in an incinerator flows,
Exhaust gas information acquisition means for acquiring exhaust gas information related to the differential pressure between the upstream side and the downstream side of the filtration type dust collector regarding the exhaust gas flowing through the exhaust gas flow path;
an outside air introducing means for introducing outside air into the exhaust gas flow path on the upstream side of the filter type dust collector;
outside air amount control means for controlling the amount of outside air introduced by the outside air introducing means based on the exhaust gas information;
Exhaust gas treatment system equipped with
前記外気量制御手段は、前記差圧の上昇率が増大した場合、前記差圧の上昇率が所定範囲となるように、前記外気量を制御する請求項1に記載の排ガス処理システム。 The exhaust gas treatment system according to claim 1, wherein the outside air amount control means controls the outside air amount so that when the rate of increase in the differential pressure increases, the rate of increase in the differential pressure falls within a predetermined range. 前記排ガス情報は、前記排ガス流路を流れる排ガスの温度及び水分率の少なくとも一つをさらに含み、
前記外気量制御手段は、前記排ガス情報に基づいて前記差圧の上昇率が増大することが予測される場合、前記差圧の上昇率が所定範囲に維持されるように、前記外気量を制御する請求項1に記載の排ガス処理システム。
The exhaust gas information further includes at least one of the temperature and moisture content of the exhaust gas flowing through the exhaust gas flow path,
The outside air amount control means controls the outside air amount so that the rate of increase in the differential pressure is maintained within a predetermined range when it is predicted that the rate of increase in the differential pressure will increase based on the exhaust gas information. The exhaust gas treatment system according to claim 1.
焼却炉での燃焼に伴い発生した排ガスが流れる排ガス流路の途中に配設されるろ過式集塵機によって除塵するようにした排ガス処理方法であって、
前記排ガス流路を流れる排ガスに関する、前記ろ過式集塵機の上流側と下流側との差圧に関連した排ガス情報を取得する排ガス情報取得工程と、
前記ろ過式集塵機の上流側の前記排ガス流路に外気を導入する外気導入工程と、
前記外気導入工程において導入される外気量を前記排ガス情報に基づいて制御する外気量制御工程と、
を包含する排ガス処理方法。
An exhaust gas treatment method in which dust is removed by a filtration type dust collector installed in the middle of an exhaust gas flow path through which exhaust gas generated due to combustion in an incinerator flows,
an exhaust gas information acquisition step of acquiring exhaust gas information related to the differential pressure between the upstream side and the downstream side of the filtration type dust collector regarding the exhaust gas flowing through the exhaust gas flow path;
an outside air introduction step of introducing outside air into the exhaust gas flow path on the upstream side of the filtration type dust collector;
an outside air amount control step of controlling the amount of outside air introduced in the outside air introduction step based on the exhaust gas information;
An exhaust gas treatment method that includes
JP2022145380A 2022-09-13 2022-09-13 Exhaust gas treatment system and exhaust gas treatment method Pending JP2024040794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022145380A JP2024040794A (en) 2022-09-13 2022-09-13 Exhaust gas treatment system and exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022145380A JP2024040794A (en) 2022-09-13 2022-09-13 Exhaust gas treatment system and exhaust gas treatment method

Publications (1)

Publication Number Publication Date
JP2024040794A true JP2024040794A (en) 2024-03-26

Family

ID=90369035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022145380A Pending JP2024040794A (en) 2022-09-13 2022-09-13 Exhaust gas treatment system and exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP2024040794A (en)

Similar Documents

Publication Publication Date Title
US9011575B2 (en) Gas treatment
RU2406022C2 (en) Method of defining separate blower efficiency and corresponding boiling system
JPH09308817A (en) Method for treating exhaust gas and apparatus therefor
KR20090131034A (en) Combustion gas purifying apparatus
JP2011092910A (en) Waste gas deodorization apparatus
JP3908251B2 (en) Superheated steam circulation drying system
JP2024040794A (en) Exhaust gas treatment system and exhaust gas treatment method
JP2018138636A (en) Method for regeneration of filter apparatus, filter apparatus, and gasification compound powder generating facility
JP5991234B2 (en) Deodorizing device
JP7077104B2 (en) Sludge incineration equipment and sludge incineration method
JP2011111480A (en) Carbonization system
KR100665553B1 (en) Burning device for offensive odor gas
KR200416425Y1 (en) Burning Device for Offensive Odor Gas
JPH02187115A (en) Waste gas treatment apparatus of incinerator and method thereof
JP2002159817A (en) Apparatus for collecting fine particles in dry distillated gas
JP6843939B2 (en) Method of supporting catalyst on filter cloth
CN212319733U (en) Waste incineration system
JP5966804B2 (en) Dust removal and deodorization system and dust removal and deodorization method
JP7202842B2 (en) Ash processing equipment, power plant, and method of operating ash processing equipment
JP3643129B2 (en) Bag filter filter cloth damage prevention method
JP2013060480A (en) Apparatus for producing fuel from sludge
JP5935726B2 (en) Deodorizing device
JP2019027671A (en) Processing apparatus for flue gas
JP2003239721A (en) Method for regenerating exhaust gas particulate filter
JP3700063B2 (en) Waste incinerator