JP2024040522A - 有機性廃水の処理方法 - Google Patents

有機性廃水の処理方法 Download PDF

Info

Publication number
JP2024040522A
JP2024040522A JP2024022406A JP2024022406A JP2024040522A JP 2024040522 A JP2024040522 A JP 2024040522A JP 2024022406 A JP2024022406 A JP 2024022406A JP 2024022406 A JP2024022406 A JP 2024022406A JP 2024040522 A JP2024040522 A JP 2024040522A
Authority
JP
Japan
Prior art keywords
organic wastewater
biological treatment
water
insect growth
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2024022406A
Other languages
English (en)
Inventor
豊 米山
Yutaka Yoneyama
惇太 高橋
Atsuta Takahashi
隆続 八木橋
Takatsugu Yagihashi
祐輝 亀ヶ澤
Yuki Kamegasawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2024022406A priority Critical patent/JP2024040522A/ja
Publication of JP2024040522A publication Critical patent/JP2024040522A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Abstract

【課題】無曝気方式の生物処理装置を利用した有機性廃水の処理方法において、簡便で効果的にハエの発生を抑制可能な方法を提供する。【解決手段】有機性廃水を、受水槽及びろ床槽を備える無曝気方式の生物処理装置の前記受水槽に供給する工程と、前記受水槽より有機性廃水を前記ろ床槽に散布して生物処理する工程と、前記生物処理装置内の有機性廃水にハエの幼虫の成長を抑制する昆虫成長制御剤を添加する工程とを含む有機性廃水の処理方法であって、前記昆虫成長制御剤を添加する工程は、前記受水槽への有機性廃水の供給が停止し、且つ、前記生物処理装置からの有機性廃水の排出が停止している間に実施し、前記生物処理する工程は、前記受水槽への有機性廃水の供給が停止し、且つ、前記生物処理装置からの有機性廃水の排出が停止している間、有機性廃水を前記受水槽と前記ろ床槽の間で循環させながら実施することを特徴とした有機性廃水の処理方法。【選択図】図1

Description

本発明は無曝気方式の生物処理装置を利用した有機性廃水の処理方法におけるハエ発生対策に関する。
散水ろ床法等の無曝気方式の生物処理法は、標準活性汚泥法に比べ、曝気が不要であることから、消費電力が少ない、汚泥発生量が少なく余剰汚泥の処分コストを削減できるといった特徴をもつ。そのため、近年、電気などのインフラが整備されていない東南アジア等の発展途上国における下水処理などへの適用が検討されている。
一方、無曝気方式の生物処理法においては、散水ろ床のろ材上に汚泥が付着するため、付着した汚泥が腐敗することにより悪臭が発生し、この汚泥に起因して、ろ床ハエとよばれるチョウバエの一種が発生することが知られている。特に、地域にもよるが気温が20℃~25℃となる5月~6月、9月~10月の期間、散水ろ床処理装置に代表される無曝気方式の生物処理装置ではろ床ハエの発生が多く見られる。ろ床ハエの発生により、装置の維持管理を行う際の作業環境が悪化するという問題がある。上記問題に対する対策としては、以下の技術が知られている。
特許文献1(国際公開第2015/001708号)には、洗浄手段を用いて散水ろ床を洗浄することにより、ろ床ハエの卵および幼虫、ろ材の表面に過度に付着した生物膜、並びに、ろ材間に補捉された固形物を散水ろ床から除去する方法が開示されている。洗浄手段としては、散水ろ床内に洗浄水を貯留してろ材層を冠水させる洗浄水貯留機構と、冠水したろ材層の硝化細菌が付着したろ材を撹拌して洗浄する撹拌洗浄機構と、撹拌洗浄後の洗浄水を排出する排水機構とを有する洗浄手段が記載されている。当該文献には、当該洗浄手段によって、ろ床ハエや悪臭の発生を抑制しつつ、被処理水を効率的に処理することができることが記載されている。
特許文献2(特開2020-157237号公報)には、水槽に水を張ってろ材層全体を水に浸漬させ、その状態を一定時間維持して、ろ材層に付着した有害生物の幼虫や卵等を窒息死させる場合に、水槽内に生息する有害生物は、水槽の壁を伝わって上方に退避するため、洗浄操作が終わった後も有害生物が残存して、再び有害生物によって汚染された状態になることが多かったことが記載されている。そのため、当該文献においては、水を張る際に、ろ材層が充填されている水槽内に生息する有害生物が忌避する波長の光を前記水槽の内壁に照射する方法が提案されている。当該方法により、ハエの幼虫などの有害生物が水槽の内壁を伝わって上方に退避することができなくなり、水面下に沈んで窒息死する、または排水時に排水と一緒に排出されるので、有害生物をより効果的に死滅または除去させることが可能となるとされている。
特許文献3(特開平7-147875号公報)には、無曝気方式の生物処理法に関する技術ではないが、殺虫成分、油性溶剤および可燃性噴射剤からなるエアゾールを、火気のない害虫発生場所で1秒あたり5g以上噴射する害虫の防除方法が開示されている。当該文献によれば、エアゾール内容物を短時間に必要量噴射することで、無作為的に噴射したにもかかわらず、きわめて効率よく害虫を防除でき、かつ作業時間を大幅に短縮することができることが記載されている。
特許文献4(特開2003-95811号公報)には、無曝気方式の生物処理法に関する技術ではないが、殺虫剤を泡沫状に噴射することができることを特徴とするマンホールに生息する害虫の防除剤が開示されている。当該文献によれば、マンホールに生息する害虫の防除剤を使用することにより、マンホールで発生するチョウバエ、チカイエカ、ノミバエを効率良く防除するとともに、再発生も長期にわたり抑制することが可能であることが記載されている。
国際公開第2015/001708号 特開2020-157237号公報 特開平7-147875号公報 特開2003-95811号公報
特許文献1では、ろ床ハエの発生を抑制するために、ろ床内に洗浄水を貯留してろ材層を冠水させる洗浄水貯留機構と、冠水したろ材層の硝化細菌が付着したろ材を撹拌して洗浄する撹拌洗浄機構と、撹拌洗浄後の洗浄水を排出する排水機構とを有する洗浄手段を必要とする。このため、洗浄手段を既存設備へ設置する場合には設備の改修が必要となり、また、ろ材を冠水させたり撹拌したりする洗浄操作が必要となるので簡便性に欠ける。更には、洗浄によって発生する排水の処理が必要となる。
特許文献2は、忌避する波長の光を前記水槽の内壁に照射する発光装置が必要となる。また、特許文献2の発明は、水槽に水を張ってろ材層全体を水に浸漬させ、その状態を一定時間維持して、ろ材層に付着した有害生物の幼虫や卵等を窒息死させる方法を採用することを前提とする。このため、特許文献1と同様に、設備改修の必要性があり、また、所定時間の水張り操作及び光照射が必要となるので簡便性にも欠け、更には、排水処理も必要となる。
特許文献3は、エアゾールを害虫発生場所に噴霧することを要求する。散水ろ床処理装置のように、害虫発生場所が外気と連通しており閉鎖されていない場合には、エアゾールが大気中に拡散してしまうため、効果的な害虫防除方法とは言えない。また、大気中に生息するハエの成虫に対する抑制効果は期待できても水中や水槽の内壁、生物膜中等に生息するハエの幼虫の抑制効果は不明である。ハエの発生を効果的に抑制するためにはハエの幼虫の成長を抑制できることが望ましい。
特許文献4は、マンホールのような閉鎖された空間に殺虫剤を泡沫状に噴射することを特徴とする発明である。そのため、仮に、殺虫剤を泡沫状に噴射しても、散水ろ床処理装置のように、害虫発生場所が外気と連通しており閉鎖されていない場合には、殺虫剤が大気中に拡散してしまうため、特許文献3と同様の問題がある。
上記事情に鑑み、本発明は一実施形態において、無曝気方式の生物処理装置を利用した有機性廃水の処理方法において、簡便で効果的にハエの発生を抑制可能な方法を提供することを課題とする。また、本発明は別の一実施形態において、簡便で効果的にハエの発生を抑制可能な無曝気方式の生物処理装置を提供することを課題とする。
本発明者は上記課題を解決すべく鋭意検討したところ、有機性廃水に昆虫成長制御剤を添加することがハエの発生を抑制するのに顕著な効果を示すことを見出し、以下に例示される本発明を創作した。
[1]
有機性廃水を無曝気方式の生物処理装置に供給する工程と、
供給された有機性廃水を前記生物処理装置で生物処理する工程と、
有機性廃水が前記生物処理装置に供給される前、供給された後、又は両者において、有機性廃水に昆虫成長制御剤を添加する工程と、
を含む有機性廃水の処理方法。
[2]
有機性廃水に昆虫成長制御剤を添加する時期と、有機性廃水に昆虫成長制御剤を添加しない時期があり、有機性廃水に昆虫成長制御剤を添加する時期は、有機性廃水に昆虫成長制御剤を添加しない時期に比べて、前記生物処理装置に供給される有機性廃水の単位時間当たりの供給量が低い[1]に記載の有機性廃水の処理方法。
[3]
前記生物処理装置への有機性廃水の供給が停止し、且つ、前記生物処理装置からの有機性廃水の排出が停止している間に、昆虫成長制御剤を前記生物処理装置内の有機性廃水に添加する[1]に記載の有機性廃水の処理方法。
[4]
前記生物処理装置への有機性廃水の供給が停止し、且つ、前記生物処理装置からの有機性廃水の排出が停止している時間が、12時間以上である[3]に記載の有機性廃水の処理方法。
[5]
前記生物処理装置への有機性廃水の供給が停止し、且つ、前記生物処理装置からの有機性廃水の排出が停止している間、前記生物処理装置は有機性廃水を前記生物処理装置内で循環させながら生物処理する[3]又は[4]に記載の有機性廃水の処理方法。
[6]
前記生物処理装置への有機性廃水の供給が行われている間は、有機性廃水に昆虫成長制御剤を添加しない[3]~[5]の何れか一項に記載の有機性廃水の処理方法。
[7]
有機性廃水を貯留する受水槽と、
有機性廃水を生物処理するための生物膜と、
受水槽内の有機性廃水へ昆虫成長制御剤を供給する手段と、
を備える無曝気方式の生物処理装置。
[8]
前記生物膜を担持する担体を収容し、大気と連通する少なくとも1つのろ床槽と、
受水槽内の有機性廃水をろ床槽に散布するための散水機と、
を備える[7]に記載の無曝気方式の生物処理装置。
[9]
昆虫成長制御剤を供給する前記手段が、錠剤の形態にある昆虫成長制御剤を収容し、受水槽内の有機性廃水中に浸漬するための通水性の容器である[7]又は[8]に記載の無曝気方式の生物処理装置。
[10]
前記容器は、前記受水槽の入口側の壁に吊るされる[9]に記載の無曝気方式の生物処理装置。
本発明の一実施形態に係る有機性廃水の処理方法及び生物処理装置によれば、有機性廃水に昆虫成長制御剤を添加するという簡便な操作でハエの発生を抑制することが可能である。また、昆虫成長制御剤は空気中ではなく有機性廃水に添加されるため、昆虫成長制御剤が生物処理装置内の廃水全体に所望の濃度で広がり、ハエの幼虫が生息する生物膜にも昆虫成長制御剤を届かせることができる。このため、ハエの幼虫に対する成長抑制効果が高いので、結果としてハエの成虫の発生を抑制する効果も高くなる。
本発明の第一実施形態に係る生物処理装置の構成例を示す模式図である。 本発明の第二実施形態に係る生物処理装置の構成例を示す模式図である。 昆虫成長制御剤を入れるための通水性の容器の例を示す模式図である。 本発明の第一実施形態及び第二実施形態に係る生物処理装置に利用可能な膜状担体の構成例を説明する概略図である。 図3に示す膜状担体の一つの模式的な平面図である。 本発明の一実施形態に係る無曝気方式の生物処理装置を使用したし尿処理システムのフロー図である。 実施例1~3、比較例におけるハエの幼虫の発生状況の推移を表すグラフである。 実施例1~3、比較例におけるハエの成虫の発生状況の推移を表すグラフである。
以下、図面を参照しながら本発明の実施形態を説明する。以下に示す実施形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。
[1.有機性廃水の処理方法及び生物処理装置の概要]
本発明の一実施形態に係る有機性廃水の処理方法は、
有機性廃水を無曝気方式の生物処理装置に供給する工程と、
供給された有機性廃水を生物処理装置で生物処理する工程と、
有機性廃水が生物処理装置に供給される前、供給された後、又は両者において、有機性廃水に昆虫成長制御剤を添加する工程と、
を含む。
本実施形態に係る処理方法が対象とする有機性廃水には特に制限はないが、例えば、下水、し尿、工場排水が挙げられる。工場排水としては食品工場排水、化学工場排水、製紙工場排水などが挙げられる。本発明の一実施形態によれば、有機性廃水は、無曝気方式の生物処理装置に供給され、生物処理を受ける。本明細書において、無曝気方式の生物処理装置とは、被処理水である有機性廃水中に圧搾空気を散気管やエアレータ等により微細な気泡として吹き込む操作を行わなくても、空気と接触可能な生物膜を有する方式の生物処理装置を指す。
無曝気方式の生物処理装置に発生するハエはチョウバエが大半を占めている。チョウバエは腐敗した水分を栄養素として発生・生息する一方で、チョウバエは呼吸により酸素を体内に供給するため水中では生息ができない。このため、浸漬型の好気性生物処理法(活性汚泥法、接触酸化法等)を採用する生物処理装置には発生することが少ない。散水ろ床装置のように水以外に空気と接触する空間が確保できる無曝気方式の生物処理装置においては多く発生し、卵→幼虫→蛹→成虫→卵のサイクルで成長する。特に幼虫は生物膜の汚泥を餌として食べるため、生物膜中に多く見られる。そのため、本実施形態に係る処理方法は、無曝気方式の生物処理装置を対象とする。
本発明の一実施形態に係る無曝気方式の生物処理装置は、有機性廃水を貯留する受水槽と、有機性廃水を生物処理するための生物膜と、受水槽内の有機性廃水へ昆虫成長制御剤を供給する手段とを備える。無曝気方式の生物処理装置の例としては、限定的ではないが、散水ろ床装置及び回転円板装置が挙げられる。
本発明の一実施形態に係る散水ろ床装置は、生物膜を担持する担体を収容し、大気と連通する少なくとも1つのろ床槽と、受水槽内の有機性廃水をろ床槽に散布するための散水機とを備える。
本発明の一実施形態に係る回転円板装置は、生物膜を担持する少なくとも一枚、好ましくは複数枚の円板であって、水平方向に延びる回転軸を中心に回転することにより、担持された生物膜が受水槽内の有機性廃水への接触と大気への接触を交互に行うことのできる円板を備える。
生物処理は好気的生物処理及び嫌気的生物処理の何れでもよいが、上述したように、ハエの発生は、空気と接触する空間が確保できる無曝気方式の生物処理装置で問題となりやすい。このため、本実施形態に係る処理方法は、有機性廃水を少なくとも部分的に好気的に生物処理する際に特に好適に使用できる。無曝気方式の生物処理装置においては、担体の外側で好気性菌が繁殖し、担体の中の方で嫌気性菌が繁殖できる。このため、生物処理装置中には好気性菌及び嫌気性菌が増殖し、好気的生物処理及び嫌気的生物処理の両方を行うことも可能である。
ハエ発生を抑制するための薬剤としては、(1)成虫に効くもの、(2)幼虫に効くもの、(3)両者の効くものに分類される。(1)成虫に効くものは市販されている殺虫剤が多い。(2)幼虫に効くものとして昆虫成長制御剤(Insect Growth Regulator:IGR)がある。昆虫成長制御剤(IGR)は、昆虫の変態や脱皮をコントロールしているホルモンのバランスを狂わせることによって、昆虫の脱皮や羽化を阻害し、その結果として死に至らせる効果を示す殺虫剤である。
ハエの幼虫は生物膜の汚泥を餌として繁殖する。このため、幼虫の成長を抑制することができれば、成虫の発生も抑制できる。幼虫の成長を抑制するには昆虫成長制御剤が効果的であり、被処理水である有機性廃水中に添加して生物膜に届ける方法が簡便である。
従って、本実施形態に係る処理方法では、有機性廃水が生物処理装置に供給される前、供給された後、又は両者において、有機性廃水に昆虫成長制御剤を添加する工程を実施する。昆虫成長制御剤を添加するという簡便な操作を実施するだけで、昆虫成長制御剤を生物処理装置内の有機性廃水及び生物膜に所望の有効濃度で行き渡らせることが可能であり、ハエの発生を効果的に抑制可能である。有機性廃水に昆虫成長制御剤を添加するという操作は簡便であり、大掛かりな装置の改修も不要である。廃水中に添加された昆虫成長制御剤の有効成分の濃度は、昆虫成長制御剤中の有効成分の種類に応じて有効濃度となるように適宜設定すればよく、特段の制約はない。
有機性廃水が生物処理装置に供給される前というのは、典型的には生物処理装置の受水槽に有機性廃水が流入する前を意味する。有機性廃水が生物処理装置に供給された後というのは、典型的には生物処理装置の受水槽に有機性廃水が流入した後を意味する。有機性廃水に昆虫成長制御剤を添加する工程は、有機性廃水が生物処理装置に供給される前及び供給された後のどちらか何れかにおいて行ってもよく、両者において行ってもよい。生物処理装置への有機性廃水の供給が停止したときにも実施できるので、有機性廃水が生物処理装置に供給された後、典型的には受水槽中の有機性廃水に対して昆虫成長制御剤の添加工程を実施することが好ましい。
昆虫成長制御剤に使用される有効成分としては、限定的ではないが、例えば、ピリプロキシフェン及びジフルベンズロンが挙げられる。ピリプロキシフェンの場合は、有機性廃水中で2~20μg/L、好ましくは5~10μg/Lのピリプロキシフェン濃度になるように昆虫成長制御剤を添加することで良好な効果が得られる。ジフルベンズロンの場合は、有機性廃水中で0.2~2.0mg/L、好ましくは0.75mg/L~1.5mg/Lのジフルベンズロン濃度になるように昆虫成長制御剤を添加することで良好な効果が得られる。
気温15℃~30℃、特に気温20℃~25℃の期間にハエの発育は良く、冬期低温(15℃未満)や夏期高温(30℃超)では発育は悪くなる。このため、地域にもよるが5月~6月、9月~11月の時期に、ハエが多く発生する傾向になる。従って、有機性廃水に昆虫成長制御剤を添加する時の有機性廃水の温度が15℃~30℃であるとき、好ましくは20℃~25℃であるときに、昆虫成長制御剤を有機性廃水に添加することが効果的である。
昆虫成長制御剤の剤型には特段の制限はなく、液体状でも固体状でもよいが、ハンドリングの観点から、粒剤、水和剤、錠剤(発泡錠剤を含む)等の固体状のものが好ましく、錠剤がより好ましい。固体状の昆虫成長制御剤が有機性廃水中に添加されると、溶解して有効成分を生物処理装置内の廃水中に行き渡らせることができる。表1に市販されている代表的な昆虫成長制御剤の例(薬品-A、薬品-B、薬品-C)を示す。昆虫成長制御剤は、水に溶解させて液状にした後、昆虫成長制御剤の貯留槽及び注入ポンプ等を有する薬液添加装置により生物処理装置に供給してもよい。
昆虫成長制御剤は、手動で有機性廃水に必要量添加してもよいし、自動投入機を設置し、自動で所定のタイミングに必要量添加してもよい。手動で固体状の昆虫成長制御剤を有機性廃水に添加する方法としては、固体状の昆虫成長制御剤を容器に入れ、当該容器内の昆虫成長制御剤を有機性廃水と接触させる方法が挙げられる。昆虫成長制御剤を入れた容器は、受水槽内の有機性廃水へ昆虫成長制御剤を供給する手段として好適である。容器としては、通水性の容器が好ましく、例えば、メッシュ状などの複数の通水穴を有する容器が挙げられる。通水性の容器の材質には特に制限はないが、金属製、プラスチック製、セラミックス製等を使用可能である。金属製の容器の場合、容器の収容部に金網(メッシュメタル)、パンチングメタル又はエキスパンドメタルを好適に使用可能である。図3には、昆虫成長制御剤を収容するための通水性の容器の例が模式的に示されている。
図3の(A)に示す容器は、蓋無しタイプの容器310であり、金網(メッシュメタル)製の収容部311と、収容部311に連結された吊り下げ部312を備える。図3の(A)の容器310において、収容部311は、昆虫成長制御剤を収容部311へ投入するための投入口313を有するが、投入口313を閉じる蓋はない。
図3の(B)に示す容器は、蓋付きタイプの容器320であり、金網(メッシュメタル)製の収容部321と、収容部321に連結された吊り下げ部322と、蓋324を備える。図3の(B)の容器320において、収容部321は、昆虫成長制御剤を収容部321へ投入するための投入口323を有し、投入口323を閉じる蓋324が付いている。投入した昆虫成長制御剤が不用意に容器から漏出しないようにするため、蓋付きタイプの容器320の方が好ましい。蓋324を収容部321に固定する方法には特に制限はないが、ネジ式、クランプ式等が挙げられる。
吊り下げ部312、322は、収容部311、321を吊り下げ保持する機能を有していれば特に制限はない。例えば、図3の(A)のように棒状等のリジッドな吊り下げ部312としてもよいし、図3の(B)のようにチェーン状等のフレキシブルな吊り下げ部322としてもよい。吊り下げ部312、322は、所定の場所に係止するためのフック部315、325を有することが便利である。通水性の容器310、320の設置場所には特に制限はないが、生物処理装置の受水槽の入口側の壁に吊るすことが、昆虫成長制御剤の生物処理装置内での滞留時間を長くする観点で望ましい。そして、通水性の容器310、320を生物処理装置の受水槽の入口側の壁に吊るす場合は、流入する有機性廃水と共に昆虫成長制御剤が短時間で広がりやすいという観点から、受水槽内の水位の半分よりも高い位置に通水性の容器310、320を吊るすことが好ましい。
昆虫成長制御剤を添加するタイミングは、特段の制約はないが、薬品コストを抑制しつつ、効果的にハエの発生を抑制するという観点では、昆虫成長制御剤の生物処理装置内での滞留時間が長いときに有機性廃水に昆虫成長制御剤を添加することが好ましい。従って、好ましい実施形態においては、有機性廃水に昆虫成長制御剤を添加する時期と、有機性廃水に昆虫成長制御剤を添加しない時期があり、有機性廃水に昆虫成長制御剤を添加する時期は、有機性廃水に昆虫成長制御剤を添加しない時期に比べて、前記生物処理装置に供給される有機性廃水の単位時間当たりの供給量が低い。例えば、生物処理装置に供給される有機性廃水を貯留する原水槽の水位が設定値に比べて低下(例:タンク有効水深の20%以下)になった場合には、原水ポンプが停止し、原水供給が停止するような制御を行う場合、原水槽への原水の供給が少ないと、原水ポンプの運転も間欠的になりやすく、有機性廃水の単位時間当たりの供給量も低下する。
実際、生物処理装置に供給される有機性廃水の単位時間当たりの供給量は一定ではなく、変動し、更には供給が停止する場合もある。例えば、し尿処理では週末にし尿・浄化槽汚泥の受け入れがなく原水供給が停止する。ある地域では、し尿処理においては平日(月曜日から金曜日)にし尿、浄化槽汚泥の収集があり、除さ・脱水処理後の分離水を分離水槽に貯留する(1~2日)。このため、週末になると分離水が少なくなり、生物処理装置への原水供給は停止する。有機性廃水の単位時間当たりの供給量が低下している間であれば、添加した昆虫成長制御剤が生物処理後の有機性廃水と一緒に生物処理装置から排出される量も低下又は停止するので、生物処理装置内での昆虫成長制御剤の滞留時間が長くなり、廃水中で昆虫成長制御剤の有効成分の濃度を所定の値に維持するために必要な昆虫成長制御剤の添加量を少なくすることができ、昆虫成長制御剤の有効成分を十分な時間作用させることができる。
より好ましい実施形態では、生物処理装置への有機性廃水の供給が停止し、且つ、前記生物処理装置からの有機性廃水の排出が停止している間に、昆虫成長制御剤を生物処理装置内の有機性廃水に添加する。通常運転時では、有機性廃水中に添加した昆虫成長制御剤は生物処理後の有機性廃水と一緒に生物処理装置から徐々に越流によって流出するが、生物処理装置への有機性廃水の供給が停止し、且つ、前記生物処理装置からの有機性廃水の排出が停止している間であれば、有機性廃水中に添加した昆虫成長制御剤が生物処理装置から流出しないため、有機性廃水中で昆虫成長制御剤の有効成分の濃度を所定の値に維持するために必要な昆虫成長制御剤の添加量を少なくすることができると共に、添加した昆虫成長制御剤を無駄なく利用することができる。
生物処理装置への有機性廃水の供給が停止し、且つ、前記生物処理装置からの有機性廃水の排出が停止している時間は、長い方が有機性廃水に添加した昆虫成長制御剤によるハエの発生を抑制する効果が高まるので、12時間以上であることが好ましく、16時間以上であることがより好ましく、20時間以上であることが更により好ましい。但し、当該時間は、長すぎると廃水処理が滞るため、48時間以下であることが好ましく、24時間以下であることがより好ましい。
昆虫成長制御剤を生物処理装置内の有機性廃水に添加するタイミングは、生物処理装置に有機性廃水を供給する原水ポンプが停止する等によって生物処理装置への有機性廃水の供給が停止し、且つ、前記生物処理装置からの有機性廃水の排出が停止した状態の開始後、12時間以内であることが好ましく、3時間以内であることがより好ましく、1時間以内であることが更により好ましい。当該停止状態の開始後に昆虫成長制御剤の一回目の添加を行った後、必要に応じ、当該停止状態が続いている間に一度又は複数回にわたって昆虫成長制御剤を追加で添加してもよい。また、当該停止状態の開始後に昆虫成長制御剤の一回目の添加を行った後、原水ポンプが再開すること等によって生物処理装置への有機性廃水の供給が再開するまでの時間は、6時間以上であることが好ましく、12時間以上であることがより好ましく、24時間以上であることが更により好ましい。液状の昆虫成長制御剤を使用する場合には、原水ポンプの停止信号を受信してから所定時間(例:6~24時間)経過後に注入ポンプ等の薬液添加装置が稼働し、所定量の昆虫成長制御剤を自動で添加するように薬液添加装置の設定を行うことができる。
生物処理装置の有機性廃水の供給が停止し、且つ、生物処理装置からの有機性廃水の排出が停止している間、生物処理装置は有機性廃水を生物処理装置内で循環させながら生物処理することが好ましい。有機性廃水を生物処理装置内で循環させている間に昆虫成長制御剤を添加することで、添加した昆虫成長制御剤を生物処理装置内の有機性廃水や生物膜に容易に行き渡らせることが可能であり、生物膜の汚泥を餌として食べるハエの幼虫に対して昆虫成長制御剤を効果的に効かせることができる。“有機性廃水を生物処理装置内で循環させながら”とは、例えば、散水ろ床装置の場合は、有機性廃水が受水槽とろ床槽の間を循環している状態を指し、回転円板装置の場合は、円板を回転させることで受水槽内に循環流が発生している状態を指す。循環は連続的に行ってもよいし、間欠的に行ってもよい。
薬品コストを抑制するという観点から、生物処理装置への有機性廃水の供給が行われている間は、有機性廃水に昆虫成長制御剤を添加しないこととする運用が有利である。この場合でも、昆虫成長制御剤を装置内に行き渡らせるために、例えば、有機性廃水の供給が停止する手前で昆虫成長制御剤の添加を始めたり、一時的に有機性廃水を供給しつつ、昆虫成長制御剤を添加したりしても良い。
有機性廃水に昆虫成長制御剤を添加する頻度は、特段の制約はないが、少ない方が費用や管理の手間を節約できる一方で、多い方がハエ発生を抑制する効果は高くなる。有機性廃水に昆虫成長制御剤を添加する工程は、1~2回/週の頻度で行うのが費用対効果の観点から好ましい。ここで、原水量が少なくなり原水が停止した時期に、錠剤を添加する場合、昆虫成長制御剤を添加する工程は、原則として1日1回添加することを1回としてカウントする。
原水が原水槽に連続供給され、原水ポンプ稼働に応じて受水槽に原水が流入する場合は原水液量中の昆虫成長制御剤の有効成分濃度が所定濃度になるように原水ポンプ流量、薬液ポンプ流量、薬品タンク内の昆虫成長制御剤の有効成分濃度を調整する。したがって、この場合は投入回数の概念は適用しない。
ハエは短期間に大量発生して昼夜を問わず屋内を飛来し、人目に付きやすく不快感・不潔感を与えるので、ハエの成虫を生物処理装置から外に出ないようにすることが重要となる。上述した昆虫成長制御剤を添加することにより、ハエの発生に対して抑制効果が期待できるものの、添加量が不足していたり、添加頻度が少なかったりすると、ハエが発生する場合も考えられる。発生してしまったハエの成虫を外に出さないためには生物処理装置の密閉度を上げることが重要である。例えば、散水ろ床装置の場合、ハエが出入りしないように換気口116を金網118で覆う対策や、散水機110の上部に密閉性のある蓋114を設置する対策が考えられる。
[2.生物処理装置の構成例]
図1には、本発明の第一実施形態に係る生物処理装置100の構成例を示す模式図が示されている。生物処理装置100は、有機性廃水を貯留する受水槽102と、受水槽102の上方に配置され、大気と連通する少なくとも1つのろ床槽103と、ろ床槽103を支持する架台106と、ろ床槽103内に収容され、有機性廃水を生物処理するための生物膜を担持する担体104と、受水槽102内の有機性廃水をろ床槽103に散布するための散水機110と、受水槽102内の有機性廃水を散水機110に供給するための循環ライン108及び循環ライン108の途中に設置された循環ポンプ105と、昆虫成長制御剤を収容する容器109と、を備える散水ろ床装置である。
受水槽102の上流には、原水ライン216から流入する原水を貯留する原水槽206が設けられており原水槽206に貯留されている原水は、原水ポンプ202により、流入ライン204を通って受水槽102に供給される。原水としては、例えば、BOD成分を多く含む有機性廃水(し尿、下水、食品工場排水等)が挙げられる。
受水槽102に流入した原水は、ろ床槽103からの処理水と混合される。受水槽102内の混合液は循環ポンプ105により循環ライン108を通ってろ床槽103の上部に移送される。その後、混合液は、散水機110より、生物膜を担持する担体104に散水される。担体表面で増殖した微生物により形成される生物膜によって、混合液中のBOD成分等の有機物は分解除去された後、再び受水槽102に戻る。
第一実施形態においては、昆虫成長制御剤を供給する手段として、昆虫成長制御剤を収容した容器109が使用される。容器109としては、例えば、金網籠のような通水性の容器が好ましい。容器109は、収容部109aと、収容部109aに連結された吊り下げ部109hを備える。受水槽102の入口側の壁102wには、フック112が設置されており、容器109は、吊り下げ部109hがフック112に係合することにより、受水槽102の入口側の壁102wに吊るされる。容器109は、錠剤等の固体状の昆虫成長制御剤を収容部109aに所定量収容した状態で、受水槽102内の混合液(有機性廃水)中に浸漬させる。通水性の容器内の昆虫成長制御剤は、溶解して受水槽102内に広がると共に、循環ライン108を通って、担体104に担持されている生物膜にも到達する。この結果、昆虫成長制御剤は生物膜に生息するハエの幼虫に届くので、ハエの幼虫の成長が効果的に抑制され、ハエの成虫の発生が抑制される。
散水機110は、ろ床槽103内の担体104に均一に混合液を散水することが好ましい。散水機110としては、特に制限はないが、例えば、多孔板、スプリンクラー型、スパイラル型のノズル、自走式の回転散水機等の任意の散水機を用いることができる。
受水槽102の下流には、処理水を貯留する処理水槽208が設けられており、生物処理装置100から越流する処理水は、流出ライン207を通って処理水槽208に供給される。処理水槽208内の処理水は、その後、放流される(主に下水道放流のケースが多い)。
図2には、本発明の第二実施形態に係る生物処理装置200の構成例を示す模式図が示されている。生物処理装置200は、有機性廃水を貯留する受水槽102と、受水槽102の上方に配置され、大気と連通する少なくとも1つのろ床槽103と、ろ床槽103を支持する架台106と、ろ床槽103内に収容され、有機性廃水を生物処理するための生物膜を担持する担体104と、受水槽102内の有機性廃水をろ床槽103に散布するための散水機110と、受水槽102内の有機性廃水を散水機110に供給するための循環ライン108及び循環ライン108の途中に設置された循環ポンプ105と、昆虫成長制御剤を収容する薬液貯留槽210と、薬液貯留槽210内の昆虫成長制御剤を原水ライン216に送るための薬液注入ポンプ214と、を備える散水ろ床装置である。
第二実施形態に係る生物処理装置200が第一実施形態に係る生物処理装置100と異なる点は、昆虫成長制御剤の添加手段のみである。第二実施形態に係る生物処理装置200のその他の構成要素は第一実施形態に係る生物処理装置100と同一である。そのため、第一実施形態に係る生物処理装置100と同一の符号で示されている構成要素についての説明を省略する。
第二実施形態においては、昆虫成長制御剤を供給する手段として、薬液注入ポンプ214が使用される。薬液貯留槽210に収容された液体状の昆虫成長制御剤は、薬液注入ポンプ214が稼働することで薬液注入ライン212を通って、原水ライン216に供給される。薬液注入ポンプ214は、定量ポンプを利用する等により、所定量の昆虫成長制御剤を所定のタイミングで自動的に添加するように構成してもよい。昆虫成長制御剤の供給先は、原水ライン216に限られるものではなく、流入ライン204でもよいし、受水槽102内の混合液(有機性廃水)に直接供給してもよい。原水ポンプ202が停止している状態において昆虫成長制御剤を供給できるようにするという観点からは、受水槽102内の混合液(有機性廃水)に直接供給することが好ましい。
第一実施形態及び第二実施形態において使用する散水ろ床装置は、散水ろ床法を利用して有機性廃水を処理する装置である。散水ろ床法は、好気性生物処理法の一つであり、担体の表面に付着した微生物の作用によって、散布される被処理水中の有機物を分解することにより、生物処理水を得る方法である。散水ろ床法は、一般的に、生物膜の表面が好気的、生物膜の内部が嫌気的になることが知られている。このため、硝化が進行可能な低BOD負荷で散水ろ床の運転を実施すると、生物膜の表面では硝化反応が進行し、生物膜の内部では脱窒反応が進行するという特徴があり、窒素除去効率の面で優れている。散水ろ床法は、BOD容積負荷1kg-BOD/m3/d以上でも安定して運転することが可能であり、敷地面積が限られる場合に特に有効である。
散水ろ床法に用いられる担体の具体的構成に特に制限はない。担体の素材は、微生物が付着すればどのような素材でも良く、代表的なものとしては、プラスチック、砕石等が用いられる。担体の形状は、膜状、プレート状、球状、円柱状、直方体、中空状など何れの形状でもよい。また、ろ床槽の容量に対する担体の充填率としては、40~80%、望ましくは50~70%が好ましい。膜状担体の場合は、ろ床槽の容量に対する膜の容量(膜の容量は膜の外形寸法に基づき計算される。)は、0.05~0.15m3/m3となるように充填することが好ましい。
より効率良く且つ安定的に生物処理を行うためには、ろ床槽に供給される被処理水(有機性廃水)とろ床槽内の酸素とが膜面を挟んで対向して浸透する構造を有する、例えば図4、図5に示すような、膜状担体20がろ床槽内に配置されることが好ましい。
図4及び図5に示すように、膜状担体20は、支持体21と支持体21に支持される膜22を備え、膜22が支持体21を覆うループ形状を有しており、非処理水がループ形状の膜22の外面から浸透し、酸素がループ形状の膜22の内面に形成された空間23から膜22の外面へ浸透するように構成されている。膜22は支持体21の外側で湾曲する湾曲部22aと、湾曲部22aの両端から互いに略平行に延伸する延伸部22b、22cとを備え、膜22の下端側、即ち、膜22を収容するろ床槽の底面と対向する側に、膜22の内面に堆積してその後剥離する汚泥(不図示)を空間23の外へ排出するための開口部22dが形成されている。
膜状担体は、被処理水の供給側はBODが豊富で酸素が乏しいエリアとなる一方で、酸素供給側はBODが乏しく酸素が豊富なエリアとなる。そのため、被処理水の供給側に脱窒反応の進行に適した条件を作り出しながら、酸素供給側に硝化反応に適した条件を作り出すことができるため、種々の担体の中でも特に優れた窒素除去性能を発揮する点においてより好適である。
これに対して、通常の粒状担体の場合、BOD、窒素、及び酸素が同じ方向から担体表面の生物膜に供給されるため、1.0~1.5kg-BOD/m3/dの負荷では酸素はBODの酸化で消費し切ってしまい、硝化-脱窒反応が進みにくくなる場合もある。加えて、膜状担体は、他の形状の担体を使用する処理方式と比較して、1.5kg-BOD/m3/d以上の高負荷条件でも閉塞せず安定して運転できるという利点を有している。これは、膜状担体では各担体が鉛直方向に延伸しており、担体から剥離した生物膜は担体間で閉塞することなく槽外に排出されるためである。
上記の実施形態においては、散水ろ床装置を使用したが、無曝気方式の生物処理装置としては回転円板装置も挙げられる。回転円板装置は、回転円板法を利用して有機性廃水を処理する装置である。回転円板法は、回転する円板の一部を被処理水と大気に交互に触れさせることによって、円板の表面に生物膜を形成させ、被処理水中の有機分を分解させて生物処理水を得る方法である。曝気、エアレーションを行なわないため、風量調整が必要なブロワの設置が不要で、活性汚泥法等のように返送汚泥を供給する必要も無いため、より簡易な設備を供給できる点で有利である。回転円板法のBOD負荷としては、0.1~1.5kg-BOD/m3/dが好ましく、過剰な負荷をかけると、円板に過剰に微生物が付着し、回転軸が破損するという問題が発生する場合がある。
円板の材質及び具体的形状に特に制限は無く、任意の装置を用いることができる。例えば、円板の材質としては発泡スチロール、プラスチック、塩化ビニル、耐水ベニヤ、アルミニウム等の金属板が利用でき、直径1~3m、厚さ0.7~20mmの円板状にして使用することができる。
[3.し尿処理システム]
有機性廃水処理においては廃水の排出量や原水槽の大きさにより、原水が連続的に供給される場合(下水処理等)や間欠に供給される場合(し尿処理、工場排水処理等)がある。図6には、下水道放流を前提としたし尿処理の簡易処理を例に取り、本発明の一実施形態に係る無曝気方式の生物処理装置を使用したし尿処理システムのフロー図が記載されている。尿処理システム30は、固液分離装置31、無曝気方式の生物処理装置32、及び希釈槽33を備える。尿処理システム30においては、被処理水を固液分離装置31で固液分離して分離汚泥と分離液とに分離し、分離液の少なくとも一部を無曝気方式の生物処理装置32に送って生物処理を行う。得られた生物処理水は、希釈槽33に送られ、下水排除基準を満たすように希釈水によって希釈された後、放流される。
(被処理水)
処理対象となる被処理水としては、浄化槽汚泥及びし尿系汚泥の少なくとも何れかを含むものであれば特に限定されない。
(固液分離装置)
し尿系汚泥と浄化槽汚泥の混合液を被処理水として利用する場合の固液分離については、し尿系汚泥と浄化槽汚泥に対してそれぞれ別々に固液分離を行うことが好ましい。固液分離処理には、種々の固液分離装置を用いることができるが、例えば、脱水機を用いて分離汚泥と分離液とに固液分離することが設備及び運用コスト面から好ましい。更に、固液分離前の被処理水に対して濃縮処理を行うことがより好ましい。濃縮方式としては、重力濃縮、機械濃縮の何れも有効な濃縮方式である。
固液分離処理前に高分子凝集剤を添加した濃縮処理を行うことにより、濃縮汚泥の汚泥濃度(TS)を最大10~12質量%程度にまで濃縮することができる。高濃度に濃縮された濃縮汚泥に対して更に脱水機を用いて脱水処理を行えば、含水率70%以下の低含水率の脱水汚泥(分離汚泥)が得られるため、より顕著な汚泥減容効果が得られる。この低含水率の脱水汚泥のカロリーは高いため、焼却処理において補助燃料無しでの自燃が可能であり、省エネ、低コストとなる。
(無曝気方式の生物処理装置)
生物膜法を用いた生物処理法は、大きく分けて担体の定期的な洗浄工程を必要とするものと、生物膜量が処理の中で自律的にコントロールされるものとに分けることができる。前者には、生物膜ろ過法等が該当する。後者には、散水ろ床法、流動担体法、回転円板法、固定床法(接触酸化法)が該当する。上述したように、ハエの発生は散水ろ床法及び回転円板法といった無曝気方式の生物処理法において顕著に見られる。従って、上述した実施形態に係る有機性廃水の処理方法におけるハエ発生対策は、無曝気方式の生物処理装置を使用する場合に特に効果を発揮する。
以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。
原水(有機性廃水)として、し尿処理施設の脱水分離液を使用した。表2に実験期間中の代表的な脱水分離液の性状を示す。pH、BOD、SS、NH4-N、及びPO4-PはすべてJIS K0102:2019に準拠して測定した。
[実施例1(週末1回薬剤添加)及び実施例2(週末2回薬剤添加)]
上記の原水を図1に示す装置構成の散水ろ床装置にて生物処理した。散水機110としては自走式の回転散水機を使用した。ろ床槽103の1台の外径寸法は1.0mW×1.0mD×2.5mHとし、有効容積2m3のものを2台受水槽102の上に並列に設置した。受水槽102の有効容量は約2m3であった。担体104としては図4及び図5に示す布製の膜状担体を設置した。ろ床槽103の容量に対する膜の容量は0.06m3/m3であった。
昆虫成長制御剤としては、表1の薬品-B(ピリプロキシフェンの発泡錠剤)を使用した。実施例1では金曜日の夕方(原水の供給有り)又は土曜日の夕方(原水の供給有り)に薬品-Bを2錠(金曜日)又は1錠(土曜日)、受水槽102の入口側の壁102wに吊るされているステンレス製の金網籠に投入した。実施例2では、更に月曜日の朝(原水の供給が再開する12~24時間前)に薬品-Bを1錠、同じステンレス製の金網籠に投入した。受水槽102における有機性廃水の水量に基づいて計算した場合、1錠の錠剤が溶解すると、有機性廃水中のピリプロキシフェン濃度は約6μg/Lとなる。散水ろ床装置への原水の供給が停止中は、散水ろ床装置からの有機性廃水の排出も停止し、散水ろ床装置は1台当たりのろ床槽103に対し5~7m3/hの平均流量で散水されるように循環運転を行った。実施例1及び2の試験条件を表3にまとめた。
[実施例3(平日連続薬剤添加)]
上記の原水を図2に示す装置構成の散水ろ床装置にて生物処理した。実施例3の散水ろ床装置の装置構成は、昆虫成長制御剤の添加手段以外は、実施例1及び実施例2と同じである。実施例3では、薬液貯留槽210に薬品-Bを水で溶解した薬液が収容されており、原水供給が停止する週末を除き、原水槽206における原水の水量に対してピリプロキシフェン濃度が6μg/Lになるように、薬液注入ポンプ214を用いて薬液を原水ライン216に連続的に供給した。散水ろ床装置への原水の供給が停止中は、薬液の供給の他、散水ろ床装置からの有機性廃水の排出も停止し、散水ろ床装置は1台当たりのろ床槽103に対し5~7m3/hの平均流量で散水されるように循環運転を行った。実施例3の試験条件を表3にまとめた。
[比較例(薬剤添加なし)]
上記の原水を図1に示す装置構成の散水ろ床装置(但し、昆虫成長制御剤の添加はなし)にて生物処理した。比較例の散水ろ床装置の装置構成及び稼働条件は、昆虫成長制御剤の添加を行わないこと以外は、実施例1及び実施例2と同じである。比較例の試験条件を表3にまとめた。
[ハエ発生状況の評価]
上記の実施例1~3、比較例の実験中、受水槽102内の有機性廃水の温度は15~25℃程度であった。実験は9月から11月まで継続的に行い、定期的にハエの幼虫及び成虫の発生数を目視で確認して記録した。図7にハエ幼虫の発生状況の変化を示す。また、図8にハエ成虫の発生状況の変化を示す。ハエの幼虫及び成虫の発生状況は確認された個体数に応じて表4に示す4段階の発生強度に分けた。表5に結果をまとめた。
比較例は薬剤(昆虫成長制御剤)を添加しなかったため、9月の中旬以降ハエの幼虫が受水槽壁面、ろ床上部に発生し、その後、急激に増加した。ハエの成虫も幼虫の増加に追従して増加した。
実施例3は薬剤を平日に連続注入したことで、全期間を通じてハエの幼虫、成虫の発生はなかった。
実施例1は薬剤を週末1回添加した。9月後半から10月にかけてハエの幼虫が少し発生したが、ハエの成虫は見られなかった。これは薬剤の効果により幼虫から成虫への羽化が抑制されたためである。
実施例2は薬剤を週末2回添加したもので、全期間を通じてハエの幼虫、成虫の発生はなかった。
[薬剤消費量の評価]
表6に実験期間中(9月~11月)の薬剤使用量を示す。薬剤は錠剤(6g/1錠、有効成分0.5質量%含有)単位で算出した。週末に薬剤添加する実施例1、実施例2は、ハエ発生の抑制効果はほとんど変わらないが、平日に連続添加する実施例3に比べて、1/4~1/7の使用量であった。
20 :膜状担体
21 :支持体
22 :膜
22a :湾曲部
22b :延伸部
22c :延伸部
22d :開口部
23 :空間
30 :し尿処理システム
31 :固液分離装置
32 :生物処理装置
33 :希釈槽
100 :生物処理装置
102 :受水槽
102w :壁
103 :ろ床槽
104 :担体
105 :循環ポンプ
106 :架台
108 :循環ライン
109 :容器
109a :収容部
109h :吊り下げ部
110 :散水機
112 :フック
200 :生物処理装置
202 :原水ポンプ
204 :流入ライン
206 :原水槽
207 :流出ライン
208 :処理水槽
210 :薬液貯留槽
212 :薬液注入ライン
214 :薬液注入ポンプ
216 :原水ライン
310 :容器
311 :収容部
312 :吊り下げ部
313 :投入口
315 :フック部
320 :容器
321 :収容部
322 :吊り下げ部
323 :投入口
324 :蓋
325 :フック部

Claims (6)

  1. 有機性廃水を、受水槽及びろ床槽を備える無曝気方式の生物処理装置の前記受水槽に供給する工程と、前記受水槽より有機性廃水を前記ろ床槽に散布して生物処理する工程と、前記生物処理装置内の有機性廃水にハエの幼虫の成長を抑制する昆虫成長制御剤を添加する工程とを含む有機性廃水の処理方法であって、
    前記昆虫成長制御剤を添加する工程は、前記受水槽への有機性廃水の供給が停止し、且つ、前記生物処理装置からの有機性廃水の排出が停止している間に実施し、
    前記生物処理する工程は、前記受水槽への有機性廃水の供給が停止し、且つ、前記生物処理装置からの有機性廃水の排出が停止している間、有機性廃水を前記受水槽と前記ろ床槽の間で循環させながら実施することを特徴とした有機性廃水の処理方法。
  2. 前記受水槽への有機性廃水の供給が停止し、且つ、前記生物処理装置からの有機性廃水の排出が停止している時間が、12時間以上であることを特徴とした請求項1に記載の有機性廃水の処理方法。
  3. 前記昆虫成長制御剤を添加する工程が、錠剤の形態にある前記昆虫成長制御剤を、通水性の容器に収容して、前記受水槽内の有機性廃水中に浸漬することを特徴とした請求項1又は2記載の有機性廃水の処理方法。
  4. 前記容器は、前記受水槽の入口側の壁に吊るされることを特徴とした請求項3に記載の有機性廃水の処理方法。
  5. 前記受水槽への有機性廃水の供給が行われている間は、前記昆虫成長制御剤を添加する工程を実施しない請求項1~4の何れか一項に記載の有機性廃水の処理方法。
  6. 有機性廃水がし尿である請求項1~5の何れか一項に記載の有機性廃水の処理方法。
JP2024022406A 2022-03-16 2024-02-16 有機性廃水の処理方法 Pending JP2024040522A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024022406A JP2024040522A (ja) 2022-03-16 2024-02-16 有機性廃水の処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022041755A JP7481383B2 (ja) 2022-03-16 2022-03-16 有機性廃水の処理方法及び生物処理装置
JP2024022406A JP2024040522A (ja) 2022-03-16 2024-02-16 有機性廃水の処理方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022041755A Division JP7481383B2 (ja) 2022-03-16 2022-03-16 有機性廃水の処理方法及び生物処理装置

Publications (1)

Publication Number Publication Date
JP2024040522A true JP2024040522A (ja) 2024-03-25

Family

ID=88145639

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2022041755A Active JP7481383B2 (ja) 2022-03-16 2022-03-16 有機性廃水の処理方法及び生物処理装置
JP2024022406A Pending JP2024040522A (ja) 2022-03-16 2024-02-16 有機性廃水の処理方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2022041755A Active JP7481383B2 (ja) 2022-03-16 2022-03-16 有機性廃水の処理方法及び生物処理装置

Country Status (1)

Country Link
JP (2) JP7481383B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49104453A (ja) * 1973-02-08 1974-10-03
JPS5834087A (ja) * 1981-08-21 1983-02-28 Nippon Peroxide Co Ltd 散水ろ床法におけるろ床バエの発生防止法
US20030034302A1 (en) * 2001-08-20 2003-02-20 Precision Control Technology, Inc. Insecticide delivery apparatus and associated methods
US7951296B2 (en) * 2008-04-07 2011-05-31 Scott R. Williams Apparatus and method for agricultural animal wastewater treatment

Also Published As

Publication number Publication date
JP7481383B2 (ja) 2024-05-10
JP2023136240A (ja) 2023-09-29

Similar Documents

Publication Publication Date Title
KR101860480B1 (ko) 축사 관리 시스템
JPH0899092A (ja) 排水処理装置および排水処理方法
JPH11169654A (ja) 循環式微生物脱臭装置
JPH1085782A (ja) 細菌着床具
KR102621121B1 (ko) 미생물 탈취 장치 및 탈취 처리 시스템
JP2024040522A (ja) 有機性廃水の処理方法
US20030010693A1 (en) Green garbage treatment apparatus
JPH09294502A (ja) 濾過一体型水槽および濾過方式
JP2000157096A (ja) 水 槽
JP7222605B2 (ja) 水処理方法及び水処理装置
JP2712132B2 (ja) 魚類飼育水の▲ろ▼過装置
JP2005000054A (ja) 鑑賞魚用水槽浄化装置
JP7450914B2 (ja) 脱臭処理システム
WO2023048066A1 (ja) 有機性排水処理システム
JP7378370B2 (ja) 水処理方法及び水処理装置
JP2002210325A (ja) 膜型生物脱臭塔および運転方法
JP4026256B2 (ja) 生物脱臭装置の馴養方法
JP2951905B2 (ja) 液体に含まれる有機物をバクテリアで消失させる廃棄装置
JP2019177325A (ja) 水浄化エレメントおよび水浄化装置
JP2004209362A (ja) 汚水処理装置
JPH03137985A (ja) 水等の活性維持用の給気装置
JPH06125677A (ja) 魚の養畜・飼育用水の浄化装置
JP2023161611A (ja) 微生物担持体
JP3728229B2 (ja) 微生物循環式生ゴミ処理機
JPH11179382A (ja) 有機物処理装置及び方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240216